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In order to provide a database for modeling hypersonic entry in a partially ionized gas 

under non-equilibrium, the electron-impact excitation cross sections of atoms have been 

calculated using perturbation theory. The energy levels covered in the calculation are 

retrieved from the level list in the HyperRad code. The downstream flow-field is 

determined by solving a set of continuity equations for each component. The individual 

structure of each energy level is included. These equations are then complemented by the 

Euler system of equations. Finally, the radiation field is modeled by solving the radiative 

transfer equation.  

I. Introduction 

 
uring hypersonic entry into a planetary or lunar atmosphere, space vehicles may encounter a high 

temperature and/or rarified gas environment such that the gaseous flows around them could be 

significantly affected by various non-equilibrium phenomena. In the high temperature regime, the flow field will 

also become partially ionized. The percentage of ionization depends on the entry speed, vehicle size, and 

atmospheric composition. The electrons and atomic/molecular ions produced by the ionization introduce new 

reaction mechanisms that significantly influence the non-equilibrium processes and thus the radiative and 

convective heat loads.  
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In this regime, electron-atom/molecule collisions provide an efficient means of populating excited electronic 

states of the atoms and molecules in the flow field. Thus, collisions play an important role in determining the 

internal energy and state distribution of the gaseous particles. The excited states in turn are the source of radiation 

occurring during a hypersonic entry. Electron-atom/molecule collisions differ from heavy particle collisions in two 

aspects. First, the mass of an electron is more than four orders of magnitude smaller than the reduced mass of N2. 

Thus its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the 

slightly ionized regime with only 1% electrons, the frequency of electron-atom/molecule collisions is equal to or 

larger than that of heavy particle collisions, an important consideration in the low density part of the atmosphere 

where the reaction probability is frequently controlled by the collision frequency. Second, the interaction potential 

between a charged particle (electron) and a neutral particle is longer range than neutral-neutral interactions. Hence 

electron-atom/molecule collision cross sections tend to be larger. Another characteristic of electron-heavy particle 

collisions is that they generally produce a variety of excited-state species whereas heavy particle collisions tend to 

produce specific excited states. Also, low-energy electron collisions can be effective in spin-changing excitations.  

 

A one-dimensional flow solver coupled to the gas kinetics and to radiative transfer is used to illustrate how 

ionization and electron collisions influence flow properties and radiative and convective heat loads. One important 

aspect in this study is the explicit coupling of the species conservation equations with radiation by solving the 

radiative transfer equation, instead of employing an escape factor to approximately account for the effect of the 

radiative processes on the populations of the excited states.1,2 This results in a self-consistent modeling of the 

radiative processes. Two important issues for re-entry applications into the Earth’s atmosphere are considered: (1) 

the treatment of the time-dependent chemistry of an ionizing air plasma for different re-entry conditions, and (2) 

the importance of a consistent treatment of kinetics and radiation, via the numerical solution of the radiative 

transport equation coupled with the set of kinetic equations. 

II. Electron-impact excitation of atoms 
 

Modeling electron collisions in non-equilibrium gas dynamics requires data to simulate their production, 

removal, and energy transfer in the flow field. Using a combination of experimental data and a variety of 

approximate formulas, several databases have been developed by the entry physics community. The data sets by 

Park3, 4 and Losev,5 and Bird’s TCE6, 7 models are well-established examples of this approach. The NEQAIR 

package8 that simulates non-equilibrium radiation in an entry flow employs Gryzinski’s classical formula9 for 

electron-impact excitation of atoms, whereas for molecules experimental data are used, sometimes by extrapolation 

or by analogy. More recent models have incorporated improved databases, based on new experimental data and/or 

theoretical calculations. The ABBA model by Bultel et al.10 uses the semi-empirical Drawin formula11,12 but also 

has incorporated many updates. Similarly SPRADIAN0713 incorporates new, improved data into the NEQAIR 

model.  

