
Practical Software Quality
A guide in progress

Presented at 2015 Flight Software Workshop by co-authors:
Dan Painter – NASA IV&V
Matt Rhodes - MathWorks

https://ntrs.nasa.gov/search.jsp?R=20150023413 2019-08-31T05:09:32+00:00Z

What’s your [mis]fortune cookie say?

What is quality?

“The standard of something as measured against
other things of a similar kind; the degree of excellence of
something.”

Oxford English Dictionary

What is quality?

“The standard of something as measured against
other things of a similar kind; the degree of excellence of
something.”

Oxford English Dictionary

Standards and measures

DO 178C

IEC 61508

EN 50128

Standards can help you figure out what, and
sometimes how, you should measure

NASA-STD-8719.13

MISRA C++

MISRA C CWE JSF++
Cert-C

HIS

Your software quality plan should help you
figure out when to measure

The impetus of software quality

required software quality ∝ software value
axiom

The value of the software,
from the customer’s
perspecrive, should drive the
quality requirements.

Understand the value

Why do you buy
Grandma a laptop?

Its got great specs!
9,000 mAH Li+ battery

1TB SSD HD
2.6 GHz Intel Core i7

720p Webcam

So she can see
pictures of the kids

on Facebook

Understand the value

Why do you buy
Grandma a laptop?

Its got great specs!
9,000 mAH Li+ battery

1TB SSD HD
2.6 GHz Intel Core i7

720p Webcam

So she can see
pictures of the kids

on Facebook

Specifications to enable value

Requirements

•Customer driven
requirements

•Industry driven
process requirements

•Regulations
•Explicit quality
requirements

•Budget – Cost
•Budget – Time
•Budget – Resources

Operational
Constraints

Pre-existing
solution(s)

•Legacy software
•COTS sotware
•Libraries

Don’t overcomplicate; focus on what is
important to the customer

Value is realized as capability

Capability

Subsystem 1 Subsystem 3 Subsystem 2

Software
module 1

Software
module 3

Software
module 2 Software

module 4
Software
module 6

Software
module 5

Protecting value from risk

Unmitigated risks degrade delivered value
axiom

Risks that could prevent the
customer from realizing a
desired capability indicate the
value of the software itself is
at risk.

Each module is scored 1-5 per factors below

Per software module risk assessment

Risk Level 3 ≈ [14-25]

Risk Level 2 ≈ [7-13]

Risk Level 1 ≈ [0-6]

Impact Factors

Performance

Operational S/W Control

Human Safety

Likelihood Factors

Complexity

Testability

Degree of Innovation

Developer Characteristics

1

 Im
pa

ct

 5
 5 10 15 20 25

4 8 12 16 20

3 6 9 12 15

2 4 6 8 10

1 2 3 4 5

1 Likelihood 5

Weighted
Averages

Combined &
Scaled

Risk flows up to capabilities

Capability

Subsystem 1 Subsystem 3 Subsystem 2

Software
module 1

Software
module 3

Software
module 2 Software

module 4
Software
module 6

Software
module 5

Risk Level 1

Risk Level 2

Risk Level 3

Software Modules

None

Math

GNC

Attitude Control

Navigation

Math

GNC

Attitude Control

Navigation

Battery

Power

Thermal

FSW

Telecom

Downlink

Uplink

Command

Telemetry

Software Component

None

Trajectory Control

Attitude Control

Establish and Maintain Power

Establish and Maintain Thermal
Control

Perform Fault Detection

Establish and Maintain
Communication

Capability

Launch to Orbit

Approach to Target

Maintain Flight
Systems

Leverage the progress of others

There is no reason to repeat
the same mistake; make sure
to mitigate known risks with
proven risk mitigation
techniques.

