
 

    

September 2015 

NASA/CR–2015-218802 

 

 
 

Understanding and Evaluating Assurance Cases 

 

John Rushby 

SRI International, Menlo Park, California 

 

Xidong Xu, Murali Rangarajan, and Thomas L. Weaver 

The Boeing Company, Seattle, Washington 

 

 

 

 

 

 

 

 

 

https://ntrs.nasa.gov/search.jsp?R=20160000772 2019-08-31T04:45:41+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42701034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NASA STI Program . . . in Profile 
 

Since its founding, NASA has been dedicated to the 

advancement of aeronautics and space science. The 

NASA scientific and technical information (STI) 

program plays a key part in helping NASA maintain 

this important role. 

 

The NASA STI program operates under the auspices 

of the Agency Chief Information Officer. It collects, 

organizes, provides for archiving, and disseminates 

NASA’s STI. The NASA STI program provides access 

to the NTRS Registered and its public interface, the 

NASA Technical Reports Server, thus providing one 

of the largest collections of aeronautical and space 

science STI in the world. Results are published in both 

non-NASA channels and by NASA in the NASA STI 

Report Series, which includes the following report 

types: 

 

 TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase of 

research that present the results of NASA 

Programs and include extensive data or theoretical 

analysis. Includes compilations of significant 

scientific and technical data and information 

deemed to be of continuing reference value. 

NASA counter-part of peer-reviewed formal 

professional papers but has less stringent 

limitations on manuscript length and extent of 

graphic presentations. 

 

 TECHNICAL MEMORANDUM.  

Scientific and technical findings that are 

preliminary or of specialized interest,  

e.g., quick release reports, working  

papers, and bibliographies that contain minimal 

annotation. Does not contain extensive analysis. 

 

 CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored 

contractors and grantees. 

 CONFERENCE PUBLICATION.  

Collected papers from scientific and technical 

conferences, symposia, seminars, or other 

meetings sponsored or  

co-sponsored by NASA. 

 

 SPECIAL PUBLICATION. Scientific, 

technical, or historical information from NASA 

programs, projects, and missions, often 

concerned with subjects having substantial 

public interest. 

 

 TECHNICAL TRANSLATION.  

English-language translations of foreign 

scientific and technical material pertinent to  

NASA’s mission. 

 

Specialized services also include organizing  

and publishing research results, distributing 

specialized research announcements and feeds, 

providing information desk and personal search 

support, and enabling data exchange services. 

 

For more information about the NASA STI program, 

see the following: 

 

 Access the NASA STI program home page at 

http://www.sti.nasa.gov 

 

 E-mail your question to help@sti.nasa.gov 

 

 Phone the NASA STI Information Desk at   

757-864-9658 

 

 Write to: 

NASA STI Information Desk 

Mail Stop 148 

NASA Langley Research Center 

Hampton, VA 23681-2199 



 

National Aeronautics and  

Space Administration 

 

Langley Research Center  Prepared for Langley Research Center 

Hampton, Virginia 23681-2199 under Contract NNL13AC55T 
    

September 2015 
 

NASA/CR–2015-218802 

 

 
 

Understanding and Evaluating Assurance Cases 

 

John Rushby 

SRI International, Menlo Park, California 

 

Xidong Xu, Murali Rangarajan, and Thomas L. Weaver 

The Boeing Company, Seattle, Washington 

 

 
 

 

 

 



 

 

 

Available from: 

 

NASA STI Program / Mail Stop 148 

NASA Langley Research Center 

Hampton, VA  23681-2199 

Fax: 757-864-6500 

 

Acknowledgments 

We gratefully acknowledge the guidance of C. Michael Holloway, NASA’s technical 

representative for this task, and particularly thank him for his constructive feedback on 

earlier versions of this report. Patrick Graydon of NASA supplied several helpful insights 

and references. 

 

We are also grateful for invaluable information on the history and evolution of assurance 

cases provided by Robin Bloomfield of Adelard and City University, and by Tim Kelly 

and John McDermid of the University of York, and we also thank them for their 

information and insight on current practices. 

 

We also greatly benefited from discussions with researchers and practitioners at recent 

Dagstuhl and Shonan workshops on software assurance. 

 

 

 

 

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an 

official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and 

Space Administration. 

 

 

 

 

 

 

 

 

 



Abstract

Assurance cases are a method for providing assurance for a system by giving an
argument to justify a claim about the system, based on evidence about its design,
development, and tested behavior.

In comparison with assurance based on guidelines or standards (which essentially
specify only the evidence to be produced), the chief novelty in assurance cases is
provision of an explicit argument. In principle, this can allow assurance cases to be
more finely tuned to the specific circumstances of the system, and more agile than
guidelines in adapting to new techniques and applications.

The first part of this report (Sections 1–4) provides an introduction to assurance
cases. Although this material should be accessible to all those with an interest
in these topics, the examples focus on software for airborne systems, traditionally
assured using the DO-178C guidelines and its predecessors. A brief survey of some
existing assurance cases is provided in Section 5.

The second part (Section 6) considers the criteria, methods, and tools that may
be used to evaluate whether an assurance case provides sufficient confidence that
a particular system or service is fit for its intended use. An assurance case cannot
provide unequivocal “proof” for its claim, so much of the discussion focuses on the
interpretation of such less-than-definitive arguments, and on methods to counteract
confirmation bias and other fallibilities in human reasoning.



ii



Contents

List of Figures v

Executive Summary 1

1 Introduction 9

2 Assurance Cases in a Historical Perspective 13
2.1 Early Industrial Regulations and Codes . . . . . . . . . . . . . . . . 13
2.2 Civil Aviation Regulations and Guidelines . . . . . . . . . . . . . . . 15
2.3 Safety Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Structured Safety Cases . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Assurance Case Principles 23
3.1 A Software Assurance Case . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Derived Requirements . . . . . . . . . . . . . . . . . . . . . . 44
3.2 A System Assurance Case . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Assurance Cases and Accident Causation Models . . . . . . . . . . . 52

4 Assurance Case Notations and Tools 55
4.1 CAE: Claims-Argument-Evidence . . . . . . . . . . . . . . . . . . . . 55

4.1.1 CAE Building Blocks . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 CAE Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 GSN: Goal Structuring Notation . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Modularity and Patterns in GSN . . . . . . . . . . . . . . . . 65
4.2.2 Assured Safety Arguments . . . . . . . . . . . . . . . . . . . . 67
4.2.3 GSN Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Other Approaches, Notations, and Tools . . . . . . . . . . . . . . . . 70
4.3.1 DEOS and Related Work in Japan . . . . . . . . . . . . . . . 70
4.3.2 Interchange Formats . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Relation to Formal Methods . . . . . . . . . . . . . . . . . . . 72
4.3.4 Assurance Case Workflows . . . . . . . . . . . . . . . . . . . 73

5 Survey of Some Existing Assurance Cases 75
5.1 Eurocontrol Whole Airspace ATM . . . . . . . . . . . . . . . . . . . 76
5.2 The EUR RVSM Pre-Implementation Safety Case . . . . . . . . . . 77
5.3 ACAS II Post-Implementation Safety Case . . . . . . . . . . . . . . 77
5.4 Nimrod Safety Case; Phases 1, 2, and 3 . . . . . . . . . . . . . . . . 78
5.5 London Underground Railway Safety Case . . . . . . . . . . . . . . 78
5.6 Tube Lines’ Contractual Safety Case . . . . . . . . . . . . . . . . . . 79
5.7 Idaho National Laboratory Advanced Test Reactor Probabilistic Risk

Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.8 Tokamak Fusion Test Reactor Deuterium-Tritium Campaign . . . . 80
5.9 Joint European Torus Deuterium-Tritium Operation . . . . . . . . . 80

iii



5.10 The Safety Case for the use of Fuel Elements and Stringer Compo-
nents having Sleeves and Retaining Rings made from Graphite Pro-
duced with Bilbaina Binder Pitch . . . . . . . . . . . . . . . . . . . 81

5.11 Development of a Safety Case for the Use of Current Limiting Devices
to Manage Short Circuit Currents on Electrical Distribution Networks 81

5.12 Project Opalinus Clay . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.13 Scottish Power Process Safety Management . . . . . . . . . . . . . . 82
5.14 Towards an Assurance Case Practice for Medical Devices . . . . . . 83

6 Assurance Case Evaluation 85
6.1 Assurance Cases and Argumentation . . . . . . . . . . . . . . . . . . 85

6.1.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.1.2 Defeasible Logic . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.3 Inductive and Toulmin-Style Arguments . . . . . . . . . . . . 91
6.1.4 Argumentation and Dialectics . . . . . . . . . . . . . . . . . . 94

6.2 Assessing the Soundness and Strength of an Assurance Case . . . . . 95
6.2.1 What Assurance Case Assessment Must Accomplish . . . . . 95
6.2.2 How Assurance Case Assessment Might Be Performed . . . . 101
6.2.3 Graduated Assurance . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusion 109

References 113

iv



List of Figures

1 Structured Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Argument in Simple Form . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Objectives/Subclaims from Section 6.3.1 and Table A-3 of DO-178C 26
4 Converting an Argument from Free to Simple Form . . . . . . . . . . 38
5 Generic CAE Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6 CAE Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7 GSN Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8 GSN Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9 Assurance Claim Points in GSN . . . . . . . . . . . . . . . . . . . . . 68
10 Toulmin’s Model of Argument . . . . . . . . . . . . . . . . . . . . . . 92
11 Flattening an Argument by Eliminating Subclaims . . . . . . . . . . 100

v



vi



Executive Summary

We build systems and artifacts to provide benefit, but sometimes they go awry and
cause unintended harm. This may be due to some unanticipated circumstance, a
flaw in design, or a failure in some component. Accordingly, in addition to the
system itself, we must deliver assurance that it will not do harm.

In the limit, it would seem that we must think of all the circumstances the
system will encounter and everything that could possibly go wrong or fail, and then
provide reasons and evidence for believing that no harm will ensue. The difficulty
lies in the words “all circumstances it will encounter” and “everything that could go
wrong.” We must explore these potentially infinite spaces with only finite resources
(and in general it seems reasonable to expend resources in proportion to risks) so
the challenge of assurance is to deliver maximally credible (and retrospectively true)
reasons and evidence for believing the system will do no harm, while recognizing
that it cannot provide an absolute guarantee.

Early methods of assurance had a retrospective basis: accidents and incidents
were investigated, and methods and practices promulgated to prevent their recur-
rence. Assurance then meant ensuring and documenting that all appropriate meth-
ods and practices had been applied. Some industries (e.g., medicine and law) have
yet to take these first steps but, when applied diligently (as in building codes, for
example), the approach is effective. Its limitation, however, is obvious: it is fo-
cused on the past and does nothing to anticipate and eliminate new ways of going
wrong—and this becomes a dominant concern as systems become more complex and
innovative, and less similar to their predecessors.

