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This paper presents a computational framework for uncertainty characterization and
propagation, and sensitivity analysis under the presence of aleatory and epistemic un-
certainty, and develops a rigorous methodology for efficient refinement of epistemic un-
certainty by identifying important epistemic variables that significantly affect the overall
performance of an engineering system. The proposed methodology is illustrated using the
NASA Langley Uncertainty Quantification Challenge (NASA-LUQC) problem that deals
with uncertainty analysis of a generic transport model (GTM). First, Bayesian inference
is used to infer subsystem-level epistemic quantities using the subsystem-level model and
corresponding data. Second, tools of variance-based global sensitivity analysis are used to
identify four important epistemic variables (this limitation specified in the NASA-LUQC
is reflective of practical engineering situations where not all epistemic variables can be
refined due to time/budget constraints) that significantly affect system-level performance.
The most significant contribution of this paper is the development of the sequential refine-
ment methodology, where epistemic variables for refinement are not identified all-at-once.
Instead, only one variable is first identified, and then, Bayesian inference and global sensi-
tivity calculations are repeated to identify the next important variable. This procedure is
continued until all 4 variables are identified and the refinement in the system-level perfor-
mance is computed. The advantages of the proposed sequential refinement methodology
over the all-at-once uncertainty refinement approach are explained, and then applied to
the NASA Langley Uncertainty Quantification Challenge problem.

I. Introduction

Research in the area of uncertainty quantification has focused on identifying, representing, and quantify-
ing the various sources of uncertainty that affect the performance of engineering systems, and systematically
estimating their effect on the system-level response in order to facilitate risk-informed decision-making. Two
types of uncertainty, namely aleatory uncertainty and epistemic uncertainty, have been commonly discussed
by several researchers.1 While aleatory uncertainty refers to the uncertainty arising out of physical variability
or true randomness, epistemic uncertainty arises due to lack of knowledge regarding a quantity whose true
value is deterministic in nature. Epistemic uncertainty, expressed in the form of interval data, has gained
particular attention in the research community during the past ten years. Sandia National Laboratories
conducted an epistemic uncertainty workshop2 that focused on the quantification and propagation of uncer-
tainty in engineering applications where both aleatory uncertainty and epistemic uncertainty (in the form
of interval) are present. There is a general consensus that it is necessary to delineate the effect of aleatory
uncertainty and epistemic uncertainty on the system-level response,3several important questions have come
into limelight. While it is straightforward to use tools of probability to represent and quantify aleatory
uncertainty, some researchers have suggested the use of alternative techniques4, 5 for the representation of
aleatory uncertainty. In general, non-probabilistic techniques are interval analysis-based approaches5 and are
computationally expensive wherein the cost increases exponentially with the number of uncertain variables,
and with the increase in non-linearity of the response function that depends on these uncertain variables.
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Some researchers still believe that probabilistic methods are sufficient to represent epistemic uncertainty
and different types of probabilistic approaches have been proposed to deal with epistemic uncertainty in the
form of interval data. These approaches are either based on the concept of probability boxes6, 7 or by using a
family of probability distributions8, 9 to represent epistemic uncertainty. It can be argued that a probabilistic
representation for epistemic uncertainty is justified according to the subjective/Bayesian interpretation of
probability. Bayesian methods are based on subjective probability and can be used to assign probabilities
even to epistemic variables that are not truly random but just unknown.

By definition, epistemic uncertainty is reducible though there may be a significant amount of cost asso-
ciated with such uncertainty refinement. In general, if there are several epistemic variables associated with
a particular engineering application, it may not be possible to refine the uncertainty in all of them, due to
budget/time constraints. Therefore, it is necessary to develop a computational methodology for identifying
important epistemic variables that have significant effects on system-level performance. An intuitive ap-
proach for identifying such important variables is based on variance-based global sensitivity analysis,10 by
computing the sensitivity of system-level performance measures to the various epistemic variables.

However, the use of global sensitivity analysis for the treatment of epistemic uncertainty is not well-
established in the literature. The primary goal of this paper is to present a generic framework for uncer-
tainty quantification and sensitivity analysis in the presence of both aleatory and epistemic uncertainty, and
to develop a new computational approach for uncertainty refinement, based on the above framework. The
most important feature of the proposed approach is that variables for refinement are selected in a sequential
manner. The initial results of sensitivity analysis are used to identify only one epistemic variable for refine-
ment; after this epistemic variable is refined, the entire analysis (including uncertainty quantification and
variance-based sensitivity analysis) is repeated and the new results are used to identify the second variable
for refinement. This approach is continued until all possible refinements have been made or until budget/time
constraints are met.

The proposed methodology is illustrated using the NASA Langley Uncertainty Quantification Challenge
(referred to NASA-LUQC, in the rest of the paper) problem presented in detail by Crespo et al.11 The
proposed sequential approach for uncertainty refinement is starkly different from existing refinement ap-
proaches,12–16 all of which simultaneously identify all four candidates of refinement; such an approach is
referred as all-at-once uncertainty refinement in this paper.

