SPORT

The Scintillation Prediction Observations Research Task SA43C-04

James F. Spann¹, Charles Swenson², Otavio Durão³, Luis Loures⁴, Rod Heelis⁵, Rebecca Bishop⁶, Guan Le⁷, Abdu⁴, Linda Krause¹, Clezio Nardin³, Eloi Fonseca⁴

¹NASA/MSFC, ²USU, ³INPE, ⁴ITA, ⁵UTD, ⁶Aerospace, ⁷NASA/GSFC

Outline

- Science
- Mission instruments, spacecraft, mission
- Team Responsibilities
- Backup

Ionosphere-Thermosphere-Mesosphere

Daytime Convective Clouds Coverage

The US National Academy of Science published a Decadal Survey entitled:

Solar and Space Physics: A Science for a Technological Society (2013)

Chapter 2: Solar and Space Physics: Recent Discoveries, Future Frontiers

Average Ionospheric Equatorial Densities

Top Challenges for the Atmosphere-Ionosphere Magnetosphere Interactions

- Understand how the ionosphere-thermosphere system responds to, and regulates, magnetospheric forcing over global, regional, and local scales.
- Understand the plasma-neutral coupling processes that give rise to local, regional, and global-scale structures and dynamics in the AIM system.
- Understand how forcing from the lower atmosphere via tidal, planetary, and gravity waves influences the ionosphere and thermosphere.

Science

AEROSPACE

UtahStateUniversity

Plasma Bubbles

GUVI (Same Local Time, Different Longitudes)

Why do bubbles sometimes form and sometimes not?

Kil, Hyosub, et al. "Coincident equatorial bubble detection by TIMED/GUVI and ROCSAT-1." Geophysical research letters 31.3 (2004).

Ground Observations of Total Electron Content

TEC map over South America showing plasma depletion regions (left) and associated regions of scintillation near the anomaly peak. Source: EMBRACE data center.

Plasma Bubble Modeling

About 1.5 Hours to form a bubble

SPORT Science Goals

- What is the state of the ionosphere that gives rise to the growth of plasma irregularities that extend into and above the F-peak?
- How do plasma irregularities evolve to impact the appearance of radio scintillation at different frequencies?

SPORT Science Traceability

Table 1. Science Objectives to Measurement Requirements Traceability

The Scintillation Prediction Ob	oservation Research Task (SPORT)	Instrumentation	Spacecraft			
Observational Approach	Science Measurement Requirements	Instrument Approach	Space Systems Requirements			
) What is the state of the ionosphere that gives rise to the growth of plasma irregularities that extend into and above the F-peak?						
Observations in the 1700 to 0100 LT sector over -30° to 30° latitude Height profiles of the plasma density to specify the magnitude and height of the F peak density in the EA Vertical ion drifts at or below the F peak in the EA	 Plasma Density Profile 140 to 450 km alt 10⁴ to 10⁷ p/cm³ range 20% p/cm³ accuracy 1000 km along track sampling Ion Drifts (Earth Reference Frame) ±800 m/s Range 20 m/s precision & accuracy 10 km along track sampling 	GPS Occultation Observe GPS satellite occultation along and to the sides of the orbit plane to obtain line of site TEC Ion Velocity Meter Observe vertical ion drifts by angle of arrival of heavy ions at detector	Satellite Orbit 1) \geq 1 year mission life 2) 40° to 55° inclination 3) 350 to 450 km altitude 4) \pm 10 km eccentricity Spacecraft 1) \pm 15° Ram Pointing 1 σ 2) \leq 1 km position knowledge 3) \leq 10 ms timing			
2) How do plasma irregularities evo	lve to impact the appearance of radio sci	ntillation at different frequ	iencies?			
Observations in the 2200 to 0200 LT sector over -30° to 30° latitude Observations of irregularities in electron density and E-field power spectral density in slope from 200 km to 200 m	 E-Field (Earth Reference Frame) ±45 mV/m range 1.1 mV/m precision & accuracy 1 km along track sampling 10 km - 200 m along track waves Plasma Density 10³ to 10⁷ p/cm³ range 10³ p/cm³ precision & accuracy 1 km along track sampling 10 km - 200 m along track waves B-field 	E-Field Double Probe Observe probe floating potential for AC E- fields from irregularity GPS Occultation S4 scintillation index Langmuir/Impedance Observe DC and AC probe response for relative and absolute electron density and observe irregularities Three Axis Magnetometer	Spacecraft Mechanisms 1) ≥0.6 m tip-to-tip booms Attitude (Post Flight Knowledge) 1) ≤ 0.02° 1σ-uncertainty			
	1) ± 56,000 nT range 2) ±100 nT precision and accuracy 3) 1 km along track sampling	Support VxB computation for ion velocity and E-Field measurements				

