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• Satellite servicing (DARPA
Phoenix Mission)

• Automated rendezvous
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The Need for Safe Autonomy

• Satellite servicing (DARPA
Phoenix Mission)

• Automated rendezvous

Key Question
How do we implement a general, automated spacecraft
planning framework with hard safety specifications?
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Original Contribution

Our work:
1. Establishes a provably-correct framework for the

systematic encoding of safety specifications into
the spacecraft trajectory generation process

2. Derives an efficient one-burn escape maneuver
policy for proximity operations near circular orbit

2 / 20
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Previous Work

Spacecraft rendezvous approaches with explicit
characterizations of safety:
• Kinematic path optimization [Jacobsen, Lee, et al.,

2002]
• Artificial potential functions [Roger and McInnes,

2000]
• MILP formulations [Breger and How, 2008]
• Safety ellipses [Gaylor and Barbee, 2007] [Naasz,

2005]
• Motion planning [Frazzoli, 2003]
• Robust Model-Predictive Control [Carson,

Açikmeşe, et al., 2008]
• Forced equilibria [Weiss, Baldwin, et al., 2013]
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Types of Spacecraft Rendezvous Safety

• Passive Trajectory Protection: Constrain
coasting trajectories to avoid collisions up to a
given horizon time

• Active Trajectory Protection: Implement an
actuated escape maneuver to save/abort a mission

Design Choice
We emphasize active safety as it is the
less-conservative approach

4 / 20
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Vehicle Trajectory Safety

Definition (Trajectory Safety Problem)

For all possible failure times tfail ∈ Tfail and failure
modes Ufail(x(tfail)), we seek a sequence of admissible
actions u(τ) ∈ Ufail(x(tfail)) from x(tfail) such that
the remaining trajectory is safe.

Examples:
• Rovers/Land vehicles: Come to a complete stop
• Manipulators: Return to previous configuration,

disengage, or execute emergency plan
• UAV’s: Enter a safe loiter pattern
• Spacecraft: Less straightforward; generally require

mission-specific solutions (with human oversight)
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Challenge: Infinite-Horizon Safety

Finite-horizon safety guarantees can ultimately violate
constraints:

Failure
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Idea: Positively-Invariant Sets

Definition (Positively-Invariant Set)

A set Xinvariant is positively invariant with respect to
ẋ = f (x) if and only if

x(t0) ∈ Xinvariant =⇒ x(t) ∈ Xinvariant, t ≥ t0
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Idea: Positively-Invariant Sets

Definition (Vehicle State Safety)

A state is safe if and only if there exists, under all
failure conditions, a safe, dynamically-feasible
trajectory that navigates the vehicle to a safe, stable
positively-invariant set.

Failure
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Finite-Time Trajectory Safety

minimize
tf,x(t),u(t)

J(x,u, t)

subject to ẋ(t) = f (x(t),u(t), t) (Dynamics)

x(t0) = x0 (Initial Condition)

x(tf) ∈ Xinvariant (Invariant Termination)

u(t) ∈ Ufail(x0) (Control Admissibility)

gi (x,u) ≤ 0, i = [1, . . . , p] (Inequality Constraints)

hj(x,u) = 0, j = [1, . . . , q] (Equality Constraints)
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Challenge: Solving the Finite-Time Safety
Problem under Failures

For a K -fault tolerant spacecraft with N control
components (thrusters, momentum wheels, CMG’s,
etc), this yields:

Nfail =
K∑

k=0

(
N
k

)
=

K∑
k=0

N!
k!(N − k)!

total optimization problems (one for each Ufail) for
each failure time tfail.
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Idea: Simplify the Finite-Time Safety Problem

Theorem (Sufficient Fault-Tolerant Active Safety)

1. From each x(tfail), prescribe a Collision-Avoidance
Maneuver ΠCAM(x) that gives a horizon T and
escape sequence u that satisfies x(T ) ∈ Xinvariant
and u(τ) ⊂ U for all tfail ≤ τ ≤ T .

2. For each failure mode Ufail(x(tfail)) ⊂ U(x(tfail))
up to tolerance K, check if u = ΠCAM(x) ⊂ Ufail.

12 / 20
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Idea: Simplify the Finite-Time Safety Problem

Theorem (Sufficient Fault-Tolerant Active Safety)

1. From each x(tfail), prescribe a Collision-Avoidance
Maneuver ΠCAM(x) that gives a horizon T and
escape sequence u that satisfies x(T ) ∈ Xinvariant
and u(τ) ⊂ U for all tfail ≤ τ ≤ T .

