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Motivation DISCOVER-AQ observations and simulations

_ e L _ _ _ _ . _ iective: TR Campaign
he Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument will be the first NASA mission to make atmosphenc\ / Objective: \ \ 3/ B fightppaths B i

= _ _ _ . . . . : Characterize the relationship —
composition observations from geostationary orbit and partially fulfills the goals of the Geostationary Coastal and Air Pollution between air quality at the O -‘ e Maryland - Follette-Cook et

Events (GEO-CAPE) mission SUTEEe AE T e al. (2015)
Follette-Cook et al. (2015, Atmos. Environ.) related observed and simulated variability to the precision requirements defined by the tropospheric columns that * WRF/Chemv3.3.1-4km
science traceability matrices of these space-borne missions can be measured from a et PN 4§ S = |+ California — W. Appel
satellite o SRSRT el < » Coupled WRF/CMAQ v5.0.2

In that work, we quantified the spatial and temporal variability of column integrated and in-situ observations of trace gases over . | , Jan/Feb 2013 B ¥4
. . . . . . . Observing strategy: Sl — 4 km
the Baltimore/Washington, DC area using output from WRF/Chem for the entire month of July 2011, coinciding with the first S
. - . . Concurrent in-situ and  Houston - C. Loughner
deployment of the NASA Earth Venture program mission DISCOVER-AQ (Deriving Infc_)rmatlo_n on Surface conditions from remote sensing observations . WRF/CMAQ V5.0.2— 4 km
Column and Vertically Resolved Observations Relevant to Air Quality) from a network of ground . Colorado — G. Pfister
\ Here, we expand that analysis to include the other three deployments of DISCOVER-AQ / Zl'f:fa?tnd two research /  WRF/Chem -3 km
|

Maryland Analysis Highlights — Follette-Cook et al. (2015) Inter-Camp Variability

Follette-Cook et al. (2015) quantified the variablility seen in the Maryland/DC DISCOVER-AQ P-3B trace gas data and found it
compared well with our WRF/Chem simulation
Questions addressed In that analysis:

« How much does each species vary spatially and temporally throughout the
campaign? (I.e. one month)

The results from the MD analysis suggest that the PRs for TEMPO and GEO-CAPE are sufficient for addressing the
science questions they are tasked to answer

Structure Functions How does the variability seen in the other three deployments compare to that seen in MD?

Structure functions are a useful way to quantify
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* How much of that variability would a TEMPO-like instrument see? | variability in both space and time 1T o e o oy |
* |s the resolvable variability sufficient answer the relevant science questions? (Z, y)=< ‘ Z(X +y) - Z(X) ‘ CI> 7 s 7 O, — TX, CO, and MD show comparable differences to MD.
. . f  Y)E y s R Air quality events in these regions will likely be
Precision Requirements (PR) for GEO-CAPE/TEMPO | | N P G I SRV 77— observable by TEMPO
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** Lok Lamsal, personal communication g | g g of g of T : : :
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Can WRF/Chem capture the variability seen in the MD DISCOVER-AQ observations? | o I too small to be resolvable at ~20 km distances.
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G”gfig'(':écl’l | * grri'(?cceel:' 0 ‘ ‘ « Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a
differences, 20- = - differences, 36- TEMPO.'“k_e. Instrument _ _ _ . _ . _
24 km apart, | ) 40 km apart, ) )  The variability observed in MD is relatively similar to the other three campaigns with a few exceptions:
arger than PR e e ~  Uerthan PR R « CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest
- T NO, (1e ® moledlom T ko (e molecien?) variability in NO2
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et - would be able to ob 0. ai and early evening, so 2 pm represents a minimum in hydrocarbons with both biogenic and o_bservz_mons. The \_/arlablllty In HCHO |s_underest|mated for every campaign. NO2 var!ab_lllty IS s_llg_htly overestimated in MD, more so in CO. The X
mjazil:mee\?er\\l\t/gl:)verethae I\jid(i:tl jr?t?éeare?é . what would be observable anthropogenic sources. Thus, greater simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).
quaity L '  Despite that, the major features in the tropospheric variability in HCHO is seen at longer  Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses
even on days when the violations of the air . . . . ; . . . .. . .
| | column field can be seen in the plot of the visible distances, i.e. greater than 20 km, and would of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).
guality standard are not widespread. . : .
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