Accordingly, methods of assurance in advanced engineering industries have be-
come less prescriptive and more focused on what must be accomplished, rather than
how to do it. In safety-critical software, for example, it is generally required that
there should be an orderly development process that results in a hierarchical elab-
oration of requirements, specifications, and executable code, and some evidence of
consistency across these levels. Different industries codify their expected or rec-
ommended assurance practices in various standards and guidelines. The current
guidelines for software on commercial airplanes, for example, are presented in a
document known as DO-178C [102], which describes 71 different “objectives” that
must be accomplished for assurance of the most critical software.

There are, however, retrospective and prescriptive elements even to guidelines
such as these: they codify best practices and collective wisdom, but these are based
on experience with previous systems and methods, and may not anticipate the novel
hazards of new systems, nor the potential benefits of new methods for assurance.
Guidelines such as DO-178C do allow “alternative methods,” but require a rationale
that assurance objectives will be satisfied. This is challenging because DO-178C does
not provide an explicit rationale for its own methods.

Recent approaches to assurance focus directly on this idea of a rationale: in
addition to evidence about the system, we are required provide a rationale that ex-
plains why this collection of evidence provides adequate assurance. Such a rationale
could take many forms, from a narrative description to a point by point examina-

1



tion of alternatives and justification of decisions. The approach that has gained
favor presents the rationale in the form of a “structured argument,” and the overall
approach is then referred to as a (structured) Assurance Case.

C

AS1

SC

E E

AS

2 3

2

E1 1

Figure 1. Structured Argument

An assurance case is composed of three
elements: a claim that states the property
to be assured, evidence about the design
and construction of the system, and a struc-
tured argument that the evidence is suffi-
cient to establish the claim. The structured
argument is a hierarchical collection of in-
dividual argument steps, each of which jus-
tifies a local claim on the basis of evidence
and/or lower-level subclaims. A simple ex-
ample is shown to the right, where a claim
C is justified by an argument step AS1 on
the basis of evidence E1 and subclaim SC1,
which itself is justified by argument step
AS2 on the basis of evidence E2 and E3.
(Note that a structured argument may not
be a tree because one subclaim or item of
evidence could support more than one ar-
gument step.)

The question then arises: how do we
know that a given assurance case is sound?
The same question can be asked of guidelines such as DO-178C and one answer is
that these are validated by historical experience: modern airplanes are extraordi-
narily safe and no serious airplane incident has been traced to faulty software (some
have been traced to faulty requirements for systems implemented in software, but
that is outside the remit of DO-178C). But one reason for looking beyond guidelines
and toward assurance cases is to admit new methods of assurance (e.g., static anal-
ysis) and new kinds of systems (e.g., closer integration of air and ground elements
in NextGen), so relevance of the historical record becomes unclear. Another answer
to the effectiveness of DO-178C is that it implicitly incorporates a sound assurance
case: the underlying argument is not made explicit but surely informed the com-
mittee deliberations that produced it. A useful way to examine the relationship
between guidelines and assurance cases is to reconstruct the assurance case implicit
in selected guidelines. Michael Holloway has done this for DO-178C [68] and in this
report we undertake a similar but more localized and discursive exercise as a way
to introduce ideas and issues concerning assurance cases to those who have some
familiarity with existing guidelines.

2



In particular, we examine Section 6.3.1 of DO-178C, which is concerned with
“Reviews and Analyses of High-Level Requirements.” We suggest that the purpose
of these reviews and analyses is to establish the claim that the High-Level Require-
ments (HLR) for the software correctly represent the System Requirements (SR).
The basic argument strategy is to establish that everything in the SR is correctly
specified in the HLR (i.e., nothing is left out, and what is included is correct), and
everything in the HLR is required by the SR (i.e., nothing extraneous is included).
We find objectives in DO-178C Section 6.3.1 that correspond to each of these two
subclaims, but there are also five other objectives—and we ask what is their pur-
pose?

We have already noted that assurance cannot provide absolute guarantees, and
in assurance cases this becomes manifest in the construction and evaluation of ar-
guments, where we expect each step to strongly justify its claim but cannot expect
unequivocal “proof.” Such less-than-definitive argument steps are said to be in-
ductive (in contrast to unequivocal deductive steps). One way to buttress support
for an inductively justified claim could be to provide additional subclaims or evi-
dence that strengthen some aspects of the justification, even though they do not
change its inductive character. These intended strengthenings are called confidence
claims and some of the five “additional” objectives of DO-178C Section 6.3.1 can
be interpreted in this way. For example, the objective “HLR are Verifiable” can
be interpreted as a quality measure on the HLR that increases our confidence that
the primary objectives concerning consistency of SR and HLR can be performed
correctly.

The report considers several ways of organizing an argument around DO-178C
Section 6.3.1 and uses these to examine topics in the construction and interpretation
of assurance case arguments. The top claim in a software assurance case is generally
correctness (of executable object code with respect to system requirements), so we
also examine a simple system assurance case, where the top claim is safety (or, in
general, absence of some specific harm).

Assumptions are an example of a topic that arises in both cases: in a system
case, for example, we may establish safety of some element by arguing that it is
safe in each of its operating “modes”: air, ground, and in transition between these.
But then we need an assumption that there are no other modes and we have to
consider whether subclaims that establish assumptions should be treated differently
than other subclaims—it seems plausible that they should because other subclaims
in an argument step may not “make sense” unless the assumption is true. (A simple
example is that x

y > 3 does not “make sense” unless y 6= 0.) We demonstrate that
since truth of a claim requires all its supporting subclaims to be true, there is little
difference between assumptions and other subclaims, and we could eliminate the
difference by stipulating that each subclaim is interpreted on the supposition that all
the other subclaims in its argument step are true. But this could lead to circularity;

3



a sound compromise is to stipulate that that each subclaim is interpreted on the
supposition that subclaims appearing earlier in its argument step are true. These
issues concerning assumptions exemplify a general weakness we find in formulations
and notations for assurance case arguments: that is, a lack of rigorous semantics.

An assurance case and its argument can be presented in several ways: for ex-
ample, as structured text, in a formal notation, or in graphical form. Two method-
ologies, each with a graphical notation, are widely used: these are CAE (Claims-
Argument-Evidence, developed by Adelard) and GSN (Goal Structuring Notation,
developed at the University of York). The example in Figure 1 uses GSN but the
graphical presentation of CAE is very similar. Where the approaches differ more
substantially is in the focus of their methodologies: CAE places more stress on the
justification for arguments (so the text associated with the argument steps AS1 and
AS2 in Figure 1 could be quite lengthy), while GSN is more focused on structure
(so the overall thrust of an argument might be conveyed by its diagram).

Both methodologies provide guidance and suggested “outlines” for the construc-
tion of good arguments. For CAE, these are called blocks and focus on ways to con-
struct individual argument steps. One way is to decompose a claim into subclaims
(and/or evidence) each of which addresses one element of the decomposition; an
example is the decomposition over “modes” (air, ground, and transition) mentioned
earlier. The CAE methodology identifies many different forms of decomposition
(e.g., by component, property, environment, configuration) as well as other kinds
of building blocks, together with the assumptions (or “side conditions”) required
for them to be valid. Whereas CAE blocks focus on the individual steps of an
argument, GSN provides “patterns” that address complete arguments (or subargu-
ments for large arguments) of various stereotypical forms. Because they address
larger argument fragments, it is more difficult to state the assumptions under which
templates are valid than it is for blocks, so guidance for GSN patterns is given
in the form of “critical questions” that should be considered when adopting and
instantiating a template.

Several tools are available to support various aspects of assurance case develop-
ment and review. All can render an assurance case as a GSN diagram, and one (the
most widely used) also supports CAE. Most also support graphical editing of the
case. The capabilities of the tools that seem most widely used are described in the
report, and others are outlined. Many tools support an interchange format for as-
surance cases called SACM that has been standardized by the Object Management
Group (OMG).

In our opinion, a weakness in both CAE and GSN, and an impediment to trust-
worthy application of assurance cases, is that some aspects of their semantics are
undefined, or are defined by the particular tool employed. One example is the inter-
pretation of assumptions described earlier. Another is support for modular develop-
ment of large arguments. It is impractical for one individual to develop and manage

4



a large assurance case: there must be some way to approach it in a modular fashion
so that those working on one part of the argument need not be concerned with
internal details of another part, yet coherence of the overall case must be ensured.
GSN does provide constructs for modularity (e.g., an “away goal” is a reference to
a subclaim defined elsewhere) but we are not convinced that all necessary details
are attended to. For example, it is critical that those who define a subclaim and
those who use it have the same interpretation of its intended meaning and of the
context in which it may be employed. Context is defined by assumptions so these
should be stated at the point of definition and enforced or checked at the point
of use. GSN does provide general (i.e., not specifically modular) assumption and
justification nodes, and also context nodes, but the exact semantics and intended
interpretation for these are not well defined (and, in the case of context nodes, are
currently subject to debate) and there are no tool-supported checks. Modularity in
CAE is built on that of GSN, so the same concerns apply.

Although the general ideas of assurance cases and structured arguments are
straightforward, safety is all about attention to detail, so we would wish to see lan-
guages and tools that provide clear and comprehensive semantics for the assurance
cases described with their aid. Graphical presentation, support for browsing large
cases, and integration with system development tools, are all highly desirable capa-
bilities, but secondary to precise and unambiguous interpretation for the case that
has been described.

Following this consideration of assurance case principles and tools, the report
next surveys 14 assurance cases where some description is publicly available. Al-
though useful to indicate the wide range of systems for which assurance cases have
been developed, the public information is insufficient to draw substantial conclu-
sions.

Next, the report moves on to the evaluation of assurance cases: how to determine
if an assurance case is sound, credible, and sufficiently strong to justify deployment
of the system concerned. There are really two separate issues here. An assurance
case cannot provide unequivocal proof; it is an inductive argument and there will
inevitably be some uncertainty about some of its elements. The first issue is how
to assess the impact for the overall argument of acknowledged doubt in some of its
elements: we need to be able to tell when the overall argument delivers adequate
assurance, and when some of its steps need to be strengthened with different or
additional evidence or a changed rationale. The second issue is the fallibility of
human judgment in performing these assessments: primarily, this means finding
ways to counter the human tendency for “confirmation bias.”

A fundamental difficulty is that there is no really satisfactory nor generally
agreed approach for assessing inductive arguments. However, the report does explore
some of the candidates. For deductive arguments, logic provides the criterion for

5



evaluation: a deductively sound argument is a proof in some logical system, and we
use this as a benchmark in considering methods for assessing inductive arguments.

