https://ntrs.nasa.gov/search.jsp?R=20150023583 2019-08-31T04:38:35+00:00Z

A Sampling-Based Approach to Spacecraft Autonomous Maneuvering with Safety **Specifications**

Joseph A. Starek[∗] , Brent W. Barbee† , Marco Pavone[∗]

Dept. of Aeronautics & Astronautics Goddard Space Flight Center Stanford University **NASA**

[∗]Autonomous Systems Lab †Navigation and Mission Design Branch

AAS-GNC 2015 February 3rd, 2015

• Autonomous Vehicle Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Constraints

- Autonomous Vehicle Safety
- Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Constraints

Outline

- Autonomous Vehicle Safety
- Spacecraft Safety
- Safety in CWH Dynamics

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Outline

- Autonomous Vehicle Safety
- Spacecraft Safety
- Safety in CWH Dynamics
- Numerical Experiments

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Outline

- Autonomous Vehicle Safety
- Spacecraft Safety
- Safety in CWH Dynamics
- Numerical Experiments
- Conclusions and Future Work

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Autonomous Vehicle Safety

Spacecraft Safety

Constraints

¥

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Autonomous Vehicle Safety

Spacecraft Safety

• Satellite servicing (DARPA Phoenix Mission)

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Autonomous Vehicle Safety

Spacecraft Safety

- Satellite servicing (DARPA Phoenix Mission)
- Automated rendezvous

- Satellite servicing (DARPA Phoenix Mission)
- Automated rendezvous

Key Question

How do we implement a general, automated spacecraft planning framework with hard safety specifications?

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Autonomous Vehicle Safety

Spacecraft Safety

Experiments

Original Contribution

Our work:

- 1. Establishes a **provably-correct framework** for the systematic encoding of safety specifications into the spacecraft trajectory generation process
- 2. Derives an efficient **one-burn escape maneuver policy** for proximity operations near circular orbit

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Autonomous Vehicle Safety

Spacecraft Safety

Experiments

Previous Work

Spacecraft rendezvous approaches with explicit characterizations of safety:

- Kinematic path optimization *[Jacobsen, Lee, et al.,* 2002]
- Artificial potential functions *[Roger and McInnes,* 2000]
- MILP formulations *[Breger and How, 2008]*
- Safety ellipses [Gaylor and Barbee, 2007] [Naasz, 2005]
- Motion planning [Frazzoli, 2003]
- Robust Model-Predictive Control [Carson, Açikmeşe, et al., 2008]
- Forced equilibria *[Weiss, Baldwin, et al., 2013]*

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical

Experiments

Types of Spacecraft Rendezvous Safety

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

Conclusions

- **Passive Trajectory Protection**: Constrain coasting trajectories to avoid collisions up to a given horizon time
- **Active Trajectory Protection**: Implement an actuated escape maneuver to save/abort a mission

Design Choice

We emphasize active safety as it is the less-conservative approach

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Examples:

- **Rovers/Land vehicles**: Come to a complete stop
- **Manipulators**: Return to previous configuration, disengage, or execute emergency plan
- **UAV's**: Enter a safe loiter pattern
- **Spacecraft**: Less straightforward; generally require mission-specific solutions (with human oversight)

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Experiments

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Experiments

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Experiments

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Experiments

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Experiments

For all possible failure times $t_{\text{fail}} \in \mathcal{T}_{\text{fail}}$ and failure modes $\mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$, we seek a sequence of admissible actions $\mathbf{u}(\tau) \in \mathcal{U}_{\text{fail}}(\mathbf{x}(t_{\text{fail}}))$ from $\mathbf{x}(t_{\text{fail}})$ such that the remaining trajectory is safe.

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Experiments

Challenge: Infinite-Horizon Safety

Finite-horizon safety guarantees can ultimately violate constraints:

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Active Safety with Positively-Invariant Set Constraints

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Active Safety with Positively-Invariant Set Constraints

Conclusions

Definition (Positively-Invariant Set)

A set $\mathcal{X}_{\text{invariant}}$ is positively invariant with respect to $\dot{\mathbf{x}} = f(\mathbf{x})$ if and only if

$$
\mathbf{x}(t_0) \in \mathcal{X}_{\text{invariant}} \implies \mathbf{x}(t) \in \mathcal{X}_{\text{invariant}}, t \geq t_0
$$

Definition (Vehicle State Safety)

A state is safe if and only if there exists, under all failure conditions, a safe, dynamically-feasible trajectory that navigates the vehicle to a safe, stable positively-invariant set.