 

Due to the light electron mass, in general e-atomg collisions should be treated using quantum mechanics 

instead of classical mechanics. To date, only limited quantal data have been used in gas dynamics calculations. In a 

quantum treatment, the Schrödinger equation for an e-atom system is given by  
 
   (H -E)Y(t1 t n+1,R1 RM ) = 0.       (1) 

Here H is the Hamiltonian of the e + target system, E the total energy,  the corresponding wave function, i the 

spatial (ri) and spin (si) coordinates of the ith electron, and RK the spatial coordinate of the Kth nucleus. In what 

follows, the indices i and j label the n bound electrons, and n+1 labels the free electron. Due to the large difference 

between electron and nuclear masses, it is customary to use the center of mass of the target as the center of mass of 

the colliding system and ignore nuclear motion. The total Hamiltonian consists of the target Hamiltonian, HA, the 

kinetic energy operator of the free electron, Te, and the Coulomb potential V between the free electron and the 

target. 
  

H =HA +T e +V,        (2) 

                                                 
g The term “atom” refers to the heavy particle target. The result is also applicable to molecules.  
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Here ZK is the charge of the Kth nucleus.  

 

To generate a database of electron-impact excitation cross sections, we seek the solution of Eq. (1) for all 

states of the atom. (In the present study, the list of states are truncated and are taken from the level list in the 

HyperRad code14.) Generally, two methods are in common use for such calculations: the variational method and 

the perturbation method. The variational method seeks the solution based on optimizing the functions among a set 

of variational parameters. It is effective in treating strong coupling among target states and resonances and has been 

frequently applied to low-energy electron collisions. However, it has the limitation of treating only ~30 or so target 

states. In the perturbation method the scattering wave function in Eq. (1) is expressed as15  

 

   Y = F0 +G(+)VY.        (6) 

 

Here 0 is the eigenfunction of the non-interacting HamiltonianHA +T e
, and the Green’s function G(+) is given 

by 

   G(+) = (E -H + id)-1
        (7) 

 

with  a vanishingly small positive number. The Green’s function G0
(+) of the non-interacting Hamiltonian is given 

by 

   G0

(+) = (E -HA -T e + id)-1.        (8) 

 

The Green’s function G(+)
 can be expressed in terms G0

(+), 

 

     (9) 

 

The perturbation expansion of the scattering wave function  is obtained by substituting Eq. (9) into (6). 

 

      (10) 

 

Since 0 is the product of the atomic wave function and a plane wave that describes the free electron, it is easier to 

calculate. A first order perturbation treatment uses only the first term in Eq. (10), a second order treatment uses two 

terms, etc. Perturbation treatments work best when the coupling among atomic states during the collision process is 

weak and resonance is unimportant, e.g., in high-energy collisions. However, some approximate formulas also 

seem to work quite well in low-energy collisions. A major advantage of the perturbation treatment lies in the fact 

that it allows the calculation of electron collisions with the full set of atomic states, instead of just a limited 

number.  

 

The atomic level list for N, O, and C atoms in the HyperRad code,14 compiled by merging the NIST,16 

Vanderbilt17 and TOPBase18 databases, consists of 684 states of N, 552 states of O, and 915 states of C.19 In view 

of the number of atomic states involved, the variational method cannot be employed to handle all the transitions. 

Thus the perturbation treatment is used to calculate the electron-impact cross sections. For N, O, and C, electron-

impact excitation cross sections from the ground and the first two metastable states to selected excited states have 
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been calculated using the B-spline R-matrix method.20,21,22,23 The excitation rate coefficients of O and C from the 

B-spline R-matrix calculations have also been tabulated.23,24 For N the rate coefficients calculated using the 

conventional R-matrix method are available.25 In total there are R-matrix excitation rate coefficients for 57 

transitions in N, 53 in O, and 66 in C. Note, for example, the total cross section and rate coefficients for N, based 

on the NIST-Vanderbilt-TOPBase data in HyperRad, consists of 467,172 transitions. Thus the R-matrix data is far 

from sufficient. The R-matrix cross sections and rate coefficients are used to supplement our dataset. They are also 

used, together with experimental measurements, to benchmark our calculations based on the perturbation method. 

