The Scintillation Prediction Observations Research Task (SPORT) Mission

James F. Spann (NASA/MSFC), Charles Swenson (USU), Otavio Durão (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Abdu (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (ITA), Rod Heelis (ITA), Rod Heelis

Science

compromises transmission signals. SPORT seeks to answer two science questions:

Science Traceability Matrix

The Scintillation Prediction Observations Research Task (SPORT)		Instrumentation	Spacecraft						
Observational Approach	servational Approach Science Measurement Requirements		Space Systems Requirements						
1. What is the state of the ionosphere that gives rise to the growth of plasma irregularities that extend into and above the F-peak?									
Observations in the 17:00 to 1:00 LY sector over -30° to 30° latitude Height profiles of the plasma density to specify the magnitude and height of the F peak density in the EA Vertical ion drifts at or beow the F peak in the EA	 Plasma Density Profile 1. 140 to 450 km alt 2. 10⁴ to 10⁷ p/cm³ range 3. 20% p/cm³ accuracy 4. 1000 km along track sampling Ion Drifts (EarthReference Frame) 1. ±800 m/s Range 2. 20 m/s precision & accuracy 3. 10 km along track sampling 	 GPS Occulation Observe GPS satellite occultation along and to the sides of the orbit plane to obtain line of site TEC Ion Velocity Meter Observe vertical ion drifts by angle of arrival of heavy ions at detector 	Satellite Orbit 1. \geq 1 year mission life 2. 40° to 55° inclination 3. 350 to 450 km altitude 4. \pm 10 km eccentricity Spacecraft 1. \pm 15° yer mission life 2. \leq 1 km position knowldge 3. \leq 10 ms timeing						
2. How do plasma irregularities evolve to impact	the appearance of radio scintillation at	different frequencies?							
Observations in the 22:00 to 2:00 LT sector over over –30° to 30° latitude Observations of irregularities in electron density and E-field power spectral density in slope from 200 km to 200 m	 E-Field (Earth Reference Frame) 1. ±45 mV/m range 2. 1.1 mV/m precision & accuracy 3. 1 km along track sampling 4. 10 km – 200 m along track waves Plasma Density 1. 10³ to 107 p/cm³ range 2. 10³ p/cm³ precision & accuracy 3. 1 km along track sampling 4. 10 km – 200 m along track waves B-field 1. ± 56,000 nT range 2. ±100 nT precision and accuracy 3. 1 km along track sampling 	 E-Field Double Probe Observe probe floating potential for AC E-fields from irregularity GPS Occultation S4 scintillation index Langmuir/Impedance Observe DC and AC probe response for relative and absolute electron density and observe irregularities Three Axis Magnetometer Support VxB computation for ion velocity and E-Field measurements 	 Spacecraft Mechanisms 1. ≥0.6 m tip-to-tip booms Attitude (Post Flight Knowledge) 1. ≤0.02° 1σ-uncertainty 						