An approach developed by Steven Toulmin in the 1950s influenced some of the
pioneers in assurance cases and continues to be widely referenced. We depart from
the general consensus and do not favor the application of Toulmin’s ideas to as-
surance cases. A principle of logic is that the reasoning and the subject matter of
an argument can be treated separately: if I know that A implies B and I know A,
then I can conclude B independently of the meanings of whatever are substituted
for A and B. More generally, if we agree on the premises to a deductive argument
and a conclusion follows by the rules of logic, then we have to accept that conclu-
sion (furthermore, if the premises are true statements about the world, then so is
the conclusion). Toulmin was concerned with arguments in highly contested areas
such as aesthetics or ethics where participants might not agree on premises, and
his approach sacrifices the separation of reasoning from subject matter that is the
hallmark of logic. We think that assurance cases may need to adjust the ideas of
classical logic to accommodate inductive arguments, but should not abandon them.

A completely different approach to the evaluation of assurance case arguments is
to interpret them probabilistically rather than logically. Methods such as Bayesian
Belief Networks (BBNs) or the Dempster-Shafer theory of evidence can be used to
represent causal or conditional relationships among the evidence in a case and then
allow the probability of a claim to be calculated from that of the evidence supporting
it. One objection to this approach is that it can be very difficult to assess credible
probabilities for many items of evidence, and another is that it ignores the rationale
provided by the argument and just looks at the evidence.

There are several proposals that strive to combine probability and logic to yield
“probability logics” but, in our opinion, none are fully satisfactory. Nonetheless, the
approach we advocate does employ such a combination, but in a very simple form
that is tailored to the character of assurance case arguments.

First, we note that by introducing additional subclaims if necessary, it is straight-
forward to convert an argument into a simple form where each argument step is
supported either by subclaims or by evidence, but not by a combination of the two.
In Figure 1, for example, step AS2 is supported by evidence alone, but AS1 is sup-
ported by a combination of evidence (E1) and subclaims (SC1) and is therefore not
in simple form; it can be converted to simple form by introducing a new subclaim
and argument step above E1 as shown in Figure 2. Argument steps supported by
subclaims are called reasoning steps, while those supported by evidence are called
evidential steps; the two kinds of step are interpreted differently.

Evidential steps are interpreted epistemically : they are the bridge between our
concepts (expressed as subclaims) and our knowledge of the world (recorded as
evidence). Informally, the combination of evidence supplied in the step (which
may include confidence items) is “weighed in the balance” to determine whether it

6



crosses some threshold that allows the subclaim to be treated as a “settled fact.”
More formally, this process can be framed in terms of probabilities and undertaken
with BBNs using ideas from Bayesian Epistemology. Graduated assurance, where
stronger or weaker—but related—arguments are used for elements that pose differ-
ent degrees of risk (as in the Software Levels of DO-178C), can be accommodated
by raising or lowering the bar on the “weight” required for evidential steps.

C

RS

ES

SC

E

SC

EE

ES

N

N

321

2

1

1

Figure 2. Argument in Simple Form

Reasoning steps are interpreted logi-
cally : we must determine if the conjunc-
tion of subclaims in a step deductively en-
tails its claim. A radical element here is the
requirement that this entailment be deduc-
tive, with a consequent side effect that con-
fidence items cannot be used in reasoning
steps.

Our rationale for this is the need to con-
front the second issue mentioned earlier: the
fallibility of human judgment and its ten-
dency to confirmation bias. By requiring
reasoning steps to be deductive, we make
it very clear what the evaluation of these
steps must accomplish. In contrast, there
is no clear criterion for evaluating inductive
reasoning steps and a consequent tempta-
tion to add confidence items “just in case,”
thereby complicating the argument and its
evaluation for an uncertain benefit.

Confirmation bias is the human ten-
dency to seek information that will confirm a hypothesis, rather than refute it.
The most effective counterbalance to this and other fallibilities of human judgment
is to subject assurance cases to vigorous examination by multiple reviewers with
different points of view. Tools can assist this process by facilitating browsing and
exploration of a case and by recording what has been examined and any comments
made. More challenging reviews could entail active probing of a case and “what-if”
explorations. Tools can assist this if the reasoning steps are supported by theorem
proving (which is feasible if these steps are deductive) and the report outlines the
ideas of defeasible reasoning, which can be used to “add up” the consequences of
conflicting or inconsistent opinions. Defeasible reasoning can be valuable in time-
constrained contexts where it is necessary to use whatever information is available,
but for assurance cases we think it is essential to resolve conflicting opinions and to
achieve consensus on the true state of affairs, rather than to somehow “add up” the
differences. However, defeasible reasoning provides the useful concept of a defeater ;

7



in an assurance case this would be a reason for doubting that the subclaims to a
reasoning step really do entail its claim, or that the evidence cited in an evidential
step has adequate “weight.” Defeaters to an argument are rather like hazards to
a system; thus, a systematic and potentially effective way to review assurance case
arguments is by proposing plausible defeaters for each argument step and checking
that the argument resists each challenge.

We conclude that assurance cases are a natural, attractive, and potentially ef-
fective evolution in methods of assurance. They can be adapted more readily than
standards and guidelines for new kinds of systems and new technologies, and they
can allow more customized allocation of effort. We find some issues in popular no-
tations and tools for assurance case arguments, and in the foundations of inductive
arguments, but prefer this state of affairs to that of current standards and guidelines
where similar issues are masked by absence of an explicit argument. The central is-
sue in all forms of inductive arguments is identifying and managing sources of doubt
or uncertainty; we recommend that uncertainty should be restricted to evidential
argument steps and that the reasoning (or interior) steps of an argument should be
deductive. This is a radical proposal and it remains to be seen whether it is feasible
in practice.

Our largest concern is the degree of independent review that can be applied to
a bespoke assurance case. Conscious search for defeaters to the argument (rather
like hazards to a system) could provide a systematic means of evaluation, but the
number of reviews and reviewers will be fewer than for community-endorsed guide-
lines. We therefore advocate hybrid approaches. In particular, we recommend that
future revisions to guidelines such as DO-178C should be structured as assurance
case templates, and that most assurance cases should be constructed by instanti-
ating and customizing community-endorsed templates, rather than as fully bespoke
developments.

8



1 Introduction

Assurance Cases are a relatively new approach to ensuring safety and other critical
properties, such as security, for complex systems. As systems have become more
complex, so it has become increasingly difficult for standards to specify how to make
them safe. The context, requirements, design, and implementation of each system
are sufficiently distinctive that its safety requires unique consideration. Accordingly,
standards and guidelines for safety evolved from prescriptions on how systems should
be built (e.g., rivet holes should be drilled, not punched), to guidelines on the kinds
of reviews and analyses that should be performed, and the evidence that should be
collected from these. Assurance cases take this a step further and give the developer
freedom to select the analyses that will be performed and the evidence that will be
collected, but require a rationale that justifies the choices made and “makes the
case” that these ensure safety, or other critical property.

The rationale could take many forms and be presented in many ways, but the
approach that has gained favor is that of a structured argument. Such an argu-
ment justifies a claim (about safety or other properties) on the basis of lower-level
subclaims, which are themselves justified on the basis of still lower-level subclaims
and so on, until we reach subclaims that are justified on the basis of observed and
measured evidence. Thus, an assurance case provides a structured argument that
justifies claims about a system on the basis of evidence about its design, implemen-
tation, and other attributes.

This report is about understanding and evaluating assurance cases and is pri-
marily addressed to those concerned with assurance and certification of software for
civil airplanes, but should be accessible to those interested in assurance for almost
any kind of system. Civil airplanes are extraordinarily safe and it is reasonable
to conclude that existing guidelines and practices are effective and should not be
be changed gratuitously. However, the nature and context of airborne software is
changing (e.g., much closer integration with ground systems in NextGen, greater
autonomy, and unmanned vehicles) and techniques for analysis and implementation
are evolving (e.g., ubiquitous static analysis, automated synthesis, and adaptive
systems), so some adjustment seems inevitable. And although present practices are
undeniably effective, we do not really know why they are effective. So one immedi-
ately useful application of assurance cases would be to document the rationale for
existing guidelines and standards prior to making any changes (Michael Holloway is
documenting DO-178C in this way [68]).

However, the main reason for interest in assurance cases is that they seem to be
the way forward: they are the required or preferred method for assurance in several
industries and the idea of a rationale for safety, documented as an argument, has
strong intellectual appeal. The danger is that this appeal may be spurious: the
idea of an argument is attractive, but human reasoning is fallible and may be in-

9



capable of assessing large arguments (and assurance case arguments are typically
huge) in a reliable manner; furthermore, we need to be sure that all stakehold-
ers and participants interpret an assurance case argument in the same way, so we
should have a clear and agreed semantics for them. This last is difficult because no
method of assurance can provide unequivocal guarantees of safety, so an assurance
case argument is inductive—that is, it strongly suggests but does not guarantee its
claim—and there is no generally agreed semantics for inductive arguments. Hence,
a large part of this report is concerned with topics concerning the formulation and
interpretation of inductive arguments.

The structure of this report is the following. The next section provides a his-
torical overview of the evolution of methods of assurance, paying some particular
attention to assurance for airplanes and their software, and concluding with safety
cases, structured safety cases and, finally, assurance cases.

Section 3 introduces the ideas of assurance cases by developing several assurance
case fragments around topics in Section 6.3.1 and Table A-3 of DO-178C, the guide-
lines for airborne software [102]. Some of the discussion involves mind-numbing
detail, but assurance is all about attention to detail so we consider this examination
justified and necessary. Because software and system assurance cases have some-
what different concerns, we then perform a similar examination of a simple system
assurance case.

Section 4 looks at notations and tools for assurance cases. There are two widely-
used graphical notations for assurance cases (CAE and GSN) and we describe these
and tools that support them. The basic notion that an assurance case argument
consists of individual steps that justify claims on the basis of evidence or lower-
level subclaims becomes more complicated when notational constructions needed
to manage large cases are added. These include support for modularity, contexts,
assumptions, and collections of various kinds of assurance case fragments or outlines
that can guide development of a new case.

Section 5 provides a brief survey of some existing assurance cases. Although it
indicates the wide range of systems for which assurance cases have been developed,
the public information available about these cases is insufficient for the survey to
draw substantial conclusions.

Section 6 considers how to evaluate the soundness and strength of an assur-
ance case and how to determine whether it provides sufficient confidence to deploy
the system concerned. There are both technical and human factors here. Techni-
cal factors concern semantics: that is, the meaning ascribed to an assurance case.
We review the ideas of classical logic, since these underpin “deductive” arguments.
However, assurance case arguments are often inductive rather than deductive (i.e.,
they strongly suggest their claim is true, but cannot prove it) and so we examine
alternatives to classical logic such as Toulmin’s approach, and those that combine
logic and probability.

10



Human factors in assurance case evaluation concern fallibilities of human reason-
ing and the danger of “confirmation bias,” which is the tendency to seek information
that confirms a hypothesis, rather than challenges it. The most effective way to
counteract these seems to be the “wisdom of crowds,” that is the scrutiny of many
reviewers having different points of view. The academic topics of argumentation,
dialectics, and defeasible logic contribute techniques for probing and resolving con-
tested arguments and we review some of these ideas. In particular, we describe the
idea of a “defeater.” A defeater to an argument is rather like a hazard to a system:
that is, a reason why it might go wrong. A systematic search for plausible defeaters
may be an effective way to probe an assurance case and counteract the influence of
confirmation bias.