2. For each failure mode Ufail(x(tfail)) ⊂ U(x(tfail))
up to tolerance K, check if u = ΠCAM(x) ⊂ Ufail.

Key Simplifications
Removes decision variables u, reducing to:
• a test of escape control feasibility under failure(s)
• numerical integration for satisfaction of dynamics
• an a posteriori check of constraints gi and hj

12 / 20
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Safe Sampling-Based Spacecraft Planning

Solution is in exact form required for sampling-based
motion planning.

Restrict burns to nodes

Actively-safe Sampling-based
Spacecraft Planning

Restrict planning to
actively-safe nodes

Incorporating Safety Constraints:
• Add CAM policy generation to sampling algorithm
• Include CAM-trajectory collision-checking in tests

of sample feasibility

13 / 20
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Example: CAM Policy Design
Using CWH Set Invariance for CAMs

KOZ

Circularization RIC

Reference Line

Chaser

Circular Clohessy-Wiltshire-Hill (CWH) CAM policy:
1. Coast from x(t) to some new T > t such that

x(T−) lies at a position in Xinvariant.
2. Circularize the orbit at x(T ) such that

x(T +) ∈ Xinvariant

3. Coast along the new orbit (horizontal drift along
the in-track axis) in Xinvariant

14 / 20
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Example: CAM Policy Design
Choosing the Circularization Time, T

CWH Finite-Time Safety Problem:

Given: x(t),u(τ) = 0, t ≤ τ < T
minimize

T
∆v2

circ(T )

subject to ẋ(τ) = f (x(τ),0, τ) (Dynamics)

x(τ) 6∈ XKOZ (KOZ Avoidance)

x(T +) ∈ Xinvariant (Invariant Termination)

Key Result
Can be reduced to an analytical expression that is
solvable in milliseconds

14 / 20
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Scenario

• Simulates an automated approach to LandSat-7
(e.g., for servicing) between pre-specified waypoints

• Calls on the Fast Marching Tree (FMT∗) algorithm
for implementation
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Scenario

• Simulates an automated approach to LandSat-7
(e.g., for servicing) between pre-specified waypoints

• Calls on the Fast Marching Tree (FMT∗) algorithm
for implementation

Assumptions:
• Begins at insertion into a

coplanar circular orbit
sufficiently close to the target

• The target is nadir-pointing
• The chaser is nominally

nadir-pointing, or executes a
“turn-burn-turn” along CAMs
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Scenario

• Simulates an automated approach to LandSat-7
(e.g., for servicing) between pre-specified waypoints

• Calls on the Fast Marching Tree (FMT∗) algorithm
for implementation

Constraints:
• Plume impingement: No

exhaust plume impingement
• Collision avoidance:

Clearance of an elliptic
Keep-Out Zone (KOZ)

• Target communication:
Target comm lobe avoidance

• Safety: Two-fault tolerance to
stuck-off failures

15 / 20
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Motion Planning Problem

Motion planning query:
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Motion Plan Comparison

Motion planning solutions:
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Success Rate Comparison

Success comparison as a function of thruster failure
probability, computed over 50 trials:
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Conclusions

Key Ideas
1. Use termination constraints inside safe, stable,

positively-invariant sets for infinite-horizon
maneuver safety

2. Embed invariant-set constraints into
sampling-based algorithms for safety-constrained
planning

Synopsis
• Demonstrated the idea for failure-tolerant circular

CWH planning
• CAM policies can be precomputed offline for more

efficient online computation
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Future Work

Future Goals
• Extend to thruster

stuck-on and
mis-allocation failures

• Account for localization
uncertainty

• Apply these notions to
small-body proximity
operations
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Thank you!

Joseph A. Starek, Brent W. Barbee, and
Marco Pavone

Aeronautics & Astronautics Navigation and Mission Design
Stanford University NASA GSFC

jstarek@stanford.edu
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Clohessy-Wiltshire-Hill (CWH) Equations

• Motion is linearized about
a moving reference point
in circular orbit:

x = [δx , δy , δz , δẋ , δẏ , δż ]T

u = 1
m [Fx ,Fy ,Fz ]

T

• Yields LTI dynamics:
ẋ = Ax + Bu

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3nref
2 0 0 0 2nref 0

0 0 0 −2nref 0 0
0 0 −nref

2 0 0 0

 B =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


1 / 3
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Generalized Mover’s Problem

Definition (Optimal Motion Planning Problem)
Given X , Xobs, Xfree, and J , find an action trajectory
u : [0, T ]→ U yielding a feasible path x(t) ∈ Xfree
over time horizon t ∈ [0, T ], which reaches the goal
region x(T ) ∈ Xgoal and minimizes the cost functional
J =

∫ T
0 c(x(t),u(t)) dt.

Characteristics:
• PSPACE-hard (and therefore NP-hard)
• Requires kinodynamic motion planning
• Almost certainly requires approximate algorithms,

tailored to the particular application

2 / 3
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