II. Importance of Sequential Uncertainty Refinement

As stated earlier, the all-at-once approach for uncertainty refinement simultaneously identifies all the
possible candidates for refinement, based on the results of Bayesian inference (inferring subsystem-level vari-
ables) and global sensitivity analysis (identifying important variables that affect system-level performance).
On the other hand, the proposed sequential uncertainty refinement approach chooses candidates for refine-
ment one-by-one; the first variable is selected and refined, and then Bayesian inference and global sensitivity
calculations are repeated to identify the next candidate for refinement. This procedure is continued until all
candidates are selected.

The disadvantage of the all-at-once approach can be easily identified and understood based on the follow-
ing argument. The various epistemic variables can be ranked using global sensitivity analysis by computing
their variance-based contribution to the system-level prediction. Say for example, the highest ranked epis-
temic variable is chosen for uncertainty refinement and a new refined probability distribution (defined on a
domain that is a much smaller subset of the domain before refinement) is available for this variable. Then,
this information alters the sensitivity effects of all variables since the sensitivity of system-level performance
to any variable depends on the probability distribution of all variables. Therefore, changing information
regarding one variable may alter sensitivities completely. For example, the second-highest ranked variable
before refinement may not necessarily remain the highest ranked variable after refinement (eliminating the
previously highest ranked variable out of the ranking scheme, since it has been refined already) and may
have moved farther down in the ranking.

This issue gets further complicated in the NASA-LUQC because of the presence of the subsystem-level
model and the corresponding data to infer subsystem-level epistemic quantities. When multiple quantities
that need to be simultaneously inferred using Bayesian updating are possible candidates for uncertainty
refinement, the importance of sequential refinement increases multi-fold. Consider the case when one quantity
is identified for refinement and refined uncertainty information is available; then Bayesian updating can be
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performed again using a new prior (based on the newly obtained refined uncertainty estimate) on the refined
quantity and new posteriors can be obtained for all other epistemic variables. It is important not to re-use
available data, and therefore, Bayesian updating needs to be re-started from the original prior (for all the
quantities that have not been refined).

Therefore, when multiple quantities that need to simultaneously inferred using Bayesian updating are
possible candidates for uncertainty refinement, it is necessary to adopt a sequential approach for uncertainty
refinement. In the NASA-LUQC, this is the case, and that is why a sequential approach for uncertainty
refinement is proposed in this paper, and this is the most important contribution of this manuscript.

III. Challenge Problem: Auxiliary Variables and Notation

This section describes the notation that is used to describe and solve the NASA-LUQC. This lies on
the concept of auxiliary variables developed by Sankararaman and Mahadevan17 in order to facilitate global
sensitivity analysis in the presence second-order uncertainty.

A. Use of Auxiliary Variables

The NASA-LUQC describes three types of uncertain variables: Type-I (aleatory variable, whose probabil-
ity distribution is completely defined), Type-II (epistemic variable, whose uncertainty is specified using an
interval), and Type-III (aleatory variable, whose probability distribution is defined in terms of distribution
parameters that are epistemic variables described using intervals). The auxiliary variable (represented as
U , a uniform random variable on the interval [0, 1], for every Type-III variable) is of utmost importance
when dealing with Type-III uncertainty. Type-III variables are typically represented using a family of dis-
tributions; each member of the family corresponds to the aleatory uncertainty resulting from one particular
realization of distribution parameters while the uncertainty in the distribution parameters leads to multiple
members of the family. Any quantity that depends on any Type-III variable also follows a family of distri-
butions. The auxiliary variable approach is based on the concept of probability integral transform and is
very useful in analyzing such a family of distributions. Further, it can use tools of global sensitivity analysis
can quantitatively assess the contributions of aleatory uncertainty and epistemic (distribution parameter)
uncertainty.

B. Subsystem Level

In the system-level, there are 21 independent variables denoted as pi (i = 1 to 21), and the five intermediate
variables xj (j = 1 to 5) are well defined functions of pi (i = 1 to 21). All of these models have been provided
as a part of the NASA-LUQC problem and available as MATLAB files, as explained by Crespo et al.11 Let
x = {xj ; j = 1 to 5}, h = {hj ; j = 1 to 5}, and p = {pi; i = 1 to 21}.

x1 = h1(p1, p2, p3, p4, p5) (1)

x2 = h2(p6, p7, p8, p9, p10) (2)

x3 = h3(p11, p12, p13, p14, p15) (3)

x4 = h4(p16, p17, p18, p19, p20) (4)

x5 = p21 (5)

All random variables are denoted by upper case letters and the realizations of the random variables are
denoted by the corresponding lower case letters. Hence, P = {Pi; i = 1 to 21}, and X = {Xj ; j = 1 to 5}
are random variables whose realizations are denoted by p = {pi; i = 1 to 21} and x = {xj ; j = 1 to 5}.
Note that functions are always expressed in terms of realizations of random variables.