Finally, Section 7 presents our conclusions. We are broadly supportive of the
aims and methods of assurance cases but critical of some aspects of their notations
and of the lack of agreed semantics for inductive arguments. We propose such a
semantics in which the evidential leaves of an argument are “weighed” (which can be
formalized using ideas from Bayesian Epistemology) to ensure that support for their
claim exceeds some threshold, and the interior reasoning steps of the argument are
interpreted in classical, deductive logic. This locates all uncertainty in the evidential
steps; the interior steps are like a proof. This proposal raises the bar on the interior
part of an assurance case argument, which in current practice is expected to be
merely inductive. It remains to be seen if it is feasible to apply the proposal in
practice, and whether it finds acceptance.

Our main reservations concern the trustworthiness of fully custom (i.e., “be-
spoke”) assurance cases that are likely to receive little independent review. Apart
from its developers, such a case may be reviewed only by those responsible for reg-
ulation or certification of the system concerned. Despite responsible diligence, this
may be insufficient to overcome the propensity for confirmation bias. Accordingly,
we recommend that the outline structure of an assurance case should be derived from
intensively scrutinized community-endorsed templates that distill best practice and
lessons of history, rather in the way that guidelines and standards do today.

11



12



2 Assurance Cases in a Historical Perspective

Safety has been a consideration in the design and construction of human artifacts
since their very beginning. The earliest regulations, from Babylon in about 1772
BC, focused on product liability and appropriate penalties for failure.

“If a builder build a house for some one, and does not construct it
properly, and the house which he built fall in and kill its owner, then
that builder shall be put to death” [54, Section 229].

Regulations and methods for safety assurance have changed over the years and
we describe some of their development in the following sections. We begin in Section
2.1, with an outline of their evolution during the 19th century then, in Section 2.2,
describe recent and current regulations and methods for safety assurance in civil
aviation, particularly airborne software. This report is primarily written for those
concerned with airborne software and some of its material (particularly Section 3)
assumes some familiarity with practices in this field, so Section 2.2 may serve to in-
troduce these practices and their terminology to readers with different backgrounds.
The final two sections, 2.3 and 2.4, outline the development of safety cases and their
evolution into structured safety cases and assurance cases.

2.1 Early Industrial Regulations and Codes

From their ancient beginnings, civil engineering projects, buildings, and ships re-
mained the largest and most complex engineered products for the next 3,500 years,
up until the beginnings of the Industrial Revolution. With the rise of factories,
workplace safety became a concern, although the motivation was often the value of
lost goods rather than human lives.

“It is said that Napoleon, lacking gunpowder due to a disastrous series
of explosions in his gunpowder factories, decreed that factory owners
and their families should live in their factories” [108].

As the industrial revolution progressed, the safety of its new technologies became
a concern and attention began to be paid to learning the causes and preventing the
occurrence of failures. This was particularly so with high pressure steam engines,
whose boilers were prone to explode. From 1830 to 1837, the United States govern-
ment partially defrayed the costs of research by the Franklin Institute to determine
the causes of steam boiler explosions. This led to a series of reports that developed
some of the relevant science and provided guidelines for the design, construction and
operation of steam boilers, together with recommendations for regulation. Largely
in further response to concerns for boiler safety, the Institution of Mechanical Engi-
neers (IME) was formed in the UK in 1847, and the American Society of Mechanical

13



Engineers (ASME) in the USA in 1880. These societies emphasized the importance
of specialized mechanical knowledge and set about further developing and codifying
this knowledge, and establishing standards.

Due to opposition in political and business quarters, government regulation
lagged these developments. But in the USA, the Steamboat Act of 1852 intro-
duced requirements for hydrostatic testing of boilers and installation of a safety
valve. The act further required that both pilots and engineers be licensed by local
inspectors. An assessment published in 1899 of the comparable UK acts noted that
maximum pressures in boilers used for manufacturing had increased over the previ-
ous 15 years from 80 pounds per square inch to 200 and, in exceptional cases, to 250
or 300 pounds per square inch. Presumably, there were also many more boilers in
use than previously. Yet the number of explosions in the 10 years from 1886 to 1895
was approximately half that in the 10 years from 1866 to 1875 (317 vs. 561) and the
numbers of persons killed was reduced to less than a third (185 vs. 636) [62]. These
improvements were attributed to better design and operation, and better technology
such as use of drilled rather than punched holes for rivets.

We can note that these early laws mostly focused on establishing regimes (often
reinforced by the insurance industry) for inspections and investigations, and these
stimulated the general development and promulgation of know-how. But the laws
also identified specific hazards and required specific means of assurance and mit-
igation (e.g., hydrostatic testing, and release valves). Similar developments took
place in other industries. For example, following an accident at Hartley Colliery in
1862 where 204 miners suffocated underground when the beam of a pumping engine
broke and blocked the only mineshaft and means of ventilation, the UK introduced
legislation requiring that every seam in a mine should have at least two shafts or
outlets [23]. Pennsylvania introduced a similar law in 1869. Here again, we see a
specific hazard and means of mitigation written into law.

Later, however, legislation shifted from such specific mandates toward recogni-
tion of the standards and “codes” being developed by professional organizations.
For example, in 1907, following several deadly boiler explosions, the State of Mas-
sachusetts passed a law that imposed rules based on ASME’s evolving Boiler Code.
The first completed version of the ASME code, which was issued in 1914, was much
more comprehensive than that written into the 1907 law and formed the basis for
laws in other states.1 Over time, the ASME code has developed to comprise more
than 16,000 pages in 28 volumes.

1Even today, not all states have laws on boiler safety; South Carolina passed legislation only in
2005 (without the governor’s signature).

14



2.2 Civil Aviation Regulations and Guidelines

Safety in aviation built on these prior developments in other industries. First, we
should note that although the Wright Brothers were, on 17 December 1903, the first
to achieve controlled flight, their patent dispute with Glenn Curtiss retarded US
aviation at a time when Europe, stimulated by the threat and actuality of war, was
making significant advances. Accordingly, on 3 March 1915, the US congress estab-
lished the National Advisory Commission on Aeronautics (NACA), the predecessor
of NASA, which is the sponsor of this report [8].

By the 1920s, a nascent commercial airline industry was developing, but costs
were high and so were perceived and real risks, and paying passengers were rather
few. To encourage commercial aviation, the Contract Air Mail Act of 1925 autho-
rized the United States Post Office to contract with private airlines to provide feeder
routes into the main transcontinental air mail routes operated by the Post Office it-
self. This stimulated traffic, but aircraft safety, air traffic control (very rudimentary
at that time), and navigation aids remained the responsibility of the private aircraft
manufacturers, airlines, and airports. These parties urged government development
of infrastructure and regulation.

Accordingly, the Air Commerce Act of 1926 charged the Secretary of Commerce
with fostering air commerce, issuing and enforcing air traffic rules, licensing pilots,
certifying aircraft, establishing airways, and operating and maintaining aids to air
navigation. These responsibilities of the Department of Commerce were assigned
to a newly created Aeronautics Branch, which subsequently evolved, through many
reorganizations, renamings, and changes in governing legislation, into the Federal
Aviation Administration (FAA) in 1958. The precursors to the National Trans-
portation Safety Board (NTSB), which is charged with investigating the causes of
aircraft accidents, were also established by the 1926 act.

Aviation in the USA is now regulated under the Federal Aviation Regulations
(FARs), which are part of Title 14 of the Code of Federal Regulations (CFRs). (The
abbreviation FAR is also used for the Federal Acquisition Regulations, which are
Title 48 of the CFRs, but will be used here only in the aviation sense.) The various
Parts of the FARs are grouped into subchapters, of which we are mostly interested
in certification requirements for aircraft, found in Subchapter C and, within that,
the sections that are interpreted to apply to software; however increasing integration
between on-board and ground systems under NextGen means that airborne software
may also be subject to air traffic control and flight rules, which are in Subchapter F.
Within Subchapter C, the airworthiness regulations for transport aircraft constitute
Part 25 of the FARs; regulations for smaller aircraft constitute part 23 and those
for normal and transport rotorcraft are found in Parts 27 and 29, respectively.

The FARs are terse; interpretation of the regulations and descriptions of “ac-
ceptable means of compliance” are generally issued as Advisory Circulars of the

15



FAA. In particular, software is not mentioned in the FARs; Section 25.1309, titled
“System Design and Analysis” and less than a page in length, states requirements
on “systems” that are interpreted to flow down as the governing regulations for soft-
ware assurance. These are elaborated somewhat in AC 25.1309, which is the advi-
sory circular corresponding to FAA 25.1309. The European Aviation Safety Agency
(EASA) Certification Specifications CS 25 are largely harmonized with FAR 25, and
its acceptable means of compliance are collected as AMC 25.2 CS 25.1309 and AMC
25.1309 are the EASA equivalents of FAR 25.1309 and AC 25.1309, respectively.

The essence of FAR 25.1309 is that system failures that could have really bad
consequences must be very rare, and no single failure should be able to cause the
worst (“catastrophic”) consequences. AC 25.1309 elaborates these to require an
inverse relationship between the probability and severity of failure conditions and
provides definitions for the various severities and their acceptable probability. Most
critically, “catastrophic” failure conditions are those “which could prevent continued
safe flight and landing” and these must be “extremely improbable” which means they
are “so unlikely that they are not anticipated to occur during the entire operational
life of all airplanes of one type.”

When a new aircraft type is submitted for certification, the certification authority
(in the United States, this is the FAA), in consultation with the applicant (i.e.,
the airframe manufacturer), establishes the certification basis, which defines the
applicable regulations together with any special conditions that are to be imposed.3

The applicant then proposes a means of compliance that defines how development
of the aircraft and its systems will satisfy the certification basis.

For some aspects of software, industry standards are recognized as acceptable
means of compliance for FAR 25.1309. For example, AC 20-174 “recognizes the
Society of Automotive Engineers (SAE) Aerospace Recommended Practice (ARP)
4754A, Guidelines for Development of Civil Aircraft and Systems, dated December
21, 2010, as an acceptable method for establishing a development assurance pro-
cess,” and AC 20-115C “recognizes. . . RTCA DO-178C, Software Considerations in
Airborne Systems and Equipment Certification, dated December 13, 2011. . . as an
acceptable means of compliance for the software aspects of type certification.”

SAE, mentioned above in connection with ARP 4754A, was founded in 1905 as
the Society of Automobile Engineers, but generalized its remit and name in 1916
to the Society of Automotive Engineers and now covers both aerospace and au-
tomobile engineering. RTCA, mentioned above in connection with DO-178B (DO
stands for Document Order), was founded in 1935 as the Radio Technical Com-
mission for Aeronautics and is used as a Federal advisory committee, meaning that
in response to requests from the FAA it establishes committees to develop rec-

2CS 25 and AMC 25 are issued as separate books within a single document [40].
3An example of a special condition is one for the Boeing 787 concerning protection of its system

and data networks [43].