 

In the perturbation calculation, the excitation processes can be grouped according to the interaction potential 

responsible for the transition. By expanding the interaction potential in Eq. (5) in terms of multipole moments and 

grouping the excitation process according to the multipole moment responsible for the transition, we have the 

following processes for electron-neutral atom excitations 

 Dipole transitions 

 Quadrupole transitions 

 Magnetic dipole transitions 

 Symmetry-forbidden transitions 

 Exchange scattering 

The dipole potential is the longest range. The incoming electron need not penetrate the atomic charge cloud for 

such transitions to occur. The quadrupole and magnetic dipole potentials are shorter range. The shortest range 

potential is for symmetry-forbidden transitions. Their cross sections tend to be smaller than dipole-allowed 

transitions. Exchange scattering is based on a different mechanism wherein the free electron becomes bound after 

collision and an originally bound electron becomes free. While the exchange mechanism applies to all transitions, it 

is the dominant mechanism for spin-forbidden transitions. For the atoms under consideration, the dipole-allowed 

transitions generally have the largest cross sections. On the other hand, the quadrupole, magnetic dipole, and 

symmetry-forbidden transition cross sections are smaller than the exchange contribution. Thus, in the following 

only dipole-allowed and exchange mechanisms are considered. 

 

A. Dipole allowed excitation 

The differential cross section in first order perturbation theory (also called the Born cross section) is given by 

 

    (11) 

 

   K = ko - k f ,          (12) 

 

The subscripts o and f denote the initial and final states of the collision, ko  and k f are the initial and final momenta 

of the free electron, K is the momentum transfer, and o and f are the initial and final wavefunctions of the target. 

A related quantity, the generalized oscillator strength, f(K), is expressed as 

 

         (13) 

 

where W is the excitation energy for the fo   f f
 transition of the target. In the Born approximation, the 

generalized oscillator strength for dipole-allowed transitions is given by26 
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where fo is the optical oscillator strength and 
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x =
K

a
,

a = 2I + 2(I -W ),

        (15) 

 

where I is the ionization potential of the initial target state. The generalized oscillator strength in Eq. (14) satisfies 

both Lassettre’s limit theorem27 at K = 0 and the asymptotic form of Rau and Fano28 at large K. 

 

The integral cross section is given by 
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Using the first term in the series expansion in Eq. (9), the one-term Born cross section is given by 
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Two other perturbation treatments that include higher order corrections are also considered: the BE-scaling method 

of Kim29 and the modified Born cross section in Eq. (29) in the paper by Dillon and Lassettre26. In the electron 

energy range of interest in hypersonic entry, threshold to 30 eV, the one-term Born formula is found to perform 

better than the BE-scaling method and the modified Born cross section. Thus, the one-term Born formula is used.  

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

 

Figure 1. Electron impact excitation cross sections of N atom. (a) 2s22p3 4So  2s2p4 4P. (b) 

2s22p3 4So  2s22p2(3P)3d 4P. Black curve, present perturbation calculation. Red squares, B-

spline R-matrix calculation of Tayal and Zatsarinny20. Black dot, experimental data by Doering 

and Goembel30. 
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(a) (b)                

 

Figure 2. Electron impact excitation cross sections of O atom. (a) 2s22p4 3P  2s22p3(4So)3d 3Do. 