Amongst the variables pi (i = 1 to 21), some of them are Type-I variables (well-defined probability
distributions), some of them are Type-II variables (epistemic, described using an interval), and the rest
are Type-III variables (random variables whose distribution parameters are described using an interval
each). Following the auxiliary variable framework, aleatory uncertainty is present in all Type-I and Type-III
variables. Therefore, an auxiliary variable Ui is assigned to every pi that is either Type-I or Type-III. An
auxiliary variable is not assigned for Type-II variables since they are purely epistemic. There are totally 17
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auxiliary variables that include U1, U3, U4, U5, U7, U8, U9, U10, U11, U13, U14, U15, U17, U18, U19, U20, and
U21. All of the variables are uniformly distributed on the interval [0, 1]. Let U denote the vector of these
aleatory variables.

There are 31 epistemic quantities that are numbered serially as indicated in Table 1. Let Θ denote the
vector of these variables, and θ denotes a realization of Θ. When necessary to denote only a subset of
variables, the list of variables is also compactly represented as subscript. For example, the variables P4 and
P5 are jointly represented by P4,5, and the variables Θ4, Θ5, Θ6, Θ7, and Θ8 are jointly represented by
Θ4−8. It is easy to observe from Table 1 that Θ4−8 constitute the epistemic components of P4,5. Further,
realizations of these quantities can also be indicated using the respective lower case letters.

Table 1: List of Epistemic Components of Uncertainty

Symbol Description Interval Symbol Description Interval

Θ1 E(P1), P1 is unimodal Beta [ 3
5
, 4

5
] Θ2 V (P1), P1 is unimodal Beta [ 1

50
, 1

25
]

Θ3 P2, constant [0, 1] Θ4 E(P4), P4 is Gaussian [−5, 5]

Θ5 V (P4), P4 is Gaussian [ 1

400
, 4] Θ6 E(P5), P5 is Gaussian [−5, 5]

Θ7 V (P5), P5 is Gaussian [ 1

400
, 4] Θ8 Correlation between P4 and P5 [−1, 1]

Θ9 P6, constant [0, 1] Θ10 a of Beta P7 [0.982, 3.537]

Θ11 b of Beta P7 [0.619, 1.080] Θ12 a of Beta P8 [7.450, 14.093]

Θ13 b of Beta P8 [4.285, 7.864] Θ14 a of Beta P10 [1.520, 4.513]

Θ15 b of Beta P10 [1.536, 4.750] Θ16 P12, constant [0, 1]

Θ17 a of Beta P13 [0.412, 0.737] Θ18 b of Beta P13 [1.000, 2.068]

Θ19 a of Beta P14 [0.931, 2.169] Θ20 b of Beta P14 [1.000, 2.407]

Θ21 a of Beta P15 [5.435, 7.095] Θ22 b of Beta P15 [5.287, 6.945]

Θ23 P16, constant [0, 1] Θ24 a of Beta P17 [1.060, 1.662]

Θ25 b of Beta P17 [1.000, 1.488] Θ26 a of Beta P18 [1.000, 4.266]

Θ27 b of Beta P18 [0.553, 1.000] Θ28 a of Beta P20 [7.530, 13.492]

Θ29 b of Beta P20 [4.711, 8.148] Θ30 a of Beta P21 [0.421, 1.000]

Θ31 b of Beta P21 [7.772, 29.621]

Each Xj has at least one input Pi that is either Type-II or Type-III uncertainty. Hence, from the
discussion earlier in this Section, it follows that eachXi needs to be represented using a family of distributions.
Therefore, auxiliary functions need to be developed for each Xj . The corresponding auxiliary functions are
denoted as HXj

(j = 1 to 5). Each auxiliary function takes as inputs a set of aleatory variables and a set of
epistemic variables.

C. System-level Outputs and Performance Metrics

As specified in Crespo et al.,11 the system level outputs (g = {gi; i = 1 to 8}) are functions (f = {fi; i = 1
to 8}) of the intermediate variables (x) and design variables (d), as:

g = f(x,d) (6)

Similar to the previous notations, random variables G = {Gi; i = 1 to 8} can also be defined, and their
realizations are denoted by g = {gi; i = 1 to 8}.

There are two system-level performance metrics of interest J1 and J2, that are defined as:

J1 = E(w(p,dbaseline)) (7)

J2 = 1− P [w(p,dbaseline) < 0] (8)

where w(p,dbaseline) refers to worst case requirement metric that is calculated as:

w(p,dbaseline) = max(gi) = max
(

fi(h(p),d)
)

(9)

The NASA-LUQC provides Eq. 6 – 9 in terms of MATLAB files, and refer to Crespo et al.11 for detailed
description of the various quantities in Eq. 6 – 9
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IV. Subproblem A: Uncertainty Characterization

The first subproblem consists of only one response function that is used to calculate x1. Here, it is
important to account for the correlation between p4 and p5 systematically; this is straightforward because
conditional distributions for correlated Gaussian variables are analytically calculable.

