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I. Introduction

The growth in computational power and algorithm development in the past few decades has granted
the science and engineering community the ability to simulate flows over complex geometries, thus making
Computational Fluid Dynamics (CFD) tools indispensable in analysis and design. Currently, one of the
pacing items limiting the utility of CFD for general problems is the prediction of unsteady turbulent flows.1–3

Reynolds-averaged Navier-Stokes (RANS) methods, which predict a time-invariant mean flowfield, struggle to
provide consistent predictions when encountering even mild separation, such as the side-of-body separation at
a wing-body junction. NASA’s Transformative Tools and Technologies project is developing both numerical
methods and physical modeling approaches to improve the prediction of separated flows. A major focus
of this effort is efficient methods for resolving the unsteady fluctuations occurring in these flows to provide
valuable engineering data of the time-accurate flow field for buffet analysis, vortex shedding, etc. This
approach encompasses unsteady RANS (URANS), large-eddy simulations (LES), and hybrid LES-RANS
approaches such as Detached Eddy Simulations (DES). These unsteady approaches are inherently more
expensive than traditional engineering RANS approaches, hence every effort to mitigate this cost must be
leveraged. Arguably, the most cost-effective approach to improve the efficiency of unsteady methods is the
optimal placement of the spatial and temporal degrees of freedom (DOF) using solution-adaptive methods.

Under the steady-flow assumption, solution-adaptive methods have been demonstrated to be efficient
in reducing discretization error by spatially distributing degrees of freedom according to a scalar field –
the adaptive indicator – that assesses the importance of different regions of the domain. A robust method
for identifying all important regions in the domain is the adjoint-weighted residual which estimates the
discretization error in an output of interest (e.g.: lift and drag) and the elemental contribution to this error
yields an adaptive indicator.4 Degrees of freedom are added/removed by locally refining/coarsening (h-
adaptation) the mesh or by increasing/decreasing (p-adaptation) the scheme’s approximation order. The
combination and the choice between these options are not trivial tasks and they have been the subjects of
many research works.5–11 Other approaches that remesh12–14 the domain based on a metric field derived
from adjoint-based error estimates and anisotropy measures have also been demonstrated to be efficient in
controlling discretization error.

A far less explored research topic is solution adaptation for accurate and efficient simulation of unsteady
flows.14–17 The limited number of research works in space-time adaptivity is partly due to algorithmic
challenges to affordably simulate large-scale unsteady flows and to the difficulty of designing and implement-
ing a robust space-time mesh adaptation strategy. Nevertheless, these challenges are worth taking as the
two-dimensional results in Ref. 17 show that adjoint-based space-time adaptation can reduce the number of
degrees of freedom by one to three orders of magnitude in comparison to uniform refinement, especially when
a high level of accuracy is required. More importantly, the authors show that certain heuristic indicators
cause the adaptive procedure to converge to the wrong output value.

In steady problems, the cost of an adjoint solution is comparable to the cost of the primal solution with
small variations depending on the implementation. The time dependence in unsteady problems requires the
adjoint to be solved backwards in time and, at each time step, a residual linearization about the current

∗Postdoctoral Fellow, Oak Ridge Associated Universities, marco.a.ceze@nasa.gov
†Science and Technology Corporation,laslo.diosady@nasa.gov
‡scott.m.murman@nasa.gov

1 of 7

American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20160000689 2019-08-31T04:53:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42701117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


primal state makes the cost balance between primal and dual solutions depend highly on the implementation.
One of the main contributors to the computational cost is forming and storing the residual Jacobian. This
cost is twofold, as storing the Jacobian not only requires a large amount of memory but also hampers the
computational efficiency due to memory bandwidth usage.

In this work, we avoid these issues by implementing the transpose-Jacobian action on a vector to use
the existing matrix-free Krylov infrastructure18 as the adjoint solver. This work extends our current solver
capability that has been demonstrated to achieve high orders of accuracy (larger than 8th-order) on turbulent
flows.19,20 We will use this work as a building block for our goal of output-based space-time hp-adaptation
which will allow us to perform LES at significantly lower computational cost than currently. In this paper,
we will concentrate on the adjoint solver and the adaptation mechanics will be covered in future papers.
This abstract is organized as follows. In Section II, we describe the discretization followed by the primal
solution strategy presented in Section III. Section IV presents the derivation of the adjoint equation and
Section V presents preliminary results. We present the plan for the final manuscript in Section VI.