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Active Safety with Positively-Invariant Set Constraints

Numerical **Experiments**

Finite-Time Trajectory Safety

Sampling-Based Spacecraft Safety

Challenge: Solving the Finite-Time Safety Problem under Failures

For a K -fault tolerant spacecraft with N control components (thrusters, momentum wheels, CMG's, etc), this yields:

$$
N_{\text{fail}} = \sum_{k=0}^{K} \binom{N}{k} = \sum_{k=0}^{K} \frac{N!}{k!(N-k)!}
$$

total optimization problems (one for each $\mathcal{U}_{\text{fail}}$) for each failure time t_{fail} .

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Active Safety with Positively-Invariant Set Constraints

Numerical **Experiments**

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Active Safety with Positively-Invariant Set Constraints

Numerical **Experiments**

Conclusions

Theorem (Sufficient Fault-Tolerant Active Safety)

- 1. From each **x**(t*fail*), prescribe a Collision-Avoidance Maneuver $\Pi_{CAM}({\bf x})$ that gives a horizon T and escape sequence **u** that satisfies $\mathbf{x}(T) \in \mathcal{X}_{invariant}$ and $\mathbf{u}(\tau) \subset \mathcal{U}$ for all $t_{fail} \leq \tau \leq \tau$.
- 2. For each failure mode $\mathcal{U}_{fail}(\mathbf{x}(t_{fail})) \subset \mathcal{U}(\mathbf{x}(t_{fail}))$ up to tolerance K, check if $\mathbf{u} = \Pi_{CAM}(\mathbf{x}) \subset \mathcal{U}_{fail.}$

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Active Safety with Positively-Invariant Set Constraints

Numerical **Experiments**

Conclusions

Theorem (Sufficient Fault-Tolerant Active Safety)

- 1. From each **x**(t*fail*), prescribe a Collision-Avoidance Maneuver $\Pi_{CAM}(\mathbf{x})$ that gives a horizon T and escape sequence **u** that satisfies $\mathbf{x}(T) \in \mathcal{X}_{invariant}$ and $\mathbf{u}(\tau) \subset \mathcal{U}$ for all $t_{fail} \leq \tau \leq \tau$.
- 2. For each failure mode $\mathcal{U}_{fail}(\mathbf{x}(t_{fail})) \subset \mathcal{U}(\mathbf{x}(t_{fail}))$ up to tolerance K, check if $\mathbf{u} = \Pi_{CAM}(\mathbf{x}) \subset \mathcal{U}_{fail}$.

Key Simplifications

Removes decision variables **u**, reducing to:

- a test of escape control feasibility under failure(s)
- numerical integration for satisfaction of dynamics
- an a posteriori check of constraints g_i and h_i

Solution is in exact form required for sampling-based motion planning.

Incorporating Safety Constraints:

- Add CAM policy generation to sampling algorithm
- Include CAM-trajectory collision-checking in tests of sample feasibility

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Active Safety with Positively-Invariant Set Constraints

Numerical **Experiments**

Example: CAM Policy Design Using CWH Set Invariance for CAMs

P

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

CWH CAM Policy Design

Example: CAM Policy Design Using CWH Set Invariance for CAMs

Circular Clohessy-Wiltshire-Hill (CWH) CAM policy:

- 1. Coast from $x(t)$ to some new $T > t$ such that $\mathbf{x}(\mathcal{T}^+)$ lies at a position in $\mathcal{X}_\textrm{invariant}.$
- 2. Circularize the orbit at **x**(T) such that $\mathbf{x}(\mathcal{T}^+) \in \mathcal{X}_{\text{invariant}}$
- 3. Coast along the new orbit (horizontal drift along the in-track axis) in $\mathcal{X}_{\text{invariant}}$

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

CWH CAM Policy Design

Numerical **Experiments**

CWH Finite-Time Safety Problem:

Given:
$$
\mathbf{x}(t), \mathbf{u}(\tau) = \mathbf{0}, t \leq \tau < T
$$

\nminimize $\Delta v_{\text{circ}}^2(T)$
\nsubject to $\dot{\mathbf{x}}(\tau) = f(\mathbf{x}(\tau), \mathbf{0}, \tau)$ (Dynamics)
\n $\mathbf{x}(\tau) \notin \mathcal{X}_{\text{KOZ}}$ (KOZ Avoidance)
\n $\mathbf{x}(T^+) \in \mathcal{X}_{\text{invariant}}$ (Invariant Termination)

Key Result

Can be reduced to an analytical expression that is solvable in milliseconds

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

CWH CAM Policy Design

- Simulates an automated approach to LandSat-7 (e.g., for servicing) between pre-specified waypoints
- Calls on the Fast Marching Tree (FMT[∗]) algorithm for implementation

