https://ntrs.nasa.gov/search.jsp?R=20160000213 2019-08-31T04:40:28+00:00Z

Future changes in Major Stratospheric Warmings in CCMI models

<u>B. Ayarzagüena¹</u>, U. Langematz¹, , L. M. Polvani², J. Abalichin¹, H. Akiyoshi³, A.Klekociuk⁴, M. Michou⁵, O. Morgenstern⁶ & L. Oman⁷

¹Institut für Meteorologie, Freie Universität Berlin (Germany); ²Columbia University (USA); ³NIES, Tsukuba (Japan); ⁴Australian Antarctic Division (Australia); ⁵Meteo-France, (France); ⁶NIWA, (New Zealand); ⁷NASA/GSFC (USA)

Motivation

Major Stratospheric Warmings (MSWs) in the future

 No clear consensus among recent studies about a possible impact of climate change on MSWs by analyzing chemistry climate models (CCM) simulations [*Butchart et al. 2010; Mitchell et al. 2012*].

Possible reason for the uncertainty: competition of different forcings and sensitivity of models to these forcings.

Goal of the study

What are the results for the new CCMI runs?

Future changes in Major Stratospheric Warmings in CCMI models, 07/01/2015

Data & models

REF-C2: transient run from 1960-2100 under RCP6.0 scenario (GHGs) and A1 scenario (ODS, WMO 2010)

CCMI models	Model resolution	QBO	Solar variability	SSTs
GEOS-CCM	2.5° x 2°, L72 (top:0.01hPa)	Internally generated	No	Prescribed (CESM1)
CNRM-CCM	T42L60 (top: 0.07 hPa)	Internally generated	Yes	Prescribed (CNRM)
NIWA-UKCA	3.75° x 2.5°, L60 (top: 84 km)	Internally generated	No	Coupled to ocean model
CCSRNIES- MIROC 3.2	T42L34 (top: 0.012 hPa)	Nudged	Yes	Prescribed (MIROC 3.2)
EMAC-O	T42L39 (top: 0.01hPa)	Nudged	Yes	Coupled to ocean model
ACCESS	3.75° x 2.5°, L60 (top: 84 km)	Internally generated	No	Prescribed (HadGEM-ES2)

Mean frequency of MSWs (I)

Periods of study: PAST (first 40 winters) and FUTURE (last 40 winters)

Model	Past (MSWs/dec)	Future (MSWs/dec)	Criterion for MSW	
CCSRNIES-	2.3	3.0	identification	
MIROC3.2			Simultaneous reversal	
NIWA-UKCA	0.8 (!)	3.3	of ū at 60°N and 10 hPa	
GEOS-CCM	1.8	1.8	& ΔT (90°N-60°N) at 10	
CNRM-CCM	7.5	7.5		
EMAC-O	9.3	7.5	• TO consecutive days of westerly winds after the	
ACCESS	10.0	9.3	central date	
NCEP/NCAR rean (1960-2000)	. 5.5		L	

Freie Universität

Mean frequency of MSWs (I)

Periods of study: **PAST** (first 40 winters) and **FUTURE** (last 40 winters)

Model	Past (MSWs/dec)	Future (MSWs/dec)	
CCSRNIES- MIROC3.2	2.3	3.0	90
NIWA-UKCA	0.8 (!)	2.2	•
GEOS-CCM	1.8	1.8	60
CNRM-CCM	7.5	7.5	
EMAC-O	9.3	7.5	
ACCESS	10.0	9.3	
NCEP/NCAR rean.	5.5		30

Mean frequency of MSWs (I)

Periods of study: PAST (first 40 winters) and FUTURE (last 40 winters)

Model	Past (MSWs/dec)	Future (MSWs/dec)	Criterion for MSW	
CCSRNIES-	2.3	3.0	identification	
MIROC3.2			Simultaneous reversal	
NIWA-UKCA	0.8 (!)	3.3	of ū at 60°N and 10 hPa & ΔT (90°N-60°N) at 10 hPa	
GEOS-CCM	1.8	1.8		
CNRM-CCM	7.5	7.5		
EMAC-O	9.3	7.5	• 10 consecutive days of westerly winds after the central date	
ACCESS	10.0	9.3		
NCEP/NCAR rear	n. 5.5			

No statistically significant future changes in the mean frequency of MSWs are found except for NIWA-UKCA

Mean frequency of MSWs (II): Sensitivity of results to different SSW diagnostics

U6090: Reversal of ū averaged from 60°-90°N (Butler et al., under review)

ZPOL: Polar-cap averaged 10-hPa Z anomalies exceed +3 std (Butler et al. under review)

Model	Past (MSWs/dec)	Future (MSWs/dec)	Model	Past (MSWs/dec)	Future (MSWs/dec)
CCSRNIES- MIROC3.2	4.0	5.3	CCSRNIES- MIROC3.2	3.5	4.0
NIWA-UKCA	2.8	3.5	NIWA-UKCA	4.3	4.5
GEOS-CCM	5.5	5.5	GEOS-CCM	4.3	5.0
CNRM-CCM	10.3	11.8	CNRM-CCM	4.0	4.0
EMAC-O	8.0	7.3	EMAC-O	4.8	4.3
ACCESS	12.5	11.5	ACCESS	3.8	3.8
NCEP/NCAR	7.0		NCEP/NCAR	6.8	
rean.			rean.		

The lack of statistically significant future changes is confirmed when using other criteria for the identification of MSWs.

Type of events: split/displacement MSWs

Criterion based on the calculation of area-weighted rotation around the occurrence of MSWs (algorithm developed by K. Shibata).

Model	Past (S/D ratio)	Future (S/D ratio)
CCSRNIES- MIROC3.2	0.13	0.33
NIWA-UKCA	0.50	0.00
GEOS-CCM	0.17	0.40
CNRM-CCM	0.20	0.11
EMAC-O	0.23	0.16
ACCESS	0.21	0.27
NCEP/NCAR	0.77	
rean.		

- CCMI models show in general a very low number of vortex split MSWs.
- **Future**: no significant changes are found.

Future seasonal changes in the intensity of PNJ

Daily ū@10 hPa (m/s) Future-minus-past

Freie Universität

- No stat. signif. changes in GEOS-CCM and CNRM-CCM

- Changes in other 4 models:
- <u>Early winter</u>: stat. signif stronger future PNJ.
- <u>Midwinter</u>: weaker future PNJ (only stat. signif. in 2 of them).

Contours enclose areas with statistically significant values at a 95% conf. level

Berlin

Conclusions

- **No** statistically significant future changes in the mean frequency of MSWs are found in general in the analyzed CCMI models.
- Other characteristics of MSWs do not show stat. significant changes in the future either.
- Two groups of models are found in terms of future seasonal changes in the intensity of the PNJ:
 - 1. Models that do not show any statistically significant changes of the polar vortex in the future (GEOS-CCM & CNRM-CCM).
 - 2. Models with a future weakening (strengthening) in midwinter (early winter) (CCSRIES-MIROC3.2, NIWA-UKCA, ACCESS & EMAC-O).

Thank you for your attention!

Future changes in Major Stratospheric Warmings in CCMI models, 07/01/2015