
Developing the Next Generation of Science Data System Engineers

John.F.Moses@nasa.gov, Jeanne.Behnke@nasa.gov, Christopher.D.Durachka@nasa.gov NASA/Goddard Space Flight Center

https://ntrs.nasa.gov/search.jsp?R=20160000705 2019-08-31T04:52:23+00:0

- Works in-depth on a data system component development or operation
- Serves with specific science or instrument team
- Offers cross-training in science and computer technologies
- Develops and operates specific components of an instrument data system Integrates and tests instrument algorithms
- Manages mission science data collections Participates in professional societies
- Works on collaborative US agency programs
- Leads technical activities of interdisciplinary engineers developing an instrument or data system component
- Oversees data center development, tracts costs and schedule, technical constraints
- Leads standards development efforts Serves as instructor on data management
- Serves as NASA representative to other **US** Agencies
- Participates in International projects
- Oversees development for a mission or multi-mission science data system
- Plans and administers projects of national or international importance
- Establishes long-range agendas for development of large new unusually complex systems
- Responsible for resource requirements, policies,
- procedures and budgets
- Leads International projects

Duties/Skills Very often our candidates have been contractors Engineer Journeyman Engineer **Senior Engineer Principal Engineer** Career Path at NASA/GSFC

Knowledge

- Looking for degrees in the following areas:
- Physical Sciences
- Astronomy, Astrophysics
- Geology Hydrology
- Meteorology
- Oceanography
- Physics
- Computer Engineering Computer Science
- But the following fields of
- expertise are also useful:
- Remote Sensing Mathematics
- Physical geography Human geography

- Thorough knowledge of: Science Data structures
- Programming languages Operating systems
- Applications techniques Service oriented architectures
- Off-the-shelf and opens source software (e.g., RDMS, GIS)
- Hardware systems
- Knows science and engineering concepts, practices:
- Levels of processed data (0, 1, 2...)
- Orbital mechanics, instruments
- Map projections (Lat/lon, RA/DEC)
- Instrument calibration techniques/algorithms
- Validation techniques
- Physical science algorithms, modeling
- systems, Geographic Information Systems Standard data formats (CCSDS, HDF, CDF,
- Knows how to integrate new technologies into current systems

- Thorough knowledge of software engineering design and development methodologies, paradigms, tools
- Sufficient to conceive, apply experimental theories to resolve unique or novel problems, significantly alter standard practices
- Knows agency information processing standards and policies
- Knows software engineering lifecycle Focus on particular domain to become expert
- Software data storage
- Science Data formats
- Science metadata
- **Data Management Expert** Has experience with NASA science data and understand provenance issues, data quality

- Thorough knowledge of:
- Software engineering design and development methodologies
- Agency information processing policies and standards
- Science data system architectures, science data storage, data formats, science metadata
- Recognized Subject Matter Expert
- Science Domain
- Data Center systems and operations Data Management
- Data Manipulation and Services
- **Extensive understanding of instrument** and physical science discipline data formats, analytical methods, computations science
- Extends discipline knowledge boundary Project Management expertise

Pathways and Perspectives

Strategic

Careers

encompass

more than

technical

knowledge

Personal

Mastery

ledge

Mission

Detail

Technical

Strategic vision

Change Management

Risk Management

External Awareness

Outcome

Oriented

personal

Super-

- Instrument Software Data
- **Systems** Flight & Ground Data **Systems**
- Systems Engineering Data & Information
- **Management** Systems Thinking
- Integration

Collaboration

- Mission & Organization
- Awareness
- Goals, Strategy & Policy Software Standards Adherence
- e.g. CMMI Discipline Standards
- Awareness e.g. CCSDS, ISO19115, HDF
 - Self-direction **Attention to**
 - Reasoning
 - Resilience
 - Flexibility
 - Competence Ethics/Professionaliscore Values Self-Esteem
 - Honesty/Loyalty Continual Learning

- **Customer Orientation**
 - Decisiveness
 - Problem Solving **Quality Principles**
 - Resource Management & Stewardship
 - **Technology Management**
 - **Creativity & Innovation**
 - **Results Orientation**
 - **Process Oversight**
 - Management
 - **Program Development, Planning & Evaluation**

 - Coaching/Counseling/Mentoring
 - Team Building
 - Conflict Management
 - Human Resources Management
 - Diversity Awareness
 - Situational Leadership
- Interpersonal skills
- Oral/Written Communication
- Influencing/Negotiating Partnering/Teaming
- Political Savvy
- Presentation/Marketing Skills
- Organizational Representation & Liaison
- Working within a Team

- Standardized public data access interfaces of central & distributed sources.
- Increase science findings and practical applications by enabling cross-discipline use of science data.
- Common depiction of time, location and accuracy.
- Encompass data complexities of research and application discipline communities.

- Play an increasing role in developing metadata and data products.
- Adapt data processing and integration of science algorithms to an
- Depicting discipline specific attributes for multiple types of observational data
- Utilize attributes that can become common across science disciplines
- Working with increasingly complex science data, multiple datasets and
- Take technical training focused in data science and new technologies Develop next generation science data systems that can serve multiple science disciplines, diverse observational data and model output.

Career Track Guidance

Suggestions on how to find a career path:

- Develop a long-term vision with a short term
- Review your career plan annually.
- Listen to what others have done. Find a mentor, be a mentor.
- Improve your skills through continuing education.
- Challenge yourself, don't be afraid to change, be willing to take a risk.

Seek out a career path that fits your goals and will be most satisfying to you:

- Your individual interests, skills, and training will dictate the path you should follow.
- Over time, modify your path based on personal interests, values, goals, experiences, and new opportunities that present themselves.

Science Data System Challenges

- Architect smarter, flexible and scalable data systems:
- Simplify components with common science data processing functions to ease evolution with emerging technology while maintaining connectivity with archival science data.
- Standardize the fundamentally required content and structure:
- Increasing complex remotes sensors and in-situ sensors from spacecraft, aircraft and surface networks.

Data System Engineer Challenges

- evolving computer industry.
- and observation systems
- diverse sources requires a skilled workforce

www.nasa.gov