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

Scenario

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

Conclusions

- Simulates an automated approach to LandSat-7 $(e.g., for serving) between pre-specified waypoints$
- Calls on the Fast Marching Tree (FMT[∗]) algorithm for implementation

Assumptions:

- Begins at insertion into a coplanar circular orbit sufficiently close to the target
- The target is nadir-pointing
- The chaser is nominally nadir-pointing, or executes a "turn-burn-turn" along CAMs

Scenario

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

Conclusions

• Simulates an automated approach to LandSat-7 (e.g., for servicing) between pre-specified waypoints

• Calls on the Fast Marching Tree (FMT[∗]) algorithm for implementation

Constraints:

- **Plume impingement:** No exhaust plume impingement
- **Collision avoidance:** Clearance of an elliptic Keep-Out Zone (KOZ)
- **Target communication:** Target comm lobe avoidance
- **Safety:** Two-fault tolerance to stuck-off failures

DRBIT PERIOD - SEA mimes

Motion Planning Problem

Motion planning query:

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

Motion Plan Comparison

Motion planning solutions:

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical Experiments

Motion Plan Comparison

Motion planning solutions:

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical Experiments

Success comparison as a function of thruster failure probability, computed over 50 trials:

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

Success comparison as a function of thruster failure probability, computed over 50 trials:

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

Conclusions

Key Ideas

- 1. Use termination constraints inside safe, stable, positively-invariant sets for infinite-horizon maneuver safety
- 2. Embed invariant-set constraints into sampling-based algorithms for safety-constrained planning

Synopsis

- Demonstrated the idea for failure-tolerant circular CWH planning
- CAM policies can be precomputed offline for more efficient online computation

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Numerical **Experiments**

Future Work

Future Goals

- Extend to thruster stuck-on and mis-allocation failures
- Account for localization uncertainty
- Apply these notions to small-body proximity operations

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Conclusions Future Goals

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Vehicle Safety

Spacecraft Safety

Conclusions

Thank you!

Joseph A. Starek, Brent W. Barbee, and Marco Pavone

Aeronautics & Astronautics Navigation and Mission Design Stanford University NASA GSFC [jstarek@stanford.edu](mailto: jstarek@stanford.edu)

Clohessy-Wiltshire-Hill (CWH) Equations

• Motion is linearized about a moving reference point in circular orbit:

$$
\mathbf{x} = [\delta x, \delta y, \delta z, \delta \dot{x}, \delta \dot{y}, \delta \dot{z}]^{\mathrm{T}}
$$

$$
\mathbf{u} = \frac{1}{m} [F_x, F_y, F_z]^{\mathrm{T}}
$$

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Dynamics

Sampling-Based Motion Planning

• Yields LTI dynamics: $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ $A =$ $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 $3n_{\rm ref}^2$ 0 0 0 $2n_{\rm ref}$ 0 0 0 0 $-2n_{ref}$ 0 0 0 0 $-n_{ref}$ ² 0 0 0 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ **B** = $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 $\begin{array}{c} \hline \end{array}$

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Sampling-Based Motion Planning Optimal Motion Planning

Definition (Optimal Motion Planning Problem)

Given X , X_{obs} , X_{free} , and J, find an action trajectory **u** : $[0, T] \rightarrow \mathcal{U}$ yielding a feasible path $\mathbf{x}(t) \in \mathcal{X}_{\text{free}}$ over time horizon $t \in [0, T]$, which reaches the goal *region* $\mathbf{x}(T) \in \mathcal{X}_{\text{goal}}$ and *minimizes* the cost functional $J = \int_0^T c(\mathbf{x}(t), \mathbf{u}(t)) dt$.

Characteristics:

- PSPACE-hard (and therefore NP-hard)
- Requires kinodynamic motion planning
- Almost certainly requires approximate algorithms, tailored to the particular application

Generalized Mover's Problem

ASE

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Sampling-Based Optimal Motion Planning

Generalized Mover's Problem

ASE

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Sampling-Based Optimal Motion Planning

Generalized Mover's Problem

ASŁ

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Sampling-Based Optimal Motion Planning

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

ぞ \mathbf{r}

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

P

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

 \overline{C}

 \bullet

 \bullet

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

P

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

$\ddot{\gamma}$

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

J. Starek, B. Barbee, M. Pavone

ASŁ

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone

ASŁ

Sampling-Based Spacecraft Safety

J. Starek, B. Barbee, M. Pavone