Table 1. Expected Instrument Performance

Parameter	Ion Velocity Meter	GPS Occultation	Electric Field Probe	Langmuir Probe	Impedance Probe	Magnetometer
Scientific	V _i : ±800 m/s, 20 m/s	N_{e} -Profile: 10 ⁴ to 10 ⁷ cm ⁻³	0.1 to ±45 mV/m	$\triangle N_{e}$: 10 ³ to 10 ⁷ cm ⁻³	N_{e}^{2} : 10 ³ to 10 ⁷ cm ⁻³	± 56,000 nT, 100 nT
Requirement	∆Ni: 10⁴ to 10 ⁷ cm⁻³	S4 0.2 to 1.2		$ riangle N_i$: 10 ³ to 10 ⁷ cm ⁻³		
Instrument	V _i : ±1000 m/s, 15 m/s	Scintillations (S4)	0.1 to 500 mV/m, 1%	$ riangle N_{e}$: 10 to 10 ⁷ cm ⁻³ , 5%	N _e : 10 to 10 ⁷ cm ⁻³ , 1%	± 64,000 nT, 10 nT
Performance	∆N _i : 10² to 10 ⁷ cm⁻³, 5%	Slant TEC: 3 to 200 units	V _i (derived): 20 m/s	∆N _i : 10 ³ to 10 ⁹ cm⁻³, 5%		
	T _i : 250 to 5000 K	Ne-Profile: 10 ³ to 10 ⁷ cm ⁻³		T _e : 200 to 5000 K		
	C _i : 0–100%, 1–40 amu	S4 0.1 to 1.5		V_f : ±10 mV to ± 12 V		
		σ: 0.1 to 20 rads		V_{p} : ±10 mV to ± 12 V		
	DC to 2 Hz	50 Hz	DC-40 Hz	DC-40 Hz, 25 s/sweep	DC-40 Hz, 25 s/sweep	DC-40 Hz
			16 spectrometer ch.	16 spectrometer ch.		
			20 Hz to 15 kHz	20 Hz to 15 kHz		
Mechanism	8 cm aperture	7.6 x 7.6 x 0.5 cm patch antenna	Two 30 cm booms	0.3 x 30 cm boom	30 cm boom	25 cm boom
Attitude Control	15° pointing control	15° pointing control	15° pointing control	15° pointing control	15° pointing control	NA
Attitude knowledge post processed req.	0.02°	2°	0.02°	10°	10°	2° pointing
Field of View	30°	160°	180°	180°	180°	180°
Peak Power	0.3 W	1.5 W	0.15 W	0.15 W	0.4 W	0.45 W
Volume	1.0U Cube	~0.15U Cube	~0.1U Cube (Shared with LP)	~0.1U Cube (Shared with E-Field)	~0.1U Cube	~0.5U Cube
	9 × 9 × 10 cm	1.5 × 9 × 9 cm	0.75 × 9 × 9 cm	0.75 × 9 × 9 cm	0.75 × 9 × 9 cm	$5 \times 9 \times 9$ cm
Mass	< 1000 g	< 200 g	< 80 g (shared)	< 80g (shared)	< 160 g	< 150 g
Data Rate	2.0 kbps	1.0 kbps Day;	1.4 kbps	2.0 kbps	1 kbps	2.8 kbps
		15 kbps Night				
Horizontal Cell Size	100 km	500 km	200 m; 20 m spectrometer	200 m; 20 m spectrometer	190 km	10 km
Vertical Cell Size	NA	30 km	NA	NA	NA	NA

 V_i – ion drift velocities; ΔN_i – relative ion density; ΔN_e – relative electron density; T_e – electron temperature; T_i – ion temperature ; V_f – floating potential ; V_p – plasma potential ; N_e - electron density; B – Magnetic Field ; TEC – total electron content; C – Ion composition; DC – 1D DC Electric Field; S4 – RF signal amplitude index, σ – RF signal phase index

The Scintillation Prediction Observations Research Task (SPORT) mission tackles the very difficult problem of understanding the conditions under which ionospheric variability develops that leads to scintillation that

- different frequencies?

and	Requirements	

 What is the state of the ionosphere that gives rise to the growth of plasma irregularities that extend into and above the F-peak?

• How do plasma irregularities evolve to impact the appearance of radio scintillation at

UV Airglow images from TIMED GUVI clearly showing the equatorial anomaly with embedded depletions that have penetrated through the F peak. Green, Red and Blue traces show the magnetic equator and positive and negative dip angles. SPORT 52° inclination ground tracks are superimposed as black traces.

SPORT is science mission on a CubeSat that will advance understanding and improve predictions of scintillatio occurance that impact GPS signals and radio communications. This is science of Space Weather.

SPORT is an international partnership with NASA, the Brazilian space agency research center (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA).

UtahStateUniversity

https://ntrs.nasa.gov/search.jsp?R=20150023558 2019-08-31T04:39:47+00:0

Total plasma density measurements from the ISS showing signatures across the equatorial anomaly near local midnight. The top panel shows no ionospheric irregularities while the bottom panel shows the presence of depletions and irregularities.