Start with known mitigations for known risks
axiom

Known risks: Enemies of Quality

Unrealistic expectations

Incorrect specification

Bad coding practices and constructs

Inadequate testing

Example risk mitigation activities
Building the right thing
• Prototyping
• Simulation
• Requirements tracing
• Design reviews

Building the thing well
• Code generation
• Unit testing
• Coding standards
• Code reviews
• Monte Carlo testing

Confirmation of building the right
thing well
• Static analysis
• Integration testing
• Coverage testing
• Code metrics

Other Risk Mitigations
• Independent verification and validation
• Experience and training
• Continuous quality plan re-evaluation

Each of these mitigation activities combats one
or more of enemies of quality.

Scope with the risk assesment

Since exhaustive testing is
out of reach, risk mitigation
activities should be scoped
relative to the determined risk
levels.

Risk mitigation ∝ risk level
axiom

Example risk mitigation scoping

Risk Level 3 ≈ [14-25]

Risk Level 2 ≈ [7-13]

Risk Level 1 ≈ [0-6]

Validation activities, medium rigor

Static verification activities, medium rigor
Validation activities, medium rigor

Dynamic verification activities, medium rigor
Static verification activities, high rigor
Validation activities, high rigor

Each risk level dictates risk mitigation methods
applied with specific levels of rigor.

An analogy for rigor

How
Rigor of
strategy

application

How many
stones do I

need to look
under?

Rigor applied to static code analysis

SQO 4

SQO 3

SQO 2

SQO 1
• Identify systematic run-time errors
• Analyze non-terminating constructs
• Analyze first set of potential run-

time errors

• Analyze unreachable branches
• Analyze second set of potential

run-time errors
• Identify external interfaces and

perform tainted data analysis

• Analyze third set of potential
run-time errors

• Apply coding standard X checks

• Prove code safe

Assurance Task SQO Level 1 SQO Level 2 SQO Level 3 SQO Level 4 SQO Level 5 SQO Level 6

Develop Quality Plan (AT-1) X X X X X X

Identify Software Build Information (AT-2) X X X X X X

Identify Source Code Metrics (AT-3) X X X X X X

Apply Standards Based Rules (AT-4)
OPTIONAL
per IV&V

effort

OPTIONAL per
IV&V effort

OPTIONAL
per IV&V

effort

OPTIONAL
per IV&V

effort

OPTIONAL per
IV&V effort

OPTIONAL per
IV&V effort

Identify Systematic Runtime Errors (AT-5) X X X X X

Analyze Non Terminating Constructs (AT-6) X X X X X

Analyze Unreachable Branches (AT-7) X X X X

Identify External Interfaces (AT-8) X X X
Analyze First Subset of Potential Runtime
Errors (AT-9) X X X

Analyze Second Subset of Potential
Runtime Errors (AT-10) X X

Analyze Third Subset of Potential Runtime
Errors (AT-11) X

Prove Code Safe (AT-12)
X (targeted
modules)

Perform Tainted Data Analysis (AT-13)

OPTIONAL or
Required for
Information

Assurance/Secur
ity Focused

Analysis

OPTIONAL or
Required for
Information

Assurance/Securi
ty Focused

Analysis

Perform Dataflow Analysis (AT-14) X

Rigor applied to static code analysis

Rigor applied to static code analysis
Impact List Impact Definition Impact Level SQO Level

MISRA or standards
compliance

Neither causes harm to the system nor a programmer mistake. These are simply good practices or generally
accepted standards to follow. Trivial 1,2,3,4,5,6

Deadlock Two or more threads are waiting for each other to finish causing the process to freeze. These are related to
Semaphores, Mutexes, and Race conditions. Critical 2,3,4,5,6

Memory leak Improper memory management. These involve improper or neglected deallocation or use of memory. Minor - Major 2,3,4,5,6
System crash Impacts system/crew safety which could lead to Loss of vehicle, loss of mission, or loss of life. Critical 2,3,4,5,6

Undefined behavior Code defects whose behavior is not specified under certain conditions. The behavior may vary depending on the
implementation, environment, or semantics. Resulting behavior can range from benign to critical. Major - Critical 2,3,4,5,6