(b) 2s22p4 3P  2s22p3(2Do)3s 3Do. Black curve, present perturbation calculation. Red curve, B-

spline R-matrix calculation of Tayal and Zatsarinny22. For the 2s22p4 3P  2s22p3(4So)3d 3Do 

transition, blue dots, experiment data of Vanghan & Doering31, green diamonds, Kanik et al32. For 

the 2s22p4 3P  2s22p3(2Do)3s 3Do transition, blue dots, experimental data of Vanghan and 

Doering33, green diamonds, Kanik et al32, and red triangles, Gulcicek and Doering34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Electron impact excitation rate coefficients of C atom. Blue curve, present perturbation 

calculation of 2s22p2 3P  2s22p(2Po)3s 3Po. Blue circles, B-spline R-matrix calculation of 

Zatsarinny et al.35 for this transition. Red curve, present calculation of 2s22p2 3P  2s22p(2Po)3d 

3Do. Blue diamonds, B-spline R-matrix calculation of Zatsarinny et al. for the same transition.  
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Figure 1 compares the electron-impact excitation cross sections from the present perturbation calculation for N 

atom with the B-spline R-matrix with Pseudo States calculation of Tayal and Zatsarinny20 using 24 spectroscopic 

bound and auto-ionizing states together with 15 pseudo states.  Fig. 1(a) shows the results for 2s22p3 4So  2s2p4 4P 

of N and Fig. 1(b) the results for the 2s22p3 4So  2s22p2(3P)3d 4P of N.  For N 2s22p3 4So – 2s2p4 4P, the single 

experimental data at 30 eV is by Doering and Goembel30. Figure 2 compares the present calculation for O atom 

with the B-spline R-matrix calculations of Zatsarinny and Tayal22 using 26 spectroscopic and autoionizing states. 

Figure 2(a) shows the results for 2s22p4 3P  2s22p3(4So)3d 3Do of O and Figure 2(b) shows the results for 2s22p4 3P 

 2s22p3(2Do)3s 3Do of O. Comparisons are also made with the experimental data of Vaughan and Doering31,33, 

Kanik et al.32, and Gulcicek and Doering34. Figure 3 compares the electron-impact excitation rate coefficients of C 

atom from the present calculation with the B-spline R-matrix calculation of Zatsarinny et al.35 using 28 

spectroscopic states and 8 pseudo states. The two transition presented are 2s22p2 3P  2s22p(2Po)3s 3Po and 2s22p2 
3P  2s22p(2Po)3d 3Do. No experimental data are available for e-C excitations. 

 

Figure 4 shows electron-impact excitation rate coefficients for N atom from the present calculation as a 

function of temperature, for selected states from the present calculation.  

(1). 2s22p3 4So J =3/2  2s22p2(3P)9s 4P J=5/2, W = 115,576.59 cm-1. 

(2). 2s22p3 4So J =3/2  2s22p2(3P)4d 4P J=3/2, W = 110,322.72 cm-1. 

(3). 2s22p3 2Do J =5/2  2s22p2(3P)4d 2F J=7/2 , W = 91,138.0 cm-1. 

(4) 2s22p3 2Do J =3/2  2s22p2(3P)3d 2P J=1/2, W = 85,420.85 cm-1.  

(5) 2s22p3 2Po J =3/2  2s22p2(3P)4d 2P J=1/2, W = 81,405.88 cm-1.   

(6) 2s22p2(3P)3p 4Do J =3/2  2s22p2(3P)5d 4D J=5/2, W = 18,117.14 cm-1. 

(7) 2s22p2(3P)3p 4Po J =5/2  2s22p2(3P)5s 4P J=3/2 , W = 14,324.37 cm-1. 

(8) 2s22p2(3P)3p 4Do J =3/2  2s22p2(3P)3d 2F J=5/2, W = 9,979.47 cm-1.      

(9) 2s22p2(1D)3s 2D J =3/2  2s22p2(3P)4p 2Po J=1/2, W = 7,924.56 cm-1.   

(10) 2s22p2(3P)3d 4F J =5/2  2s22p2(3P)5p 4Do J=5/2, W = 6,520.96 cm-1.   

(11) 2s22p2(3P)5p 4Do J =1/2  2s22p2(1S)3s 2S J=1/2, W = 5,079.71 cm-1.   

(12) 2s22p2(3P)3d 2P J =1/2  2s22p2(3P)4p 2Po J=1/2, W = 2,934.44 cm-1.   

