Assessing the Ability of Instantaneous Aircraft and Sonde Measurements to Characterize Climatological Means and Long-Term Trends in Tropospheric Composition

Lee T. Murray ${ }^{1,2}$ (Itmurray@ideo.columbia.edu) and Arlene M. Fiore ${ }^{2,3}$
1. ORAU / NASA Goddard Institute for Space Studies, New York, NY
2. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY
3. Department of Earth and Environmental Sciences, Columbia Univeristy, New York, NY

Over 40 yrs of 3-D in situ sampling of the troposphere

NASA, NOAA, NSF/NCAR, NERC, DLR, et. al
Field Campaigns (1983-2013)

Sonde Profiles (1970-2013)

Commercial Programs (1994-2013)

IAGOS (http://iagos.org) MOZAIC/CARIBIC

Observations discretely sample a dynamic 4-D system

2004-07-20 00h UTC

Can we use these observations to constrain CCMs?

- Chemistry transport models (CTMs) may be evaluated by exact space-time matching
- Chemistry-climate models (CCMs) generate their own weather so cannot match observations exactly in space and time
- CCMs are typically evaluated with observed climatologies

Questions

- Are aggregated in situ observations indicative of background mean conditions?
- Where can these observations be used to constrain processes in CCMs?
- Can discrete sampling be used to constrain long-term trends?

Approach: Use CTM to compare in situ and "CCM" output

Compare all three to assess suitability of observations to characterize mean atmospheric composition

Ozone most-sampled tropospheric trace gas distribution

2003-2012 Sondes + Passenger Programs + Field Campaigns

Ozone increases w/ latitude and altitude; large variability in FT; spring surface maxima

CTM sampled in space and time captures salient features

2003-2012 Sondes + Passenger Programs + Field Campaigns

GEOS-Chem biased high ~7\%; captures 87% of meridional, vertical, seas. variability ($n=10$ reg. x 12 mon.)

Sampling ozone decadal monthly means reproduces mean of direct sampling

2003-2012 Sondes + Passenger Programs + Field Campaigns

CCM decadal mean ozone patterns can be constrained with aggregated climatological observations

O_{3} clim. fairly representative of "true" background mean \& seasonality

2003-2012 Sondes + Passenger Programs + Field Campaigns

CO reasonably represented by climatology, except in SH

2003-2012 Passenger Programs + Field Campaigns

Field campaign aggregation mitigates "plume chasing"

2003-2012 Passenger Programs + Field Campaigns

Month

Short-lived, infrequently sampled species poorly characterized

2003-2012 Passenger Programs + Field Campaigns

Additional observations required for characterizing reactive nitrogen budgets

Can observations constrain processes in CCMs?

Lightning NO_{x} contribution to ozone at in situ locations (2004-2012)

Ongoing Work: Assessing Long-Term Trends

Currently assessing whether aggregated sonde + aircraft data may constrain multi-decadal trends in vertical structure

GEOS-Chem v9.01.03; $4^{\circ} \times 5^{\circ}$; MERRA + MACCity; Jan 1980-Dec 2010
Deseasonalized Ozone @ 500 mb above Hohenpeißenberg, Germany

Statistically significant trend in simulated monthly mean ozone...
..but not in observations or model sampled at observations

Conclusions

- Northern hemispheric sampling mostly indicative of background mean O_{3} and CO conditions; some biases toward polluted regions
- Southern hemisphere needs additional constraints on zonal asymmetries in O_{3} and CO and/or longer averaging intervals
- Reactive nitrogen species poorly characterized
- Sampling dense enough in northern hemisphere to constrain zonal emission-ozone/CO relationships; less so in the southern hemisphere
- Ongoing work will assess the suitability of the aggregated in situ data to characterize long-term trends

Acknowledgements

The many individuals and groups that collected and archived data through the years WMO/GAW/WOUDC, SHADOZ, MOZAIC, CARIBIC, IAGOS, *Pre-AVE, TROCCINOX-2004, COBRA04, INTEX-NA, NEAQS-ITCT, ITOP-DLR, ITOP-UK, FAAM, AVE-04, Polar-AVE, TROCCINOX-2005, AVE-05, AMMA-SCOUT-F20, CR-AVE, INTEX-B-J31, MAXMex-GV, INTEX-B-DC8, INTEX-B-C130, INTEX-B-DUCHESS, INTEX-B-CESSNA, TexAQS-P3B, TC4-DC8, TC4-WB57, ARCPAC, ARCTAS-WP3B, ARCTAS-DC8, START-08, VOCALS-G1, VOCALS-C130, VOCALS-TwinOtter, VOCALS-Dornier, HIPPO-1, HIPPO-2, HIPPO-3, HIPPO-4, DISCOVER-AQ-DCWP3B, DISCOVER-AQ-DC-UMD, HIPPO-5, DC3-DC8, DC3-GV, DC3-F20, TACTS, ESMVal