A. Problems A1 and A2

The goal is to update/refine the uncertainty in Θi (i = 1 to 8) using data (first set of 25 observations denoted
by D1 = {xj

1; j = 1 to 25}) on x1. This data D1 is provided as a part of the NASA-LUQC, in the form
a MATLAB file, as explained by Crespo et al.11 Such uncertainty refinement can be easily accomplished
through Bayesian updating, using Bayes’ theorem as:

fΘ(θ|D1) =
L(θ)fΘ(θ)

∫

L(θ)fΘ(θ)dθ
(10)

where fΘ() is the prior distribution and the likelihood L(θ) defined as:

L(θ) =

25
∏

j=1

fX1
(xj

1|θ) (11)

In order to compute fX1
(x1|θ), it is necessary to resort to an uncertainty propagation technique. It can be

easily seen that X1 follows a probability distribution for a given realization of Θ. The corresponding PDF
fX1

(x1|θ) is calculated using Monte Carlo sampling (5000 Latin hypercube samples) in this paper.
The prior distributions are chosen based on the provided interval data and/or using Jeffrey’s prior, as

and when appropriate. Bayesian updating is performed using the slice sampling technique.18 After Bayesian
updating, the resultant joint probability distribution of Θi (i = 1 to 8) are referred to as joint mid-posterior
distribution (since this calculated only using 25 of available 50 samples of X1), and the corresponding
marginal PDFs fΘ(θ|D1) are shown in in Fig. 1. It is important not to use the marginal distributions and
preserve the information available in the form of joint distribution throughout the solution of the NASA-
LUQC.
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Figure 1: Subproblem A: Uncertainty Characterization

Now it is necessary to validate the estimated fΘ(θ|D1) using the second set of 25 samples (D2, as specified
in the NASA-LUQC). This data set D2 is also presented as a MATLAB file, as explained by Crespo et al.11
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Two routes are proposed for validation: two-sample K-S test19 and a normalized area metric.20 It is inferred
that the fraction of Θ values for which the samples in D2 correspond to the PDF fX1

(x1|θ, D1) is estimated
to be equal to 0.6. The alternative normalized area metric is also computed as follows, and shown in Fig. 2.
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Figure 2: Normalized Area Metric

The uncertainty reflected in Fig. 2 is reflective of the uncertainty in Θ and its correspondence with
the observed data D2. With either this result, or the result from two-sample KS-test, it is not possible
to guarantee the validity of the uncertainty model given by fΘ(θ|D1), as (1) only 60% of the values of Θ
suggest agreement of model with the data; and (2) the area metric is not very small. However, identifying
tolerance levels for acceptance in these cases could be subjective and vary from application to application.

B. Problem A3

The third task requires further refinement the uncertainty model fΘ(θ|D1) with the data contained in
D2. Instead of updating the mid-posterior, the prior is updated with all 50 data points, and the final
posterior PDF fΘ(θ|D1, D2) is calculated. The corresponding marginal PDFs are indicated in Fig. 1. One
important point to note here is that the entire joint density function denotes the refined uncertainty model;
by converting this information to interval format (say, by calculating credible intervals) will result loss of
information – information regarding marginal densities and more importantly, the dependence between the
variables.

C. Problem A4

In this subproblem, it is required to account for the effect of number of observations on the fidelity of the
resulting uncertainty models. This can be accomplished by quantifying the amount of improvement achieved
in the solution of A3, compared to the solution of A1.The values of the individual and overall effects of the
total aleatory and epistemic components are tabulated in Table 2, for the prior, mid-posterior, posterior
distributions.

Table 2: Quantifying Extent of Refinement: Subproblem A4

Uncertainty Model

Aleatory Uncertainty Epistemic Uncertainty

Individual Effect Overall Effect Individual Effect Overall Effect

SX1

I,U1,3−5
SX1

I,U1,3−5
SX1

I,Θ1−8
SX1

I,Θ1−8

Prior (fΘ(θ)) 0.80 0.90 0.10 0.20

Mid-Posterior (fΘ(θ|D1)) 0.91 0.96 0.04 0.09

Posterior (fΘ(θ|D1, D2)) 0.94 0.97 0.03 0.06

If there were no epistemic uncertainty, then the individual and overall contributions of aleatory uncer-
tainty should be equal to unity.17 To answer the question: “How much better is the model found in A3 as
compared to the model found in A1?”, it is simply necessary to look into the individual effects of aleatory
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uncertainty in the case of these two uncertainty models. The value for model in A1 is already equal to
0.91, and it is necessary to increase the value by 0.09 to achieve perfect refinement whereas the model in
A3 increases the value only by 0.03. In terms of percentage, this may be quantified as “the model in A3
has achieved 30% of the maximum refinement possible from the model in A1”. (Similarly, the model in
A1 has achived a little more than 50% of the maximum refinement possible from the prior.) Obviously,
these refinements are measured in terms of the contributions of these quantities to the intermediate response
variable X1. Since these quantities may have significantly different contributions to other response variables,
the extent of refinement will also need to be calculated with reference to each of those response variables
and interpreted appropriately.