(13) 2s22p2(3P)3d 4P J =3/2  2s22p2(3P)4p 4Do J=5/2, W = 1,954.73 cm-1.   

(14) 2s22p2(3P)5s 4P J =3/2  2s22p2(3P)5p 4Do J=5/2, W = 1,347.5 cm-1.   

 

 

 

 

 

 

 

 

 

                                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Electron-impact excitation rate coefficients for selected transitions in N atom. 
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As expected, the magnitudes of the rate coefficients are influenced both by the excitation cross section and the 

excitation energy. Note that the energy levels of N atom in the calculation of the rate coefficients in Fig. 4 obey the 

intermediate angular momentum coupling scheme as designated in the NIST database16. Thus, the calculated rate 

coefficients are directly linked to radiative transitions and can be readily employed in a non-equilibrium radiation 

calculation. In contrast, LS coupling is used in the calculations in Figs. 1-3 in order to compare with the R-matrix 

results.  

 

B. Exchange scattering 

In first order perturbation theory, the differential cross section for exchange scattering is given by 

 

 

  (19)

 

 

Here gex is the exchange scattering amplitude, and the antisymmetrizer permutes the free electron coordinate 

with the bound electron coordinate. It is expected that the exchange with the outermost bound electron dominates 

the scattering process. Hence we employ the active electron approximation and include only the exchange with the 

outermost electron in our calculation. Ochkur36 and Rudge37 introduced an additional approximation to gex and 

simplified the exchange amplitude to  

 

     (20) 

 

For selected cases, they demonstrated that the above equation works quite well even at low energies. The integral 

cross section fo is obtained by integrating 
ds fo

dW
over the allowable range of K. Following Kim’s practice38, we 

introduced a BE scaling factor to fo to account for higher-order effects. The BE scaling that we use is similar to 

but not the same as Kim’s. The integral exchange cross section is then given by  

  

  

            (21) 

 

The active electron in the target wave functions is described by a hydrogenic function with quantum defect 

correction39. In Eq. (21) both the radial integral and the integration over K2 are evaluated numerically. Note that 

due to the use of the active electron approximation, the present treatment is applicable for transitions where the 

initial and final states of the atom have the same core. A higher order treatment is required for processes involving 

core excitations. 

 

Figure 5 compares the present exchange calculation of electron impact rate coefficients for four spin-forbidden 

transitions in N atom with the R-matrix calculation of Frost et al40. (a) 2s22p3 4So  2s22p3 2Do, (b) 2s22p3 4So  

2s22p2(3P)3s 2P, (c) 2s22p3 2Do  2s22p2(3P)3s 4P, and (d) 2s22p3 2Po  2s22p2(3P)3s 4P. 

  

Comparisons of the results of the perturbation calculations with R-matrix data and available experimental data 

indicate that the perturbation method in the present formulation can be applied to the energy range of interest in 

flow-field modeling and can fill-in the large data gap not covered by previous R-matrix calculations. This has now 

been done.  
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    (c)      (d) 
     

Figure 5. Electron impact excitation rate coefficients for four spin-forbidden transitions in N atom. 

Comparison of present perturbation calculation with the R-matrix calculation of Frost et al40.  

 

III. Numerical Results 

 
Previously, the HyperRad electron Stark-broadening and non-equilibrium electron-impact rate coefficient 

databases were based on semi-classical calculations for dipole-allowed transitions41 and Gryzinski’s9 and 

Drawin’s11,12 classical formulas for other transitions. We are currently reconstructing these databases for the 

electron-impact excitation of N, O, and C atoms using newly improved, quantal calculations. So far, we have 

carried out calculations of electron-impact cross-sections and rate coefficients for all dipole-allowed excitations in 

the HyperRad line-list database. These include 16,239 transitions for the N atom, 11,072 transitions for the O atom, 

and 22,546 transitions for the C atom. The quantal calculations involving other types of transitions will be 

completed in the near future. In addition, we have also computed both the dipole-allowed and exchange electron-

impact cross-sections and rate coefficients for the N atom using the NIST level and line lists16. This includes 146 

energy states below the first ionization potential, 1,249 dipole-allowed excitations, and 6,434 exchange excitations. 