AEROSPACE UT

Instrument Measurement Mapping

	Table 1. Expected Instrument Performance and Requirements					
Parameter	Ion Velocity Meter	GPS Occultation	Electric Field Probe	Langmuir Probe	Impedance Probe	Magnetometer
Scientific Requirement	V _i : ±800 m/s, 20 m/s ΔN _i : 10 ⁴ to 10 ⁷ cm ⁻³	N _e -Profile: 10 ⁴ to 10 ⁷ cm ⁻³ S4 0.2 to 1.2	0.1 to ±45 mV/m	$\begin{array}{l} \Delta N_{e}:10^{3} \ to \ 10^{7} \\ cm^{-3} \\ \Delta N_{i}:10^{3} \ to \ 10^{7} \\ cm^{-3} \end{array}$	$N_e: 10^3 \text{ to } 10^7 \text{ cm}^{-3}$	± 56,000 nT, 100 nT
Instrument Performance	$V_{i:} \pm 1000 \text{ m/s}, \\ 15 \text{ m/s} \\ \Delta N_{i:} 10^2 \text{ to } 10^7 \\ \text{cm}^{-3}, 5\% \\ T_{i:} 250 \text{ to } 5000 \\ \text{K} \\ C_i : 0.100\%, 1- \\ 40 \text{ amu} \\ \text{DC to } 2 \text{ Hz}$	Scintillations (S4) Slant TEC: 3 to 200 units N_e -Profile: 10 ³ to 10 ⁷ cm ⁻³ S4 0.1 to 1.5 σ : 0.1 to 20 rads	0.1 to 500 mV/m, 1% V _i (derived): 20 m/s DC-40 Hz 16 spectrometer	$\begin{array}{l} \Delta N_{e}:10 \ to \ 10^{7} \\ cm^{-3}, 5\% \\ \Delta N_{i}:10^{3} \ to \ 10^{9} \\ cm^{-3}, 5\% \\ T_{e}:200 \ to \ 5000 \\ K \\ V_{f}:\pm10 \ mV \ to \\ \pm 12 \ V \\ V_{p}:\pm10 \ mV \ to \\ \pm 12 \ V \\ DC-40 \ Hz, 25 \\ s/sweep \\ 16 \ spectrometer \end{array}$	N _e : 10 to 10 ⁷ cm ⁻³ , 1% DC-40 Hz, 25 s/sweep	± 64,000 nT, 10 nT DC-40 Hz
			ch. 20 Hz to 15 kHz	ch. 20 Hz to 15 kHz		
Mechanism Attitude Control Attitude knowledge post processed	8 cm aperture 15° pointing control 0.02°	7.6 x 7.6 x 0.5 cm patch antenna 15° pointing control 2°	Two 30 cm booms 15° pointing control 0.02°	0.3 x 30 cm boom 15° pointing control 10°	30 cm boom 15° pointing control 10°	25 cm boom NA 2° pointing
Field of View	30°	160°	180°	180°	180°	180°
Peak Power	0.3 W	1.5 W	0.15 W	0.15 W	0.4 W	0.45 W
Volume	1.0U Cube	~0.15U Cube	~0.1U Cube (Shared with LP)	~0.1U Cube (Shared with E- Field)	~0.1U Cube	~0.5U Cube
	9 x 9 x 10 cm	1.5 x 9 x 9 cm	0.75 x 9 x 9 cm	0.75 x 9 x 9 cm	0.75 x 9 x 9 cm	5 x 9 x 9 cm
Mass	< 1000 g	< 200 g	$< 80~{\rm g}$ (shared)	< 80g (shared)	< 160 g	< 150 g
Data Rate	2.0 kbps	1.0 kbps Day; 15 kbps Night	1.4 kbps	2.0 kbps	1 kbps	2.8 kbps
Horizontal Cell Size	100 km	500 km	200 m; 20 m spectrometer	200 m; 20 m spectrometer	190 km	10 km
Vertical Cell Size	NA	30 km	NA	NA	NA	NA
V_i – ion drift velocities; ΔN_i – relative ion density; ΔN_e – relative electron density; T_e – electron temperature; T_i – ion temperature; V_f – floating potential; V_p – plasma potential; N_e - electron density; B- Magnetic Field; TEC – total electron content; C_i – Ion						

composition; DC – 1D DC Electric Field;, S4 – RF signal amplitude index, σ – RF signal phase index,