V. Subproblem B: Sensitivity Analysis

This subproblem deals with analyzing the sensitivity of X (to Pi, where i = 1 to 5), J1 (to Θi where i =
to 31), and J2 (to Θi where i = to 31) in subproblems B1, B2, and B3 respectively.

The intermediate output quantity X follows a probability distribution for a given value of Θ. On the
other hand, J1 and J2 are point-valued functions of Θ. For the purpose of solving Subproblem B, the
posterior density function fΘ(θ|D1, D2) is considered for analysis, as mentioned in the NASA-LUQC.

A. Subproblem B1

The first goal in Subproblem B1 is to rank the 4 category II-III parameters (p1, p2, p4, and p5) according
to degree of refinement in the p-box (equivalently, family of distributions, in the approach pursued here) of
X1 which one could hope to obtain by refining their uncertainty models. Using, the auxiliary variable-based
framework and global sensitivity analysis, the results for sensitivity analysis of X with respect to P are
provided in Tables 3 (for X1), 4 (for X2), 5 (for X3), and 6 (for X4). Note that the analysis for X1 indicates
the sensitivity of X1 to P4 by itself and P5 by itself (during this computation, the dependency between P4

and P5 cannot be considered). This was done in order account for the possible correlation (represented by
Θ8) between P4 and P5.

Table 3: Sensitivity of X1: Subproblem B1

Variable Individual Effect Overall Effect Ranking

P1 SX1

I,Θ1−2
= 2.4 × 10−2 SX1

O,Θ1−2
= 5.6 × 10−2 I

P2 SX1

I,Θ3
= 8.0 × 10−5 SX1

O,Θ3
= 2.3 × 10−4 IV

P4 SX1

I,Θ4−5
= 5.4 × 10−4 SX1

O,Θ4−5
= 1.2 × 10−3 III

P5 SX1

I,Θ6−7
= 4.0 × 10−3 SX1

O,Θ6−7
= 6.8 × 10−3 II

Table 4: Sensitivity of X2: Subproblem B1

Variable Individual Effect Overall Effect Ranking

P6 SX2

I,Θ9
= 8.2 × 10−2 SX2

O,Θ9
= 9.0 × 10−1 I

P7 SX2

I,Θ10−11
= 1.9 × 10−3 SX2

O,Θ10−11
= 1.5 × 10−1 II

P8 SX2

I,Θ12−13
= 5.8 × 10−4 SX2

O,Θ12−13
= 4.5 × 10−3 III

P10 SX2

I,Θ14−15
= 1.2 × 10−5 SX2

O,Θ14−15
= 1.0 × 10−4 IV

B. Subproblems B2 and B3

From hereon, the focus of the NASA-LUQC shifts from focusing on the intermediate variables x to system-
level response quantities g and the corresponding performance metrics J1 and J2. It was explained earlier in
Section III that J1 and J2 would have been point valued has there been no epistemic uncertainty. For every
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Table 5: Sensitivity of X3: Subproblem B1

Variable Individual Effect Overall Effect Ranking

P12 SX3

I,Θ16
= 9.2 × 10−1 SX3

O,Θ16
= 9.6 × 10−1 I

P13 SX3

I,Θ17−18
= 1.7 × 10−5 SX3

O,Θ17−18
= 8.1 × 10−5 IV

P14 SX3

I,Θ19−20
= 1.7 × 10−3 SX3

O,Θ19−20
= 1.1 × 10−2 II

P15 SX3

I,Θ21−22
= 6.3 × 10−5 SX3

O,Θ21−22
= 2.0 × 10−4 III

Table 6: Sensitivity of X4: Subproblem B1

Variable Individual Effect Overall Effect Ranking

P16 SX4

I,Θ23
= 4.2 × 10−1 SX4

O,Θ23
= 7.3 × 10−1 I

P17 SX4

I,Θ24−25
= 2.8 × 10−3 SX4

O,Θ24−25
= 1.3 × 10−2 III

P18 SX4

I,Θ26−27
= 1.9 × 10−2 SX4

O,Θ26−27
= 5.1 × 10−2 II

P20 SX4

I,Θ28−29
= 4.7 × 10−4 SX4

O,Θ28−29
= 1.1 × 10−3 IV

realization of the epistemic quantities (Θ), there exists a unique value of J1 and J2. Hence,

J1 = J1(Θ) (12)

J2 = J2(Θ) (13)

In order to evaluate the above functions, this paper uses a 17-dimensional Sobol sequence21 of 500 quasi-
random numbers (denoted by U). These 17 dimensions correspond to the 17 aleatory components in the
different Type-I and Type-III Pi variables (there is no aleatory component in Type-II variable). All the
epistemic components in the different Type-II and Type-III variables are contained in Θ above (there is
no epistemic component in Type-I variables). Then for a fixed epistemic realization Θ, the probability
distributions of G = {Gi; i = 1 to 8} are computed by propagating the aforementioned 500 17-dimensional
random samples, resulting in 500 8-dimensional samples of g.