In the following, we use this smaller set of energy states and rate coefficients to study the thermal and chemical 

non-equilibrium processes for two test cases. In these studies, the translational mode is assumed to be in 

equilibrium, satisfying a Maxwellian distribution in velocity. 
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A. Internal excitation and ionization of nitrogen atoms 

In the first test case, the newly computed state-to-state rate coefficients are used to study the internal excitation 

and ionization processes of nitrogen atoms in an isothermal and isochoric heat bath. Nitrogen atoms, seeded with a 

small number of nitrogen ions and electrons, are suddenly heated, and the translational temperature of the gas is 

instantaneously brought to a high temperature. This drives the gas toward a highly thermal and chemical non-

equilibrium condition. Here we consider the internal excitation and ionization processes due to electron-impact 

collisions with nitrogen atoms: 

 

N i +e- ÛN j +e-
                                                                                                                   (22) 

N i + e- Û N + +e- +e-
.                                                                                                            (23) 

 

The superscripts i and j in the above equations denote generic indices for internal states of a species, here the N 

atom. The ionization rate coefficients used to model the process described by Eq. (23) are obtained from previous 

quantal calculations42. Due to the lack of a complete set of rate coefficients, the ionization process is simplified to 

include only the ground state of the first ion N+.  

 

Let ni , g i , and e idenote the number density, degeneracy, and energy level for energy state i of a species, 

respectively. In this study, we further assume that the gas has no mean speed. The microscopic governing equations 

for ni are thus reduced to the master equations. These equations are solved using the ordinary differential equation 

package LSODE43. Note that the species total number density n can be obtained by summing of all its energy-state 

number densities, n = ni

i

å .  Similarly, the species total internal energy e = ni

i

å e i . For given n  and e , provided 

that the ni are in a Boltzmann distribution, we can define a species-electronic (or internal) temperature T el  which 

satisfies the relation 

 

g ie ie
-

e i

kT el

i

å

g ie
-

e i

kT el

i

å

=
e

n
 .                                                                                                                     (24) 

However, when the ni are not in a Boltzmann distribution, T el  has no simple physical interpretation, other than as 

a parameter to measure how far the gas has deviated from thermal equilibrium. One must be cautious in relating 

such a fictitious temperature to any physical quantities.  

 

In the following test case, numerical calculations of ni are carried out assuming isothermal conditions in 

translational mode, with an initial temperature of 6,000 K and a final temperature of 30,000 K. The initial pressure 

is set to 100 Pa, and the composition consists of 98% N, 1% N+, and 1% e-. This system has been studied 

previously by Liu et al.44, but the excitation and ionization rate coefficients in that work were calculated using the 

Drawin formula. Figures (6a) and (6b) compare the atomic nitrogen and electron mole fractions and the atomic 

nitrogen electronic temperature using the present rate coefficients with those using Drawin’s rate coefficients. The 

figures show that the N atoms are almost completely ionized when the gases reach equilibrium at 30,000K, and 

using the new quantal rate coefficients results in a longer time to reach equilibrium than using Drawin’s formula. 

Drawin’s formula is an empirical formula assuming the excitation cross section has approximately the same energy 

dependence as the ionization cross section. This assumption completely fails for exchange collisions. (See Eq. 

(21)). It is therefore not surprising that the result of the mole fraction calculations using quantal rate coefficients 

and Drawin rate coefficients differ significantly. We also observe that T el  exhibits a steady state for a very short 

period of time before reaching equilibrium with the translational temperature. 
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   (a)               (b)   

 

Figure 6. Comparison of time evolution of (a) mole fractions and (b) electronic temperature using 

the present and Drawin’s rate coefficients for nitrogen atoms undergoing internal excitation and 

ionization in an isothermal and isochoric heat bath. 