Possible programmer
mistake

Does not cause any major or critical issues, but areas in code that may be worth a look to determine if code was
intentional or not. Minor 3,4,5,6

Unexpected behavior
or results

Suspicious code that may negatively affect the behavior, code flow, or calculation result if the code was not
programmed as intended. Minor - Major 3,4,5,6

Unreachable code Written code that will not be executed. These could either be commented out code or defensive code. Worth
investigating to see if intentional. Minor - Major 3,4,5,6

Data loss Chance to truncate data when assigning between objects, storing results of a calculation, or passing data as
arguments, when the new storage type is smaller. Major 4,5,6

Data exposure Security vulnerability allowing supposedly inaccessible or private data to be modified by a malicious user. Minor - Major 5,6

Security Security vulnerabilities that do not overlap with another impact category. These include the use of unsafe
functions, unverified or tainted inputs, or weaknesses prone to user exploitation. Minor - Major 5,6

Code cleanliness Good practices to observe near the completion of a project such as declaring objects as const or non-const when
appropriate. Trivial 6

Performance Impacts system performance such as timing or memory usage. Minor 6
Portability or cause
compile issues

Code defects that may not be an issue on the current system but may not work if compiled on a different
environment or if implementation was not well understood. Trivial 6

Readability and
maintainability

No impact on the system other than the possibility of confusion if code was shared/maintained by multiple
developers or reused in another project without proper rationale included. Trivial 6

Redefined behavior Built-in commands or operators are overloaded or redefined to have new behavior. May cause confusion, however
it is a non-issue if the system is well understood and documented. Trivial - Minor 6

Unused data Possible development oversight. A parameter, status or calculation result was not used, indicating there may have
been an initial intent but forgotten. Minor 6

Risk
Analysis

Operational
Constraints

Risk mitigation
adjustments

Software
Quality Plan

Possible risk
mitigation activities

Known Risks

Software
Quality Plan

Creation

Requirements

Pre-existing
solution(s)

Propose
Solution

Risk Assessment
Criteria

Putting it all together

Software quality plan reassesment

• Budget – Cost Change
• Requirements - Scope

Creep
• Schedule Slip
• New Risk Mitigation

Strategies

New Inputs

Software
Quality Plan

Re-evaluate
Software

Quality Plan

Your quality plan is an evolving, living process.

What can IV&V provide?

• Code analysis
• Simulation
• Proven evidence based approach

Assurance

• Subject matter experts

Cost savings

• Safe
• Error Free
• Meet your needs

Confidence

What can MathWorks provide?

• MATLAB, Simulink, Polyspace and more

Tools

• Consulting
• Training
• Process assessment
• Model Based Design guidance

Expertise

• File Exchange
• MATLAB Answers
• Blogs

Community

Contribute or ask questions

NASA IV&V
Dan Painter ::
joseph.d.painter@nasa.gov

MathWorks
Matt Rhodes ::

matt.rhodes@mathworks.com

mailto:joseph.d.painter@nasa.gov
mailto:matt.rhodes@mathworks.com

	Practical Software Quality�A guide in progress
	What’s your [mis]fortune cookie say?
	What is quality?
	What is quality?
	Standards and measures
	The impetus of software quality
	Understand the value
	Understand the value
	Specifications to enable value
	Value is realized as capability
	Protecting value from risk
	Per software module risk assessment
	Risk flows up to capabilities
	Slide Number 14
	Leverage the progress of others
	Known risks: Enemies of Quality
	Example risk mitigation activities
	Scope with the risk assesment
	Example risk mitigation scoping
	An analogy for rigor
	Rigor applied to static code analysis
	Rigor applied to static code analysis
	Rigor applied to static code analysis
	Putting it all together
	Software quality plan reassesment
	What can IV&V provide?
	What can MathWorks provide?
	Contribute or ask questions