In order to analyze the sensitivity of J1 and J2 to Θ, this paper uses double loop Monte Carlo sampling
to estimate quantities like V (E(J1|Θ1,Θ2)). In improve computational efficiency, Gaussian Process (GP)
surrogate models22 are used to replace the calculations of J1 and J2 as functions of Θ.

The results of sensitivity analysis of J1 and J2 with respect to all of the epistemic components (Θ) are
tabulated in Table 7. Note that the second column contains the vector of epistemic terms within each Pi;
this vector is denoted as Θfix and sensitivity expressions in columns 2 and 3 rely on these fixing factors.

In order to rank the variables according to sensitivity, it is necessary to look at the individual effects in
Table 7. In order study the error caused by fixing variables, it is necessary to look at the overall effects in
Table 7. Note that, while one variable may have a large contribution to the uncertainty in J1, it may have
negligible contributions to the uncertainty in J2, and vice-versa.

VI. Subproblem C: Uncertainty Propagation

The goal in this subproblem is to (1) compute the uncertainty in J1 and J2; (2) request for refined
uncertainty models from Crespo et al.11 for 4 of the 17 Type-II and Type-III variables; and (3) re-estimate
the uncertainty in J1 and J2. Though the original NASA-LUQC only specifies to provide ranges on the values
of J1 and J2 (this is meaningful because the quantities that lead to uncertainty in J1 and J2 are themselves
specified only using intervals), the approached proposed in this paper leads to probability distributions for
J1 and J2, that reflects the likelihood of occurrence for every value of J1 and J2. Since a sampling-based
technique is used to calculate their distributions, the smallest value and the largest value are used to define
the range of J1 and J2.

In order to identify the four parameters that will result in maximum reduction of uncertainty in J1 and
J2, it is necessary to examine the individual effects and overall effects of the various quantities in Table 7.
The first choice of the parameter is obvious from Table 7, since p1 has the highest contribution to the