 

 

B. Thermal and chemical non-equilibrium processes in a nitrogen gas mixture passing through a normal 

shock  

In the second test case, we consider a more complicated gas mixture, consisting of nitrogen molecules, atoms, 

ions, and electrons. Behind a strong shock, the gas may encounter the following collisional processes involving 

heavy particle- and electron-impact excitation, dissociation, and ionization:  

 

 heavy particle-impact excitation 

 

N
2

i +N
2

jÛ N
2

k +N
2

l                                                                                                                        (25) 

N
2

i +N pÛ N
2

k +N r                                                                                                                        (26) 

N p +N qÛN r +N s                                                                                                                        (27) 

 

 heavy particle-impact dissociation 

 

N
2

i +N
2

jÛ N
2

k +N r +N s                                                                                                                (28) 

N
2

i +N pÛ N r +N s +N t                                                                                                                 (29) 

 

 heavy particle-impact ionization 

 

N p +N qÛN
2

+r +e-                                                                                                                        (30) 

 

 electron-impact excitation 

 

N
2

i +e- Û N
2

k +e-                                                                                                                            (31) 

N p +e- Û N r +e-                                                                                                                            (32) 

 

 electron-impact dissociation 
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N
2

i +e- Û N r +N s +e-                                                                                                                     (33) 

 

 electron-impact ionization 

 

N p +e- Û N +r +e- +e-                                                                                                                     (34) 

 

Here the superscripts i, j, k, l, p, q, r, s, and t denote generic indices for internal states of a species. Since not all the 

microscopic state-to-state rate coefficients are currently available, we simplify the collisional processes in the 

present study.  For molecules, we include only the vibrational states associated with the ground electronic states

N
2
(X 1S

g

+ )  in processes (25), (26), (28), (29), (31), and (33). We also include the vibrational states associated with 

the first excited electronic state N
2
(A 3S

u

+) in processes (25) and (26). For atoms, we include the ground state

N ( 4S o)  in process (26), (27) (28), (29), (30), and (33), and two metastable states N ( 2Do) and N ( 2Po) in 

processes (27) and (30). In processes (32) and (34), we include all electronic states of N . For ions, we include only 

the ground state N
2

+(X 2 S
g

+ ,v = 0)  in process (30) and N +( 3P)  in process (34).  

 

In the second test case, we employ the newly calculated rates for processes (32) and (34) in a one-dimensional 

flow code45 to study the evolution of thermal and chemical non-equilibrium processes behind a normal shock for 

the nitrogen gas mixture described above. The rate coefficients for other processes used in the flow code are 

obtained from references 45-50. The Euler equations, including the continuity equations for internal energy states 

coupled with the conservation equations for total momentum, total energy, and electron energy, are solved in space. 

The gas mixture is assumed to be in chemical and thermal equilibrium upstream of the shock, with pressure equal 

to 2 Pa, temperature 300 K, and flow speed 10 km/s. Figure 7 (a) shows the mole fractions of the gas mixture 

species as a function of distance behind the shock. It can be seen that electrons are first produced by heavy particle 

associative ionization process (Eq. (30)) and then by electron-impact ionization process (Eq. (34)). Figure 7(b) 

depicts various temperatures behind the shock. The heavy particle temperatureT h and the electron temperature T e  
are computed directly from simulated energy variables, while the fictitious internal electron and vibrational 

temperatures T
N

el  and T
N

2

v
, for N and N2 respectively, are post-processed quantities defined by Eq. (24). From these 

figures, it is apparent that the cooling of the heavy-particle translational temperature is caused by the excitation of 

internal modes and by the onset of chemical reactions. The distance required to reach complete equilibrium slightly 

exceeds 0.1 m in this case.  
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   (a)               (b)   

 

Figure 7. (a) Mole fraction and (b) temperature distributions of a nitrogen gas mixture passing 

through a normal shock undergoing heavy particle– and electron-impact excitation, dissociation, 

and ionization 
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