II. Discretization

For completeness, we briefly present the discretization of the flow equations. More details are found in
Ref. 18. The compressible Navier-Stokes equations are written in conservative form as:

q,t +∇ · (f I − fV ) = g, (1)

where (·),t denotes partial differentiation with respect to time. The conservative state vector is

q =

 ρ

ρu

ρE

 , (2)

where ρ is the density, u is the velocity vector, and E the total energy. The inviscid and viscous fluxes are
given, respectively, by:

f I =

 ρu

ρuuT + pI

ρuH

 , and fV =

 0

τ

τ · u− κT∇T

 , (3)

where p is the static pressure, H = E+ p
ρ is the total enthalpy, τ the viscous stress tensor, κT is the thermal

conductivity, T = p/ρR is the temperature, and R is the gas constant. The pressure is given by:

p = (γ − 1)
(
ρE − 1

2ρu
2
)
, (4)

where γ is the specific heat ratio. The viscous stress tensor, τ , is given by:

τ = µ
(
∇u+∇uT

)
− λ(∇ · u)I, (5)

where µ is the viscosity, and λ = 2
3µ is the bulk viscosity.

Applying a change of variables q = q(v), where v are the entropy variables:

v =

 −
s

γ−1 + γ+1
γ−1 −

ρE
p

ρu
p

−ρp

 , (6)

we rewrite the Navier-Stokes equations as:

A0v,t + Ā∇v −∇ · ( ¯̄K∇v) = g, (7)

with symmetric A0 = q,v, Ā = f I,qA0 = f I,v and ¯̄K = fV,∇qA0 = fV,∇v.21

We proceed to discretize (7) as follows. The domain, Ω, is partitioned into non-overlapping elements, κ,
while the time is partitioned into intervals (time-slabs), In = [tn, tn+1]. Define Vh =

{
w,w|κ ∈ [P(κ× I)]5

}
,

2 of 7

American Institute of Aeronautics and Astronautics



the space-time finite-element space consisting of piece-wise polynomial functions in both space and time on
each element. We seek a solution v ∈ Vh such that the weak form:

r(w,v) =
∑
κ

{∫
In

∫
κ

−
(
w,t · q +∇w · (f I − fV ) +wg

)
+

∫
In

∫
∂κ

w · (f̂ I · n− f̂V · n)

+

∫
κ

w(tn+1
− ) · q(tn+1

− )−w(tn+) · q(tn−)

}
= 0, (8)

is satisfied for all w ∈ Vh. Here f̂ I · n and f̂V · n denote numerical flux functions approximating the inviscid
and viscous fluxes, respectively, while n is the outward pointing normal vector. In this work, the inviscid
flux is discretized using the method of Ismail and Roe,22 while the viscous flux is discretized using the second
method of Bassi and Rebay.23

The space Vh is represented using a tensor-product basis such that on each element v is given by the
product of Lagrange polynomials:

v(x(ξ), t(τ)) = VijklΦijkl with Φijkl = φi(ξ1)φj(ξ2)φk(ξ3)φl(τ), (9)

where x(ξ) defines a mapping from the reference cube, ξ ⊂ [−1, 1]3, to physical space, while t(τ) is the
mapping from the reference interval [−1, 1] to the time interval [tn, tn+1]. φi are one-dimensional Lagrange
basis functions defined at Gauss-Legendre (GL) points, while Vijkl are the corresponding nodal values of
the entropy variables. The integrals in (8) are evaluated using numerical quadrature. For example:

2

∆t

∫
In

∫
κ

−
(
w,t · q +∇w · (f I − fV ))

)
'

{
−
(
τ,tw,τ · q +∇ξw · (f̃

I
− f̃

V
))
)
|J |
}
ξpξqξrτs

wpwqwrws, (10)

where ξp, ξq, ξr, τs are one-dimensional GL quadrature points, and wp, wq, wr and ws are the associated
quadrature weights. |J | denotes the Jacobian of the mapping from element reference space to physical space,

∇ξ denotes differentiation with respect to the reference coordinate ξ, while f̃
I

= ξ,xf
I and f̃

V
= ξ,xf

V

are the fluxes mapped to the local element coordinate system. In this work we use a quadrature rule with
twice as many quadrature points as nodal points in order to reduce the quadrature error (we ensure exact
integration of cubic nonlinearities) thereby improving the nonlinear stability of our scheme.24,25

The remaining integrals appearing in (8) are evaluated in a similar manner, which may be described as
a sequence of three steps:

1. Evaluate the state (v) and gradient (∇ξv) at the quadrature points.

2. Evaluate the source (g) and fluxes (f̃
I

and f̃
V

) at the quadrature points.