16



ommendations and guidelines for the federal government. RTCA states that “our
deliberations are open to the public and our products are developed by aviation com-
munity volunteers functioning in a consensus-based, collaborative, peer-reviewed en-
vironment.” EUROCAE, founded in 1992 as the European Organization for Civil
Aviation Equipement, serves EASA as the European counterpart to RTCA. EURO-
CAE and RTCA generally establish parallel committees that meet jointly and issue
parallel documents: for example, EUROCAE ED-12C (ED stands for EUROCAE
Document) is the same as RTCA DO-178C.

In later sections of this report, we will examine part of DO-178C in some detail
and discuss its relationship to assurance cases. Here, however, we briefly recount
the evolution of DO-178C from earlier versions of the guidelines.

Johnson [74] states that aircraft software was originally seen as an adjunct to
mechanical and analog systems and was assessed for safety in the same way as
those systems. That is, failures were attributed to components and the reliability of
components was established by statistical testing. But during system certifications
in the late 1970’s, it became evident that software was achieving sufficient complexity
that design errors should be a concern.

The original DO-178, which was issued in 1982, aimed to document “best prac-
tices” for establishing that software is safe and does not contribute to the system
hazards. It allowed that a system’s software development rigor could vary by the
system failure severity: a system could be categorized as critical, essential or non-
essential. DO-178 also established the need for a certification plan that included
software aspects. Johnson states that DO-178 was written at a “conceptual” level
and that compliance was achieved by meeting its “intent.”

DO-178A, which was issued in 1985, was quite different to the original DO-
178 and built on lessons learned with that document. Its purpose was to establish
techniques for orderly software development with the intent that their application
would produce software that is documented, traceable, testable, and maintainable.
Three software “levels” were established, with the greatest assurance effort required
for Level 1 and the least for Level 3; these levels were to be determined by considering
the possible effects of malfunctions or design errors, with adjustment according to
the system design and implementation techniques (thus, software in an “essential”
system need not all be at Level 1).

Johnson [74] states:

“Strengths and weaknesses of DO-178A soon became apparent. Literal
interpretation, particularly from diagrams were a problem. Also, nec-
essary certification submittal items were frequently contended despite
the fact that they were subject to negotiation with the regulatory agen-
cies and could vary between agencies. Misuse included non-allowance of
life cycles other than the traditional waterfall model and non-existence

17



of documents not identified as ‘required.’ Contention also arose on the
required certification effort.

“In general, the knowledge of why the certification requirements existed
and the purpose of the requirements failed to be understood or appreci-
ated.”

The next revision, DO-178B, appeared in 1993. According to Johnson [74], a
major motivation was to reduce dependence on the few software certification experts
by documenting practice and policy. The failure categories were increased from three
to five, and the related software levels were likewise increased to five and renamed
Level A (the highest) through Levels B, C, D, to E.

DO-178B does not specify how software development and assurance should be
performed, but it does specify that these should include certain activities, such as
reviews and testing, should produce certain documents, such as plans for various
aspects of development and assurance, descriptions of requirements and designs
and so on, and that there must be strong configuration management that includes
traceability from requirements to code and tests. In all, DO-178B describes 66
“objectives” of this kind and requires that all of them must be applied to Level A
software, 65 of them to Level B, 57 to Level C, and 28 to Level D. Furthermore, at
each level, it requires that some of the objectives are performed “with independence”
from the development team.

DO-178B was used quite extensively but there was substantial evolution in soft-
ware development and assurance practices in the years following its introduction.
These included object-oriented methods and languages, model-based software en-
gineering, formal methods and so on. In principle, these could be accommodated
under DO-178B because its Section 12.3 allows the use of “alternative methods.”
The most challenging of the guidance items for such methods is the requirement for
a “rationale for use of the alternative method which shows that the system safety ob-
jectives are satisfied” [101, Section 12.3.b(3)]. This is challenging because DO-178B
does not provide an explicit rationale for its own methods.

Accordingly, a committee was established to update DO-178B; following more
than five years of deliberation, DO-178C was issued in 2011 [102]. This revision
makes few substantive modifications to the text of DO-178B, but adds four sup-
plements that address “Software Tool Qualification Considerations” [103], “Model-
Based Development and Verification” [104], “Object-Oriented Technology and Re-
lated Techniques” [105], and “Formal Methods” [106]. One notable modification
to DO-178B occurs in Section 12.3, where DO-178C adds “one technique for pre-
senting the rational for using an alternative method is an assurance case, in which
arguments are explicitly given to link the evidence to the claims of compliance with
the system safety objectives.” We now turn to the origins of safety and assurance
cases.

18



2.3 Safety Cases

The approach to assuring safety that eventually developed into the notion of an
assurance case had its origins in the basic notion of a “safety case” or “safety report,”
whose precursors had developed in several industries, but were given impetus by
the report in 1972 of a committee appointed by the UK government to consider the
broad topic of health and safety law [107]. This report, often referred to as “The
Robens Report” after its chairman, Lord Robens, recommended a rather radical
change in the approach to safety. First, it argued that those who create risks are
responsible for controlling them: this points away from government mandates and
toward some element of self-regulation. Related to this was the idea that regulations
should set goals, rather than prescribe methods and solutions. Second, it argued
that standards for safety should be “reasonably practicable,” that is, controls should
be commensurate with risk and cost must be taken into account. The Robens Report
laid the foundation for subsequent UK legislation (The Health and Safety at Work
Act, 1974) and set the tone for much future thinking on the topic.

The Robens Report was not prompted by any recent disasters but shortly af-
terwards, in 1974, a major accident at a chemical plant in Flixborough killed 28
people and injured many more. The newly-created UK Health and Safety Exec-
utive drafted a set of regulations that required hazardous installations to develop
what, in essence, would be a safety case. But before those regulations could be
enacted there was another major accident, at Seveso in Italy, that released a large
quantity of dioxin into the atmosphere. The European Community issued a direc-
tive that was based on the prior British work and required production of a “safety
report” demonstrating adequate consideration of dangerous substances, potential
accidents and provision of effective safety management systems.

Then, in 1988, an explosion on the Piper Alpha North Sea oil production plat-
form killed 167 people. Despite the 1974 legislation, safety in the offshore oil and
gas industry was still governed by a pre-Robens “Permit To Work” approach. The
inquiry into this disaster, conducted by Lord Cullen [22], reviewed and endorsed
the approach of the Robens Report and recommended adoption of goal-based safety
cases. This was done and, within a decade, reportable offshore industry accidents
in the UK had declined by more than 75%.

It should be noted that all the accidents just described were in process indus-
tries and the notion of safety case that was promulgated by the various reports,
regulations, and legislation was largely driven by experience in those and similar
industries. The purpose of the shift from prescriptive approaches to safety cases
was to eliminate a “check the box” mentality on the part of “duty holders” and
to foster a safety culture in which they took responsibility for understanding and
controlling hazards.

19



The details of what constituted a safety case varied across the different industries
and regulation, but would generally include the following topics [72]:

1. The system or activity being addressed, together with details of its scope,
context or environment.

2. The management system used to ensure safety.

3. Evidence that risks have been identified and appropriately controlled, and that
the residual level of risk is acceptable.

4. The requirements, legislation, standards and policies applicable, with evidence
that they have been met or complied with.

5. Independent assurance that evidence presented is sufficient for the application
in question.

The management system (item 2 above) is often the main safety concern in
process industries, although design of the plant is obviously also important. In other
industries, the roles are reversed and design is the dominant issue. For example, the
UK nuclear power industry has been using safety cases for design since the 1950s
(following the Windscale accident in 1957) and was required to do so by legislation
introduced in 1965. The essence of a safety case for the design of a nuclear plant
would be a “narrative” about the design and its rationale. In the USA, similar
documents were required as a “Pre-Construction Safety Report” (PCSR). As designs
became more complex, limitations became apparent in the narrative style of safety
case presentation, and this led to the development of more structured styles.

2.4 Structured Safety Cases

In the late 1970s, the UK was considering switching from its indigenous Advanced
Gas Cooled Reactor design (whose construction was plagued by overruns and delays)
to the US Pressurized Water Reactor design, which employed more computer-based
functions, including the safety-critical shutdown system. Engineers working on the
UK safety case realized they did not have a good way to incorporate computer
systems into the case. To resolve this, they developed the idea of a “structured
safety case,” whose key innovation was to require that there be an argument to
explain how the evidence in the case ensured satisfaction of the goals.

This approach gained some acceptance in the nuclear industry in Europe and,
more extensively, in the UK, where it was incorporated in a number of policy ini-
tiatives through the 1980 and 1990s [9]. The generic term argument embraces a
wide range of rigor in organization, presentation, and overall coherence. Despite ex-
hortations that safety case arguments should be “convincing and valid,” they were

20



typically presented in linear prose that was difficult to review. Writing in 1995,
Wilson, Kelly and McDermid [129] reported

“In studying industrial safety cases we have invariably found it necessary
to annotate and cross reference them, in order to ‘pull out’ the struc-
ture and argument. Often the result was the discovery of a convincing
argument—but the onus on discovering the argument was on the reader.”

Accordingly, the interpretation of “structured safety case” was sharpened during
the 1990s to require that the argument itself should be “structured” [9]. Some of
those working on these topics drew on the work of Stephen Toulmin [121] and on
techniques for “diagramming” arguments that had developed in the humanities and
law (e.g., Wigmore Diagrams [100]) and it was from these developments that the
current notion of a structured safety case and its attendant notations and tools
emerged.

The key elements of a structured argument are a clear separation between the
high level argument and its supporting evidence [130], and the expectation that the
high level argument should be structured in a hierarchical fashion around “claims”
(or “goals”) each of which is justified by a “warrant” (or “strategy”) based on
evidence or lower-level claims [9]. The structure of the argument can be displayed
visually (see, for example, Figures 6 or 8 on Pages 57 and 64, respectively) as a
graph in which claims and evidence are represented as nodes and each claim has
arcs connecting it via its warrant to its supporting claims and evidence (the graph
will be a tree if each interior claim or item of evidence is used in support of only a
single parent claim).

Some of those advocating structured arguments focussed on diagrammatic pre-
sentations (e.g., the Goal Structuring Notation, GSN [78,130], which is described in
Section 4.2), while others focussed more on its content and the quality of justifica-
tions (e.g., Claims, Argument, Evidence, CAE [1], that is described in Section 4.1),
but these are merely different paths to the same goal, which is to frame assurance
for safety in terms of an argument, based on credible evidence, whose structure is
clear and convincing. Section 3 of this report describes and illustrates topics in the
construction of such arguments.