8 of 12

American Institute of Aeronautics and Astronautics



Table 7: Sensitivity Analysis of J1 and J2: No Refinement

Type II-III Epistemic
J1 J2

Individual Overall Individual Overall

Variable Quantity (Θfix) S
J1

I,Θfix
S
J1

O,Θfix
S
J2

I,Θfix
S
J2

O,Θfix

P1 Θ1, Θ2 4.2 × 10−1 4.5 × 10−1 3.5 × 10−1 3.8 × 10−1

P2 Θ3 1.0 × 10−2 6.0 × 10−2 9.5 × 10−4 4.8 × 10−2

P4, P5 Θ4, Θ5, Θ6, Θ7, Θ8 5.7 × 10−2 6.5 × 10−2 1.7 × 10−2 2.4 × 10−2

P6 Θ9 4.5 × 10−3 4.3 × 10−2 9.3 × 10−3 4.6 × 10−2

P7 Θ10, Θ11 2.5 × 10−3 3.1 × 10−2 4.3 × 10−4 2.7 × 10−2

P8 Θ12, Θ13 1.6 × 10−3 3.1 × 10−2 3.7 × 10−3 3.1 × 10−2

P10 Θ14, Θ15 4.6 × 10−4 2.9 × 10−2 5.1 × 10−3 3.1 × 10−2

P12 Θ16 1.2 × 10−3 4.2 × 10−2 2.9 × 10−1 3.3 × 10−1

P13 Θ17, Θ18 2.7 × 10−3 3.1 × 10−2 4.0 × 10−3 3.0 × 10−2

P14 Θ19, Θ20 3.3 × 10−4 2.9 × 10−2 2.9 × 10−3 2.9 × 10−2

P15 Θ21, Θ22 3.9 × 10−3 3.2 × 10−2 8.8 × 10−3 3.6 × 10−2

P16 Θ23 4.4 × 10−4 3.8 × 10−2 1.9 × 10−3 3.5 × 10−2

P17 Θ24, Θ25 5.2 × 10−3 3.3 × 10−2 1.3 × 10−2 4.0 × 10−2

P18 Θ26, Θ27 1.2 × 10−3 3.0 × 10−2 2.6 × 10−3 2.9 × 10−2

P20 Θ28, Θ29 2.1 × 10−3 3.0 × 10−2 1.1 × 10−3 2.7 × 10−2

P21 Θ30, Θ31 9.9 × 10−2 1.3 × 10−1 1.1 × 10−2 3.9 × 10−2

P1, P2, P3, P4, P5 Θ1, Θ2, Θ3, Θ4, Θ5, Θ6, Θ7, Θ8 5.1 × 10−1 5.1 × 10−1 3.3 × 10−1 3.4 × 10−1

uncertainty in both J1 and J2. Other than p1, p12 has a large contribution to J2 and p21 has a significant
contribution to J1. Hence, it is tempting to select these three parameters and a fourth parameter that has
a significant contribution to either J1 or J2 or both. In fact, it is easy to that the choice of the fourth
parameter is neither straightforward nor clear, because several parameters have comparable estimates of
individual/overall effects. Further, one important issue is that, refining the uncertainty model of p1 shrinks
the family of distributions that p1 represents, and this may significantly alter the probability distributions
of the epistemic components of p2, p4, and p5 (resulting from Bayesian inference) in order better predict the
50 samples of x1 that were used for uncertainty characterization in Subproblem A. As a result, such altering
of probability distributions causes a change in the sensitivities of not only the epistemic components of pi
(i = 1 to 5) but also the epistemic components of pi (i = 6 to 21), because the sensitivity indices depend on
the probability distributions for the epistemic components of all pi (i = 1 to 21) as well. In order address
these challenges in selecting four parameters, a sequential approach for model refinement is pursued in this
paper.

In the first level of refinement, P1 is refined. Bayesian updating is reperformed, and the sensitivities are
computed. Refining the uncertainty model of P1 would also alter all the distributions of Θi (i = 1 to 8), and
in turn, further alter the sensitivity of J1 and J2 to Θ. An advantage of the sequential refinement procedure
is that it provides the analyst the information to make decisions regarding refinement of uncertainty. If the
goal is to simply reduce the uncertainty in J1, then it is possible to make continuous choices to meet that
goal. On the other hand, if the goal is to simply reduce the uncertainty in J2, then it is possible to make
continuous choices to meet that goal as well. In the NASA-LUQC, subjective choices need to made in order
to reduce the uncertainty in both J1 and J2.

In the second level of refinement, both P5 and P12 are considered for refinement. This is because P5

affects J1 and P12 affects J2; more importantly, P5 does not affect J2 and P12 does not affect J1 significantly.
Hence, in the second refinement, refining the uncertainty in P5 almost fully contributes to the reduction
of uncertainty in J1, while the refining the uncertainty in P12 almost fully contributes to the reduction of
uncertainty in J2. After obtaining the refined uncertainty models for P5 and P12, new priors are constructed
for Θi (i = 1 to 8), and re-updated using Bayes’ theorem. Once the posteriors of Θ8 are obtained, sensitivity
analysis of J1 and J2 are repeated.

Finally, for the third and final level of refinement, it is necessary to choose the 4th variable. It is
determined that refining P2 would lead to reducing the uncertainty in J1, while refining P14 would lead to
reducing the uncertainty in J2. Based on the amounts of refinement achieved in J1 and J2 so far (numerical
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values are indicated in the next section), the fourth variable is chosen to be P2. Once the refined model is
obtained, new priors are constructed, Bayesian updating is reformed, and the uncertainty in J1 and J2 are
recomputed.

The progressive refinement in J1 and J2 are shown in Fig. 3 (for J1) and Fig. 4 (for J2), and in Table 8.
Note that the proposed approach only computes probability distributions; since a sampling-based approach
is pursued in this paper, the smallest and largest values are indicated in Table 8.
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Figure 4: Reduction in Uncertainty of J2

Table 8: Refinement of Uncertainty in J1 and J2

Description J1 J2

No Refinement, Data [0.02, 1.11] [0.09, 0.70]

Refine P1, Data [0.05, 0.22] [0.20, 0.60]

Refine P1, P5, P12 [0.04, 0.15] [0.28, 0.41]

Refine P1, P5, P12, and P2 [0.04, 0.15] [0.30, 0.41]

The observed extents of refinement are also in accordance with the choices made while choosing the
variables for refinement. For example, during the first two steps of refinement, both J1 and J2 were expected
to be refined. However, the last choice P2 was made knowing well that it may not have an impact on J2.

VII. Subproblem D: Extreme Case Analysis

This subproblem focuses on identifying epistemic realizations that lead to the maximum and minimum
values of J1 and J2, and studying failure scenarios. Since a sampling-based approach is pursued in this
paper, the epistemic realizations that lead to extreme values of J1 and J2 are computed by simply examining
the samples. The exact values are discussed as a part of a much more detailed journal manuscript by
Sankararaman.20

In this subproblem, it is necessary to identify realizations of X that would lead to J2 > 0, i.e., lead to
failure. Failure is said to occur when the value of gi is greater than zero for atleast one “i”. In other words,
failure is said to occur when any one of the outputs gi (i = 1 to 8) is positive. In order to be able to generate
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failure scenarios, it is necessary to find out realizations of X that would lead to at least one of the outputs
being positive.