3. Multiply the source and fluxes with the basis functions (w) or gradients (∇ξw).

A key requirement for efficiency at high polynomial order is the evaluation of the first and third steps using
the sum-factorization approach,25,26 which allows the multiplication of the basis functions to be performed as
a sequence of one-dimensional operations. This results in a residual evaluation cost which scales as O(Nd+1)
for each space-time element where N is the solution order and d is the number of spatial-temporal dimensions
(for unsteady 3D simulations d = 4). For a fixed number of spatial-temporal degrees of freedom (i.e. fixed
DOF = Nd) the residual evaluation scales linearly with the solution order. However for moderate solution
orders, N = 4− 16, the increased operation count with solution order may be offset by the use of optimized
numerical kernels25 via SIMD vectorization. As vector length increases in future processor architectures, the
aforementioned solution order range can further increase.

III. Primal Solution Strategy

Given the choice of basis functions and quadrature rule, Equation (8) represents a globally coupled system
of nonlinear equations which need to be solved for each time-slab. For large three-dimensional simulations
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the cost of storing the linearization for a single step of an implicit scheme may be prohibitively expensive.
Using a space-time formulation, this storage cost is further scaled by the order of the basis used in the
temporal direction. In general, all degrees of freedom within an element are coupled, leading to a storage
cost which scales as O(Nd) for a fixed number of degrees of freedom. We overcome the memory requirement
limitation by using a matrix-free Newton-Krylov method.

A restarted GMRES method is used as Krylov solver, which does not require the explicit storage of the
Jacobian matrix.27 GMRES requires only the application of the linearization to each search direction, i.e.
we need to compute the linearized residual in the search direction. In this work, the linearized residual is
computed directly. As with the residual evaluation, the terms in the evaluation of the linearized residual in
a search direction, s, are computed as a sequence of three steps:

1. Evaluate the state (v), gradient (∇ξv), linearized state (s) and linearized gradient (∇ξs) at the quadra-
ture points.

2. Evaluate the linearized source gLin = ∂g
∂vs+ ∂g

∂∇ξv∇ξs and linearized fluxes (f̃
Lin

= ∂f̃
∂vs+ ∂f̃

∂∇ξv∇ξs)
at the quadrature points.

3. Multiply of the linearized source and fluxes with the basis functions (w) or gradients (∇ξw).

This approach is more expensive than the finite-difference approach often used in Jacobian-free method,28

however it is insensitive to a step-size parameter, provides the exact linearization, and it is used to compute
the solution of adjoint (dual) problems. Note that steps 1 and 3 are transpose of each other, hence, only the
flux Jacobians (step 2) need to be transposed for the adjoint residual operator.

The sum factorization approach is used in the application of steps 1 and 3, such that the cost of applying
the linearization scales as O(N) for a fixed number of space-time degrees of freedom. We note that with
increasing solution order this is more efficient than storing the linearization and computing the linearized
residual as a matrix-vector product whose cost scales as O(Nd) (even if there was no cost associated with
forming the linearization).

Furthermore, this approach allows us to use different quadrature rules for computing the linearized and
nonlinear residuals. In particular, we often use a lower order, or collocated, quadrature rule in the evaluation
of the linearized residuals of our Newton-Krylov scheme. The nonlinear residual, however, is evaluated with a
de-aliased quadrature. The use of a collocated quadrature for the linearized residual introduces a linearization
error hence our Newton method may be viewed a inexact.

IV. Discrete Adjoint Equation

Consider an output J (α,V), where the state V satisfies the discrete residual equations R(α,V) = 0
for a parameter set α. We seek variations of the output that remain in the space of realizable solutions to
the discrete residual equations. Assuming the output functional is at least C1-continuous and the residual
equations admit a single solution for a given α, output variations must be balanced by corresponding residual
variations. We can relate these variations by forming the output Lagrangian,

L(α,V,Ψ) = J (α,V) + ΨTR(α,V) (11)

and force its stationarity for arbitrary δV and δα:

δL((α),V,ψ) =

(
∂J
∂V

T
∣∣∣∣∣
α

+ψT
∂R
∂V

∣∣∣∣
α

)
︸ ︷︷ ︸

adjoint equation

δV +

(
∂J
∂α

T
∣∣∣∣∣
V

+ψT
∂R
∂α

∣∣∣∣
V

)
︸ ︷︷ ︸

sensitivity equation

δα = 0. (12)

We solve the adjoint equation for Ψ and use its value to compute the output sensitivity with respect to α
via the sensitivity equation. A generalization of the sensitivity equation can be derived in variation form to
yield the adjoint-weighted error estimate.4 An integral part of solving the adjoint equation is the transposed
action of the residual Jacobian onto a search direction. We perform this operation in a matrix-free manner
to prevent the computational cost from scaling super-linearly with solution order.