The developers of early structured safety cases were aware that the argument
could not amount to a “proof” of safety: there are inherent uncertainties and in-
completenesses in the evidence that can be collected (e.g., it is impossible to test
every path in software of even moderate size), and in our knowledge of the system
and its environment. Hence, they looked to the idea of an “inductive” argument to
supply a framework for interpreting their cases. The term inductive is used with
many senses in mathematics and logic: mathematical induction refers to a method
for proving properties over the natural numbers (or, when generalized as Noetherian
Induction, over any well-founded set), while induction in science generally refers to

21



the “process” of inferring a general rule from limited observations. The sense, de-
rived from informal logic, in which it is used here is “reasoning in which the premises
seek to supply strong evidence for (not absolute proof of) the truth of the conclu-
sion” [Wikipedia] (this is in contrast to a deductive argument, where the premises
are intended to prove the conclusion). Unfortunately, there is no generally accepted
method for assessing the “degree of soundness” (the standard term is cogency) of
an inductive argument and so evaluation of safety case arguments is very much a
matter of judgement [70]. Safety standards may stipulate that a case should be
“compelling, comprehensible and valid” [123] but they lack strong guidance on how
these should be assessed. Section 6 of this report examines these topics and, in
particular, explores ideas for providing rigorous underpinnings for the evaluation of
safety case arguments.

The main conclusion we wish to draw from this brief historical review is that
safety cases are merely the most recent step in a steady evolution of methods for
safety assurance that has been driven by increasing complexity and variety in the
systems to be assured. Early methods focussed on specific hazards and stipulated
particular methods of mitigation and development; later, as systems became more
varied and complex, these topics were delegated to developers, who were now re-
quired to produce specified evidence to attest that their responsibilities had been
performed adequately; in a safety case, the delegation is further extended to in-
clude selection of the evidence, and this must be justified by provision of an explicit
argument.

The latest step in this evolution is from safety cases to assurance cases: these
simply generalize the idea of assurance based on a structured argument from claims
focussed on safety to those concerned with other important system properties, such
as security, harm to the environment, or general dependability. Structured safety or
assurance cases are now the required or recommended method of assurance in many
fields. For example, the US Food and Drug Administration requires submissions for
infusion pumps under the “510(k) Premarket Notification” procedure to provide a
safety case [89]. The UK Health Foundation report [59] provides a useful review of
the use of safety cases in six safety-critical industries: commercial aviation, automo-
tive, defense, petrochemical, railways, and medical devices; details of each review
are available online as supplements to the report.

We now proceed to consider assurance case principles, their notations and tools,
and their evaluation. We are concerned primarily with the presentation and evalua-
tion of cases, and not with the safety engineering that underlies their construction.
A useful NASA reference that covers the latter material and integrates it with the
idea of a “Risk-Informed Safety Case” is [32].

22



3 Assurance Case Principles

We have reviewed some of the history leading to the introduction of structured
assurance cases and we now turn to the content and presentation of such cases. The
key idea is that a structured assurance case is composed of three elements: a claim
that states the property to be assured, evidence about the design and construction of
the system, and an argument that the evidence is sufficient to establish the claim.4

It is not enough that all three elements are present: in combination, they must
provide a “compelling, comprehensible and valid case” that a system is safe (or,
more generally, satisfies the property stated in its claim) “for a given application in
a given operating environment” [123].

This framework of claims, argument, and evidence is surely the (perhaps tacit)
intellectual foundation of any rational means for assuring and certifying the safety or
other critical property of any kind of system. However, assurance cases differ from
other means of assurance, such as those based on standards or guidelines, by making
all three components explicit. Standards and guidelines generally specify only the
evidence to be produced; the claims and the argument are unstated, although an
implied argument presumably informed the deliberations of the standards body
concerned, and the claims are often derived from governing legislation or regulation.

A second way in which assurance cases differ from most other ways of assuring
systems is in supporting—indeed requiring—a layered, hierarchical approach. This
is the structure in structured assurance cases and it arises because an argument is
not simply a monolithic narrative from evidence to claims but a series of argument
steps that are chained together: each step uses evidence and lower-level claims to
directly justify its local claim, which is then used by higher-level steps, so that the
overall argument has a tree-like structure (see, for example, Figures 6 and 8). Of
course, the evidence specified in a standards-based approach also can be grouped
hierarchically according to the artifacts it concerns (high-level vs. low-level require-
ments, for example), but the grouping is seldom clean-cut (for example, as we will
see in Figure 3 c , a required item of evidence may concern hardware performance
as well as high-level requirements) and a cleanly layered relationship between the
groups is hard to establish in the absence of an explicit argument.

We will need to examine the hierarchical layering in structured assurance cases
and must also inquire into the nature of claims and evidence, but first we should
explore the content and interpretation of the individual steps of argument within a
case. We will do this by building an assurance subcase around some of the evidence
specified in the guidelines for certification of airborne software, DO-178C [102]; in

4This terminology has become standard in the field of assurance, but what is here called an
argument was traditionally called a warrant and the term argument then referred to the whole
“case” (see, for example, Toulmin [121]).

23



particular, we will use the evidence specified for “Reviews and Analyses of High-
Level Requirements” [102, Section 6.3.1 and Table A-3].

3.1 A Software Assurance Case

For those not familiar with assurance for aircraft software, the next three paragraphs
provide a brief review the overall approach. More detailed, but still brief, overviews
are available [5, 88,111].

The upper levels of airplane development iterate through several levels of system
design and safety analysis and some of these yield System Requirements (SR) for
functions to be implemented in software. The processes leading to definition of the
SR follow guidelines such as Aerospace Recommended Practice (ARP) 4761 [114]
and 4754A [113] to provide assurance that higher-level hazards have been addressed
and that each function will perform correctly and safely if its SR are satisfied.
Assurance for the software that implements a function is accomplished by showing
that it is a correct implementation of the SR, and this is the focus of the DO-178C
guidelines. DO-178C describes 71 assurance “objectives,” that may be required for
airborne software. Not all 71 objectives are required for all software: the more
serious the “failure condition” that could be precipitated by given software, the
more assurance is required. We will return to this topic of “graduated assurance”
and the related notion of “Software Level” at a later stage (see Section 6.2.3) but,
for the time being, we will assume that all the objectives associated with a given
activity must be satisfied (as is the case for “Level A” software).

Most standards-based approaches to software assurance expect software develop-
ment to follow a systematic process that refines the software design through several
levels of intermediate specifications and eventually to executable object code (EOC).
Some guidelines are relaxed about the actual development process and require only
that appropriate intermediate artifacts are produced (possibly as after-the-fact re-
constructions, in the style of Parnas [91]), but the FAA conducts reviews at several
“stages of involvement” during software development [41], so the major planning,
development, and assurance steps do need to be structured and performed in a
manner that is consistent with the expectations of DO-178C.

In DO-178C, the topmost level of software specification constitutes the High-
Level Requirements (HLR), and the claim we wish to make about these is that
they correctly represent the system requirements. This claim will mesh with an
upper-level assurance case that the SR ensure safety, and a lower-level case that
the software correctly implements the HLR, thereby providing a complete assurance
case for safety of the software-implemented function.

To introduce issues that arise in construction of an assurance case, we will now
examine argument steps for the claim that the HLR correctly represents the SR.
DO-178C addresses this topic in its Section 6.3.1 and identifies seven objectives that

24



can be required to discharge this (implicit) claim. DO-178C objectives are not the
same as evidence and do not (in most cases) mandate specific forms of evidence;
instead, they specify what the proffered evidence should accomplish. In the language
of assurance cases, therefore, the objectives of DO-178C correspond to lower level
claims or, as we will call them, subclaims. The relevant subclaims of DO-178C are
shown in Figure 3; we take the “titles” of the subclaims from [102, Table A-3] and
their interpretation (i.e, their MEANS clauses) is paraphrased from [102, Section 6.3.1].
DO-178C does not provide an argument to motivate and justify the selection of these
specific subclaims, so our task is to reconstruct a plausible case. What we will do is
first develop a simple argument that, in retrospect, we will find unsatisfactory. The
purpose of this first argument is pedagogical: it provides a simple context in which
to introduce several relevant topics. We will then construct a second, more refined
argument, and then a third.

We begin by introducing the logical form of an individual argument step. Just
like the full argument of a complete assurance case, individual steps in an argument
establish claims based on evidence; the (sub)claim delivered by one step can be
used as evidence by another, thereby linking the steps together to create the full
argument.

An individual argument step is a little like an inference rule in logic, where truth
of the premises establish truth of its conclusion. A logical rule may involve quite
complex logical relations among its premises, as in the following example.

p1 AND (p2 OR p3) AND (NOT p4) IMPLIES c

In classical logic, the disjunction (p2 OR p3) means that one or the other of p2 and
p3 is true, but we may not know which one (it is also possible that both are true).
In an assurance case argument, however, we expect to establish the truth of each
item of evidence, so disjunctions are inappropriate. Similarly, the logical negation
NOT p4 means that p4 is false and this also is inappropriate when p4 is interpreted as
evidence.6 We conclude that the steps in an assurance case argument always have
the logical form

p1 AND p2 AND · · · AND pn IMPLIES c. (1)

In logic, this form is called a Horn Clause and it has some properties that may
be useful when we come to examine the evaluation of assurance cases.7 Now an
argument is not (just) logic, and to develop more of its attributes we need to shift
from the austere notation of logic to something that allows us to say more about the

6Evidence may establish a negative property such as “this program will generate no runtime
exceptions,” but this is not the same as generating negative evidence for the positive claim “this
software may generate runtime exceptions.”

7The implication is equivalent to NOT p1 OR NOT p2 OR · · · OR NOT pn OR c : i.e., a disjunction
with (at most) one positive term, which is the definition of a Horn Clause [69]; Horn clauses will
be familiar to those who know logic programming languages such as Prolog.

25



SUBCLAIM

a HLR comply with SR

MEANS

Ensure that the system functions to be performed by the software are
defined, and that the functional, performance, and safety-related require-
ments of the system are satisfied by the HLR,. . . 5

SUBCLAIM

b HLR are accurate and consistent

MEANS

Ensure that each HLR is accurate, unambiguous, and sufficiently de-
tailed, and that the requirements do not conflict with each other.

SUBCLAIM

c HLR are compatible with target computer

MEANS

Ensure that no conflicts exist between the HLR and the hard-
ware/software features of the target computer, especially system re-
sponse times and input/output hardware.

SUBCLAIM

d HLR are verifiable

MEANS

Ensure that each HLR can be verified.

SUBCLAIM

e HLR conform to standards

MEANS

Ensure that the Software Requirements Standards were followed during
the software requirements process and that deviations from the standards
are justified.

SUBCLAIM

f HLR are traceable to SR

MEANS

Ensure the functional, performance, and safety-related requirements of
the system that are allocated to software were developed into the HLR.

SUBCLAIM

g Algorithms are accurate

MEANS

Ensure the accuracy and behavior of the proposed algorithms, especially
in the area of discontinuities.