In order to accomplish this goal, consider the posterior PDF fΘ(θ|D1, D2) estimated earlier in Section B.
Using this PDF, estimate the predictive distribution9, 17 of X1, as:

fX1
(x1) =

∫

fX1
(x1|θ)fΘ(θ|D1, D2)dθ (14)

Note that only Θ1−8 are used in the above equation to calculate the PDF of X1, from which samples of
X1 can be generated. For Θ9−31, uniform distributions are assumed on the interval provided by the NASA-
LUQC, and the predictive distributions of X2, X3, X4, and X5 can also be computed. Since 5000 samples
were generated using slice sampling in Section B, 5000 samples of each Xi (i = 1 to 5) are calculated. Then,
these samples are used to compute 5000 corresponding realizations of gi (i = 1 to 8); these results are used
to study the behavior of the system.

Out of 5000 samples, 1067 samples resulted in system failure. Out of these 1067 samples, “g1 > 0” in
326 samples, “g2 > 0” in 9 samples, “g3 > 0” in 176 samples, “g4 > 0” in 1067 samples, “g5 > 0” in 149
samples, “g6 > 0” in 352 samples, “g7 > 0” in 14 samples, and “g8 > 0” in 2 samples. This suggests that g4
is extremely critical while analyzing system reliability (union or intersection of a set of failure events – union,
in the NASA-LUQC); even if g4 is not the worst case metric in some samples and some other gi (i 6= 4) is
the worse case metric, g4 still turns out to be positive whenever failure happens. In other words, a failure
realization can be easily generated by simply focusing on generating positive values of g4, because:

P (G4 > 0|J2 > 0) ≈ 1 (15)

The above equation was also verified by increasing the number of samples from 5000 to 10000, and the same
behavior was observed. Therefore, it is possible to study the event G4 > 0 in detail. Consider the function:

g4 = f4(x) (16)

The limit state multi-dimensional curve represented by the equation g4 = 0 divides the event space into two:
g4 > 0 corresponding to failure and g4 < 0 corresponding to safety. First-order reliability analysis23 was
used to calculate the value of P (G4 < 0) = 0.70, which is reasonably approximate (Monte Carlo led to an
estimate of 0.79) given that the first-order reliability method uses a linear approximation of f4. Further,
the Most Probable Point23 is also calculated as x1 = 0.20, x2 = 0.99, x3 = 0.88, x4 = 0.95, and x5 = 0.02.
More importantly, the first-order reliability method also enables the calculation of local sensitivities in the
5-dimensional space, and the sensitivity to X1, X2, X3, X4, and X5 are 0.21, 0.01, −0.65, 0, and 0. This
calculation directly suggests that X1 and X3 are the most important quantities. This verifies the choice of
the four refinement models in Section VI, i.e., the four models P1, P2, P5, and P12 directly contribute to X1

and X3.
By analyzing the failure samples, it is possible to make several interesting observations. With respect to

X1, the likelihood of failure is higher only when the value of x1 is large (around x1 = 0.4). With respect to
X2, while in general X2 has a higher likelihood of occurrence at higher values of x2, failure occurs only at
higher values of x2. With respect to X3, failure is spread throughout the range of x3; thus, it is intuitive
that, by refining the uncertainty in P12 that contributes to the uncertainty in X3, it is significantly possible
to reduce the range of failure probability. In the case of the variable X4, the likelihood of failure increases
at larger values of x4. Finally, with respect to X5, failure occurs at particularly lower values of x5.

VIII. Conclusion

This paper presented a computational framework for uncertainty characterization, uncertainty propa-
gation, and sensitivity analysis in engineering systems, and developed a novel, systematic approach using
which important epistemic variables can be selected for refinement in order to reduce the uncertainty in
the system-level performance. The proposed refinement approach selects candidates for refinement in a se-
quential manner, i.e., once the first candidate for refinement is selected, this candidate is refined, and all
uncertainty analysis is repeated. Then, the new results are used to select the next candidate for refinement.
This procedure is continued until all possible quantities are refined or until budget/time constraints are
met. The proposed methodology is significantly different from existing approaches for refinement where all
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candidates for refinement are simultaneously chosen at the end of the initial uncertainty analysis (all-at-
once refinement). It has been proved20 that the sequential refinement approach may not only result in a
different set of refinement candidates but will also result in better reduction of uncertainty in the system-
level performance, in comparison with all-at-once uncertainty refinement approaches. Finally, the proposed
methodology using the NASA Langley Uncertainty Quantification Challenge problem. Future work may
consider the extension of the proposed framework robust design optimization and other related activities.
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