As with the primal solve, we use a GMRES method which does not require the explicit storage of the
Jacobian matrix; only the application of the adjoint operator to each search direction. As with the primal
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solve, the adjoint residual is computed exactly. The terms in the evaluation of the adjoint residual in a
search direction, s, are again computed in a sequence of three steps:

1. Evaluate the state (v), gradient (∇ξv), linearized state (s) and linearized gradient (∇ξs) at the quadra-
ture points.

2. Evaluate the adjoint source (gAdj = ∂g
∂v

T
s+ ∂f̃

∂v

T
s) and fluxes (f̃

Adj
= ∂g

∂∇ξv
T
∇ξs+ ∂f̃

∂∇ξv

T
∇ξs) at the

quadrature points.

3. Multiply the adjoint sources and fluxes with the basis functions (w) or gradients (∇ξw).

We note that steps 1 and 3 are identical to those for the primal problem, while step 2 involves simply the
transpose of the operations computed in the linearized residual.

The Fréchet derivatives of the flux at the quadrature points from Section III are not explicitly con-
structed in our implementation. Instead, we express them as a sequence of algebraic operations and the
implementation of their transpose follows an approach similar to the reverse-mode automatic differentiation.

Suppose we compute g(v) using the sequence of steps

g1 = g1(v) (13)

g2 = g2(v, g1) (14)

g = g(g1, g2) (15)

Then the linearized residual in a search direction s is computed using the chain rule

glin1 =
∂g1
∂v

s (16)

glin2 =
∂g2
∂v

s+
∂g2
∂g1

glin1 (17)

g =
∂g

∂g1
glin1 +

∂g

∂g2
glin2 (18)

The adjoint residual in a search direction a is simply the reverse operation:

aadj1 =
∂g

∂g1
a aadj2 =

∂g

∂g2
a (19)

aadj =
∂g2
∂v

a aadj1 + =
∂g2
∂g1

(20)

aadj + =
∂g1
∂v

(21)

Figure 1 shows that the transpose Jacobian application is slightly more expensive than the forward
application. We intend to investigate the reason for this extra cost for the final version of this paper.
Through optimized kernels, we can further improve the linear scaling provided by the sum factorization
approach and achieve approximately constant cost for the linearized residual evaluation up to 16th-order.18

The parallelization of the adjoint solver uses the same infrastructure as the primal solver. We will describe
the parallelization details in the final version of the paper.

V. Preliminary Results

We present a preliminary result for the NACA0012 airfoil at M∞ = 0.5, α = 1◦ and Re = 5000 with a
4th-order spatial discretization. Figure 2 shows the primal and x-force-adjoint fields for x-momentum.

We have preliminarily verified the x-force sensitivity with respect to angle of attack with a 2nd-order
solution by comparing the adjoint-based sensitivity with a central-difference formula. The results for ∆α =
0.01rad are:

Central difference: − 0.06454802; Adjoint: − 0.006722043; difference: 0.7%.

We suspect the difference between the two sensitivities is due to the stepsizes used in both the central-
difference used for the forward sensitivity and in the computation of the righthand side of the adjoint
equation.
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Figure 1: Computational cost per degree of freedom of the forward and transpose Fréchet derivatives.

VI. Plan for Manuscript

For the final version of this manuscript we will present two verification cases for the adjoint implemen-
tation. The first case will be steady laminar flow over the NACA0012 airfoil at M∞ = 0.5, α = 1◦ and
Re = 5000. We will perform the calculations at varying solution approximation orders and we will use the
sensitivity equation to verify the exact discrete sensitivity of the drag and lift outputs with respect to angle
of attack. The second case will be unsteady three-dimensional turbulent flow over the MDA30p30n airfoil at
high angle of attack. We will verify the exact discrete sensitivity of the integrated lift over time with respect
to a variation in angle of attack.
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