Figure 3. Objectives/Subclaims from Section 6.3.1 and Table A-3 of DO-178C

5The clause concerning “Derived Requirements” is omitted here and will be described later.

26



roles played by its parts. There are several such notations, mostly graphical, but be-
fore describing them we introduce the concepts using a simple textual presentation.
In this form, the basic argument step (1) can be presented as follows.

ARGUMENT name

CLAIM

claim

PREMISES

premise_1 , premise_2 , ..., premise_n

END ARGUMENT

The interpretation here is that if all the premises are true, then truth of the
claim must follow. Implicitly, this a strong or, as we will say, a deductive argument;
a weaker kind of argument is an inductive one in which truth of the premises strongly
suggests, but does not guarantee, truth of the claim. Classical formal logic deals
only with deductive arguments, and exploring suitable treatments for inductive ar-
guments will occupy much of Section 6. Below, we will add the keywords DEDUCTIVE
or INDUCTIVE to make explicit the intended interpretation of each ARGUMENT.

We now turn to formulation of DO-178C Section 6.3.1 as an assurance case
argument; as noted earlier, on Page 24, the claim this section of DO-178C seeks
to justify is that the “HLR correctly represent the SR.” Our first step is to
elaborate what this should mean. Useful clues are given in [102, Section 6.1], which
concerns the “purpose of software verification.” This section says the purpose is
detection and reporting of errors that may have been introduced during software
development, and it lists six attributes that should be verified. Of these, the only
one that concerns both SR and HLR is the following.

6.1.a. The SR allocated to software have been developed into HLR that
satisfy those SR.

Another refers to “software requirements” without specifying whether these are SR,
HLR, or lower-level requirements:

6.1.d. The Executable Object Code satisfies the software requirements
(that is, intended function), and provides confidence in the absence
of unintended functionality.

Drawing on these, we can identify two properties that constitute the top-level
claim: everything in the SR is correctly represented in the HLR, and there is nothing
in the HLR that does not come from the SR. We can document this as follows.

27



1CLAIM

HLR correctly represent SR

MEANS

(i) All the functionality and properties required by the SR are specified
correctly in the HLR and (ii) there is no functionality specified in the
HLR that is not required by the SR.

END

When we look at the subclaims offered by DO-178C in Figure 3, we see that
the first a “HLR comply with SR” closely matches (i) above, and that the sixth

f “HLR are traceable to SR” could be interpreted to discharge (ii). Hence our
first argument step looks as follows. At the moment, we do not know whether the
subclaims are sufficient to ensure the claim, so we mark the argument as inductive.

2INDUCTIVE ARGUMENT DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR

END ARGUMENT

Each argument step is expected to be supported by some reason or justification
why the premises are considered to establish the claim. Here, it is the observation
that the two subclaims chosen from DO-178C closely match the two parts of the
claim. We can record this as follows.

3JUSTIFICATION

HLR verification rationale

MEANS

The claim in this argument has two parts: everything in the SR is
correctly specified in the HLR, and everything in the HLR is required
by the SR. The two items of required evidence exactly correspond to
these two parts.

END

Then we link this into the argument by extending 2 with the text marked in
blue.

28



4INDUCTIVE ARGUMENT DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR

JUSTIFICATION

HLR verification rationale

END ARGUMENT

For this justification to be sound, we need to be sure that the text that box 3
cites from box 1 and from a and f of Figure 3 really do bear the interpretations
we are placing on them. Here, we are very reliant on rather terse natural language
descriptions that may be imprecise or even ambiguous. For example, part (ii) of 1
requires there is nothing in the HLR that does not come from (i.e., is not traceable
to) the SR, and the justification 3 states that f provides the evidence to ensure this.
Now, the title of f , “HLR are traceable to SR,” supports this interpretation, but
its body suggests that tracing goes the other way: to ensure that the “requirements
of the system” (i.e., SR) “were developed into the HR”. 8

This kind of difficulty is be expected: DO-178C was not developed with an
explicit argument, and the argument fragment that we are developing here is for the
purpose of illustrating issues and concepts rather than retrospectively constructing
a best justification for Section 6.3.1 of DO-178C. It is not our purpose to criticize
DO-178C, but notice that the mere act of trying to frame an argument around these
topics brought this issue to our attention in a manner that seems reliable, and this
is surely a valuable benefit.

In a real assurance case we would need to resolve the issue concerning traceability
by adjusting either the argument or the meanings attached to its subclaims, but here
we will leave things as they are and press on to related topics. The first of these is
that even when we are satisfied with an argument, we may still have concern that it
amounts to less than definitive proof. This may be because we have doubts about
the strength of the evidence that will be used to discharge some of the subclaims
(e.g., software testing is seldom exhaustive, so it can provide good but not perfect
evidence), or about the validity of an argument step itself. Consequently, we may
wish to require some additional evidence that does not add to the logical inference
that the claim follows from the cited evidence or subclaims, but that increases
our confidence that it does do, or that supplied evidence will truly discharge the
subclaims. (The rough idea is that confidence claims, if true, bolster our belief in
the other subclaims or in the argument but, unlike conventional subclaims, their
falsity does not invalidate the claim.)

8Readers who find it difficult or tedious to follow all the “box” cross-references in this paragraph
will surely agree that tool support for assurance cases must include some form of hypertext browsing.

29



In the current case, it might be that we will have more confidence in the argument
if the HLR satisfies some “quality” measure: this would give us more confidence that
whatever evidence is supplied to satisfy the subclaim “HLR comply with SR” has
at least been working from a “high quality” HLR. Looking at the repertoire of
objectives in Figure 3, we see that b “HLR are accurate and consistent,” d
“HLR are verifiable,” and g “Algorithms are accurate” seem suitable.9

We can then add these items to our argument, but in a subclause that indicates
they are not part of the basic argument, but are there to add to our confidence in
it.

5INDUCTIVE ARGUMENT DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR

JUSTIFICATION

HLR verification rationale

CONFIDENCE

HLR are accurate and consistent,

HLR are verifiable,

Algorithms are accurate

END ARGUMENT

We might also feel more confident if the process of developing the HLR conformed
to suitable standards, as described in Figure 3 e “HLR conform to standards.”
This could be seen as a further contribution to be added to the confidence section of
the argument, but we might alternatively consider it a sufficiently different strand
that it deserves its own heading. We will consider the interpretation to be attached
to confidence and standards claims in 6.2.1, but our opinion is that all these claims
have the same logical standing so the keywords CONFIDENCE and STANDARDS can be
treated as synonyms (or, equivalently, STANDARDS is just a comment labeling some
of the CONFIDENCE claims).

9We stress that in a real assurance case the argument, subclaims, and evidence should be devel-
oped in an integrated manner, not selected “off the shelf”; we are doing so here simply to illustrate
the components of arguments.

30



6INDUCTIVE ARGUMENT DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR

JUSTIFICATION

HLR verification rationale

CONFIDENCE

HLR are accurate and consistent,

HLR are verifiable,

Algorithms are accurate

STANDARDS

HLR conform to standards

END ARGUMENT

We have now used six of the seven objectives of Figure 3 as subclaims in our
argument; this argument concerns the relationship between the SR and HLR and
it is therefore to be expected that its subclaims concern one or the other, or both,
of these artifacts. The remaining objective of Figure 3, c “HLR are compatible

with target computer,” is rather different in that it refers to an “outside” artifact,
namely the “target computer.”

The motivation here seems to be one of prudent workflow: the SR and HLR
certainly need to be cognizant of the computational capabilities of the platform that
will execute the developed program, but the details of these capabilities surely are
more properly the focus of later stages of software development, such as architecture
definition, low-level requirements, and coding. On the other hand, it is possible
that one way of formulating the HLR will render them incompatible with the target
computer, while another does not suffer from this defect.

An example may help make this clear. About 20 years ago, one of us was involved
in a project to explore application of formal methods to requirements evaluation of
software change requests for the flight software of the Space Shuttle [53]. The
function we worked on was called “Jet Select” and its purpose was to select the
three reaction control jets that should be fired to accomplish a desired rotational
maneuver, specified as a vector. The existing algorithm, called “max dot product,”
picked the three jets whose individual thrust vectors had the largest scalar (i.e.,
“dot”) products with the desired vector. A disadvantage of this algorithm was
that it sometimes picked jets that almost opposed each other, thereby wasting fuel
and reducing performance. The proposed new algorithm was called “min angle”
and the idea was to pick the three jets whose resultant was closest (measured by
angle) to the desired vector. The SR were reverse-engineered from the simulation
code that had been used to validate this algorithm and featured a triply nested
loop. Many months into the requirements review and HLR development process,

31



it was discovered that there was no way to execute a triply nested loop in the few
milliseconds available on the ancient computers of the Space Shuttle. And because
the SR specified a triply-nested loop, the HLR could not depart from this. If the
SR had instead specified some satisficing constraint, it might have been possible to
develop an effective implementation.

So, it seems reasonable that this objective should be added to the evolving
argument as an additional confidence measure that we label WORKFLOW, as shown
below. (It is plausible that “Algorithms are accurate” could go under this label,
too.)

7INDUCTIVE ARGUMENT DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR

JUSTIFICATION

HLR verification rationale

CONFIDENCE

HLR are accurate and consistent,

HLR are verifiable,

Algorithms are accurate

STANDARDS

HLR conform to standards

WORKFLOW

HLR are compatible with target computer

END ARGUMENT

However, as we noted earlier, whereas the other subclaims in the argument
concern the SR and the HLR, this one also concerns the target computer. It seems
sensible to annotate each argument step with the artifacts that it references, so that
we will know which steps need to be reexamined when artifacts are changed. We can
call this annotation the “context” of the argument step and add it to the argument
as follows.

32



8CONTEXT toplevel

USES

SR-docs, HLR-docs, target-computer-docs

INDUCTIVE ARGUMENT DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR

JUSTIFICATION

HLR verification rationale

CONFIDENCE

HLR are accurate and consistent,

HLR are verifiable,

Algorithms are accurate

STANDARDS

HLR conform to standards

WORKFLOW

HLR are compatible with target computer

END ARGUMENT

The idea here is that the argument step we are developing is part of a context
called toplevel and it references documents associated with the SR, the HLR, and
the target computer.

A problem with adding the target computer to our context is that it is a large
artifact that is likely to undergo changes long after construction of this argument
step; we must always consider the consequences of any change (and, indeed, an
assurance case should surely be bound under configuration control to the artifacts
concerned) and will therefore need to reexamine this argument step each time a
change is made to the target computer.

Coping with changes in “distant” artifacts is just one manifestation of a funda-
mental issue in assurance cases: there must be some “modular” way to construct and
evaluate a case, otherwise it will exceed our intellectual grasp and our ability to man-
age it. The feasibility and soundness of modular (or “compositional”) reasoning is a
function of the system’s design (e.g., whether it has strong barriers to propagation
of misbehavior), how it is developed (e.g., whether knowledge of one component’s
internal design can influence development of another), how its assurance evidence
is gathered (e.g., whether components are tested in environments where other com-
ponents are represented by their specification, not their implementation), and (our
focus here) how its assurance case is structured and presented.