SPORT Spacecraft

🛛 AEROSPACE 🛛 🗖 🖉

SPORT CAD drawings: ITA (Lidia Sato)

SPORT Mission

- ISS-like orbit is different from other missions such as COSMIC and C/NOFS
- Provides near conjugacy observations across equatorial anomaly
- Science mission on a CubeSat platform

SPORT Orbit

UV Airglow images from TIMED clearly show the equatorial anomaly with embedded depletions that have penetrated the F peak. Green, red, and blue traces show the magnetic equator and positive and negative dip angles. SPORT ground tracks are superimposed in black.

The University of Alabama in Huntsville

AEROSPACE

JtahStateUniversitv

SPORT Team and Functions

• MSFC

- PI, PM, Science Co-I, single interface to Brasil, Engineering oversight of instruments and observatory I&T, Launch and DoD coordination
- **Instruments** Each instrument has a US and Brasil science counterpart
 - Utah State: Deputy PI, Langmuir and Impedance Probe, Star Camera
 - Aerospace Corp Co-I, GPS Occultation
 - University of Texas at Dallas Co-I, Drift Meter
 - GSFC Co-I, Magnetometer, Data Archival at SPDF
- UAH
 - System Engineering Support
- ITA
 - Spacecraft, Observatory I&T
- INPE
 - Ground observation network, Mission Ops, Data management and distribution/archive

AEROSPACE

Overall Schedule

Name	Role	Institution	Effort
Dr. James Spann*	Principle Investigator	MSFC	0.17
Mr. Steve Pavelitz	Instrument Manager + NASA PM	MSFC	1.00
Mr. Erick Ordoñez	MSFC LSE	MSFC	0.50
Dr. Charles Swenson*	Deputy PI/Co-I Langmuir/Impedance	USU	0.12
Dr. Joaquim E. R. Costa*	INPE Instrument Manager	INPE	0.20C
Dr. Polinaya Muralikrishana*	Co-I Langmuir/Impedance Scientist	INPE	0.20C
Dr. Guan Le*	Co-I Magnetometer	GSFC	0.05C
Dr. Clezio Marcos Denardini*	Mission Data Scientist	INPE	0.20C
Dr. Rod Heelis*	Co-I Drift Meter	UTD	0.05/0.05C
Dr. Mangalathayil Ali Abdu*	Co-I Drift Meter Scientist	DCTA/ITA	0.15C
Dr. Rebecca Bishop*	Co-I Radio Occultation	Aerospace	0.83
Dr. Hisao Takahashi*	Co-I Radio Occultation Scientist	INPE	0.20C
Dr. David Sibeck*	Collaborator Science	GSFC	0.05C
Dr. Efythia Zesta*	Collaborator Science	GSFC	0.05C
Dr. Linda Krause*	Co-I Science	MSFC	0.15
Dr. Jim Clemmons*	Collaborator Science	Aerospace	0.05C
Mr. Joe Casas	Mission Manager	MSFC	0.10
Dr. Luis Loures	Project Manager & DCTA/ITA Lead POC	DCTA/ITA	0.50C
Dr. Elói Fonseca	Systems Engineer	DCTA/ITA	0.50C
Dr. Bryan Mesmer	UAH Systems Engineering support	UAH	0.09
Dr. Otávio Durão	INPE Lead POC	INPE	0.40C
Dr. José Sergio de Almeida	I&T Lead	INPE	0.20C
Dr. Maria de Fátima Mattiello	GSE and Ops Lead	INPE	0.30C
Mr. Marcelo Essado	Ground Software Lead	INPE	0.30C
Mr. Juan Hurtado	Collaborator Mission	SOUTHCOM	0.05 C
Dr. Steve Spehn	Collaborator Mission	EUCOM	0.05 C
Dr. Pierre Mattei	Collaborator Mission Partnership	DCTA/ITA	0.15 C
Dr. Maurício Ferreira	Control Center Operations Lead	INPE	0.20C

11

AEROSPACE UTD UAH UtahStateUniversity

Organization

The University of Alabama in Huntsville

AEROSPACE UT D