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Introduction

The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket experiment design to measure for the first time the polarization signal of the Lyman-Alpha line (121.6nm), emitted in the solar

upper-chromosphere and transition region. This instrument aims to detect the Hanle effect’s signature hidden in the Ly-o polarization, as a tool to probe the chromospheric magnetic field. Hence, an un-

precedented polarization accuracy is needed (£107). Nevertheless, spatial and spectral resolutions are also crucial to observe chromospheric feature such as spicules, and to have precise measure-

ment of the Ly-a line core and wings. Hence, this poster will present how the telescope and the spectrograph were separately aligned, and their combined spatial and spectral resolutions.
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The secondary mirror X/Y tilts and despace were adjust- p—
. . +/-010| +/-0.04 | +/-0.04 | +/-0.03 | +/- 0.03 RMS WFE is given after removing piston, tilt X, tilt Y and defocus.
ed by Shlmm'ng to remove defocus and comas aberra- (A') Final focus adjustment to remove defocus will be performed when the telescope will be
tions from the WFE at the center of the FOV (0”,0"). Error was estimated by taking the standard deviation of twenty WFE measurements. attached to the spectrograph.
Spectrograph alignment
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designed (right figure). ‘ TS Figure: Spot with the 4.4 pm.rpuiél (r;ﬂ) and 13 um/pixel CCDs (right) for Channel 1 (lop) and Channel 2 (bottom)taken at He-Ne.
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vature radius as the flight Ly-a grating. —
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In the second phase‘ (Step Sto7 ) only the ﬂlght gratmg Ztilt and CCD defocus will be adJUSted at Ly‘a' Aligning the off-axis parabolic mirrors shifted the image position, leading to some pinhole’s images located outside of the
CCD’s detector. The flight CCD’s position will be adjusted to compensate the image shift.
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Instead of the slit, a pinhole array with five vertical $10um pinholes at +200”, +100”, 0", -100" and -200” 2 2(D)r(i)

Lo . ) . RMS spot radius was computed inside each box as: rass — | = where i is the pixel indice, x its value and r
along the slit direction was used to check the spectrograph image quality on the CCDs. its radial distance to the center of the box.
For a fine sampling, CCDs with 4.4 um pixel size were used for the visible light alignment. These CCDs RMS spot radius for the 13 um/pixel CCDs appear larger due to the larger pixel size (i.e poor sampling). In addition, the

! , : . flight resolution for the spectrograph might actually be better, as the diffraction limit (for the spectrograph alone, the grating
were then replaced with the ﬂlght CCDs (1 3 “mjﬂlxel) and the a“gnment was re-confirmed. is the aperture stop) and the pinhole diameter influenced the image quality for the spectrograph alignment
Summary
Spatial and spectral resolution were experimentally measured after alignment for both telescope and spectrograph. Combined performances can be estimated and compared with the instru-
ment requirement at edges of the field of view: . L . . .
Teloscaie CLASP telescope and spectrograph were successfully aligned in visible light: RMS spot radius was confirmed below
Telescope | Spectrograph Spe ctrt:graph requirement. Considering the plate scale from design, the measured RMS spot radius at the edge of the slit gives a
! | Required RMS spot 12 13.5 um 181 um® 1.25" spatial resolution and a 0.006nm spectral resolution. -
radius at (+200”,0") Next step will be to align the spectrograph’s flight grating at Ly-a, to adjust the flight CCDs defocus and to confirm the
Ta%?igﬁd(f%gfggt 7.4 um® 13.2 pm® 15.1 um® spectrograph alignment by checking the image quality at Ly-o.
. - Finally, the optical alignment of the instrument will be completed when the telescope will be attached to the spectro-
(1) Average of the telescope RMS spot radius at +200".
(2) Average of the spectograph RMS spot radius for CH1 and CH2 at +200", graph, and the telescope’s focus adjusted to the spectrograph’s slit.
(3) Root Sum Square of the telescope and spectrograph RMS spot radius.