Here, we need some way to reference attributes of the target computer that are
relevant to the local argument without having to add everything about the target
computer to our context. A natural way to do this is by referencing a suitable claim

33



about that artifact. Thus, we might require that elsewhere in the full assurance
case, a subcase concerned with properties of the target computer should establish a
claim like the following (with suitable values substituted for the parameters a, r, d,
and s).

9CONTEXT lowlevel

USES target-computer-docs

CLAIM

Target Hardware Performance

MEANS

Tasks of type a are deterministically scheduled every r msec. for a
duration of d msec. on a processor that averages s instructions per
second.

END

Outside of the lowlevel context, we can reference this claim as
lowlevel.Target Hardware Performance and can then import it into our lo-
cal argument as an assumption, as follows. Notice that we have now dropped
target-hardware-docs from this context.

34



10CONTEXT toplevel

USES

SR-docs, HLR-docs

INDUCTIVE ARGUMENT DO-178C HLR Verification Process

ASSUMPTIONS

lowlevel.Target Hardware Performance

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR

JUSTIFICATION

HLR verification rationale

CONFIDENCE

HLR are accurate and consistent,

HLR are verifiable,

Algorithms are accurate

STANDARDS

HLR conform to standards

WORKFLOW

HLR are compatible with target computer

END ARGUMENT

...

END CONTEXT

Any evidence or subargument used to validate the subclaim HLR are

compatible with target computer can reference the parameters a, r, d, and s
and will need to be reconsidered only if the status of the subclaim lowlevel.Target

Hardware Performance should change.
In this example, the nonlocal claim was used as an assumption, but it also seems

reasonable that nonlocal claims can be referenced as general subclaims in the argu-
ment or confidence section (though obviously not as the claim being established).
Such nonlocal references (and, indeed, local references that are not strictly hierar-
chical) mean that an assurance case argument may not be a tree but rather a graph
(having the form of a “tree with cross-links”). It will be necessary to ensure that
such nonhierarchical references do not introduce circularity.

We rather casually stated that “lowlevel.Target Hardware Performance can
be used as an assumption, so we should next examine the nature of assumptions in
a little more detail.

35



In logic, assumptions and side conditions are used to restrict application of rules
or axioms. For example, we might have

x× y

x
= y, ASSUMING x 6= 0. (2)

In general, assumptions can be interpreted as additional premises, so that (2) can
be treated as

x 6= 0 IMPLIES x× y

x
= y.

Under an assumption a, our generic argument step (1) from page 25 becomes

p1 AND p2 AND · · · AND pn IMPLIES c, ASSUMING a

and this is therefore interpreted as

a IMPLIES (p1 AND p2 AND · · · AND pn IMPLIES c),

which simplifies under the laws of logic to

a AND p1 AND p2 AND · · · AND pn IMPLIES c.

Hence, the interpretation of 10 is that the subclaim named as an assumption is
conjoined to the other subclaims in the main part of the argument and to each
of the subclaims in the confidence part. Of course, this particular assumption is
unnecessary to all except the last of these, so a more sophisticated notation might
allow assumptions to be attached to just the relevant parts of an argument rather
than the whole thing.

Assumptions raise another topic that is worth attention. In some languages, a

term such as
y

x
does not “make sense” unless x 6= 0, so we should not even inspect

the expression in (2) until we know its assumption is true. In general, since all
the premises to an assurance case argument must be true if we are to conclude its
claim, we could allow each premise to be interpreted only under the assumption
that all the other premises and any explicit assumptions are true. However, it can
require additional analysis to ensure there is no circularity in this reasoning, so a
useful compromise is to impose a left-to-right reading. In concrete terms, this means
that each subclaim or item of evidence named in an argument step such as 10 is
evaluated assuming the truth of all subclaims or evidence appearing earlier in the
argument step.

Notice this treatment means there is nothing special about assumptions: any
subclaim appearing early in the argument step will have the same impact. The
textual notation we are using here allows its components to be divided into several
parts and to appear in any order, and this can be used to exploit this left to right (or
top to bottom) accumulation of assumptions as in the following reordering (which

36



serves no purpose other than to illustrate the idea), where we do retain the explicit
labeling of the assumption to alert the human reader of the intuitive purpose of this
subclaim.

11INDUCTIVE ARGUMENT DO-178C HLR Verification Process rearranged

ASSUMPTIONS

lowlevel.Target Hardware Performance

CONFIDENCE

HLR are accurate and consistent,

HLR are verifiable

Algorithms are accurate

PREMISES

HLR comply with SR

WORKFLOW

HLR are compatible with target computer

STANDARDS

HLR conform to standards

CLAIM

HLR correctly represent SR

PREMISES

HLR are traceable to SR

JUSTIFICATION

HLR verification rationale

END ARGUMENT

The idea here is that subclaims labeled PREMISES or ASSUMPTIONS are treated
as premises, subclaims labeled CONFIDENCE, STANDARDS or WORKFLOW are treated as
confidence items, and anything labeled CLAIM is treated as the claim or goal; all
subclaims are interpreted in left to right/top to bottom order, except the CLAIM,
which is always interpreted last.

We have completed construction for an argument step that reflects Section 6.3.1
of DO-178C and now need to consider how its subclaims will be discharged. We can
take g Algorithms are Accurate as an example and suppose that the evidence
used to discharge this claim is a combination of expert analysis and simulation.

12INDUCTIVE ARGUMENT Algorithm aspects

CLAIM

Algorithms are Accurate

EVIDENCE

Expert review and simulation

JUSTIFICATION

Explanation of expert review and simulation

END ARGUMENT

Elsewhere, we will provide (presumably lengthy) descriptions of the meanings
attached to the EVIDENCE and the JUSTIFICATION cited in this argument step.

37



In interpreting an argument step, EVIDENCE is treated just like PREMISES but the
keyword indicates that this thread of the argument terminates at this point. (Dually,
we could use the keyword SUBCLAIM to introduce premises that will themselves be
the subject of other argument steps.)

It is plausible that an argument step might include both EVIDENCE and PREMISES

as illustrated by the top claim C on the left of Figure 4, but we think there is value
in restricting arguments to what we will call “simple form” in which one or the other
may appear, but not both (later, we will add a small qualification to this restriction).
Any argument can be converted to simple form by introducing additional subclaims
as shown on the right of Figure 4. We will call an argument step that has only
subclaims (in diagram form, a box with only boxes below it) an interior or reasoning
step, and one that has only evidence (in diagram form, a box with only circles below
it) an evidential step.

Here, AS indicates a generic argument step; RS a reasoning step, and ES an
evidential step; C indicates a claim, SC a subclaim, and E evidence.

C

AS1

SC

E E

AS

2 3

2

E1 1

C

RS

ES

SC

E

SC

EE

ES

N

N

321

2

1

1

Figure 4. Converting an Argument from Free (left) to Simple Form (right)

38



Thus, in Figure 4, the non-simple argument step AS1 on the left is converted
into the simple reasoning step RS1 on the right by introducing the new evidential
step ESN with subclaim SCN; the already simple argument step AS2 is relabeled
as an evidential step ES2.

Our reason for preferring simple form is that the type of justification is likely to
be different for the two kinds of argument step. Evidence is about our knowledge and
understanding of the actual artifacts that comprise the design and its environment:
it is our epistemology. Premises, on the other hand, reflect our reasoning about the
system: they are our logic. To be confident in an assurance case, we need to be
confident in our reasoning, given our knowledge, and confident in our knowledge:
that is, we need to be confident in both our logic and our epistemology.

The justification provided for an evidential step must explain why and how
this evidence about the real world supports the claim: it is about the bridge from
epistemology to logic. When multiple items of evidence are cited in support of a
claim, they are generally interpreted cumulatively : each adds some “weight” to our
confidence in the claim. The justification for an interior step, however, is about
reasoning: it has to explain why the claim logically follows from the subclaims.
When multiple subclaims are used to support a claim, they are generally interpreted
as a conjunction: all of them are needed to compel confidence in the claim. Later,
and contrary to accepted current practice, we will recommend that while evidential
steps are necessarily inductive, we should strive to make interior steps deductive.

In DO-178C, the evidence required for the subclaims of Section 6.3.1 is described
in its Table A-3. This specifies that for Level A software (i.e., software whose mal-
function could lead to catastrophic failure conditions) the evidence must be con-
structed “with independence” meaning that it should be performed by a different
team than that responsible for developing the software. This seems like a confi-
dence measure, so we add it (and, elsewhere, its meaning) to produce the following
modification of 12 , where we also change the annotation to indicate that this is an
evidential argument step.

13EVIDENTIAL ARGUMENT Algorithm aspects Level A

CLAIM

Algorithms are Accurate

EVIDENCE

Expert review and simulation

CONFIDENCE

Independence

JUSTIFICATION

Explanation of expert review and simulation

END ARGUMENT

Table A-3 of DO-178C also specifies that for Level D software (i.e., that whose
malfunction can lead to only “minor” failure conditions) this subclaim is not required

39



at all. There seem to be two ways to deal with “graduated assurance” of this kind
(see Section 6.2.3): one is to have a (possibly) different argument for each level (so
the Level D version of 11 would omit this subclaim); the other is to retain the
same argument but supply different evidence. We could accommodate the latter by
introducing the keyword NONE to indicate that a claim is not supported.

14EVIDENTIAL ARGUMENT Algorithm aspects Level D

CLAIM

Algorithms are Accurate

EVIDENCE

NONE

JUSTIFICATION

This claim is not required for Level D

END ARGUMENT

We have now seen all the main elements of arguments in assurance cases: the
CLAIM, and its JUSTIFICATION based on PREMISES, which may be subclaims, evi-
dence, or assumptions, supported by additional subclaims that do not contribute to
the logical part of the argument but increase our CONFIDENCE about it in various
ways. We also saw the importance of narrowly defined CONTEXT and the value of
referencing claims from other contexts in enabling the construction of arguments
that are somewhat modular or compositional,

The assurance case that we formed around Section 6.3.1 of DO-178C served as a
vehicle to introduce and illustrate these concepts but now that we have done that,
it is appropriate to pause and reconsider that case. The main argument in 10 (or
11 ) has two premises and five additional subclaims used for confidence and we can
ask if this is a suitable balance. A full assurance case consists of a cross-linked
tree of argument steps with evidence at the leaves. Each argument step provides
a justification why the truth of its premises is sufficient to conclude the truth of
its claim, when supported in some way by the confidence claims. As we explained
above, in an argument of simple form, the justifications at the leaves are about our
epistemology, while those in the interior are about our reasoning or logic. It follows
that any doubts that might reduce our belief in the case are also of two kinds: we can
have “logic doubt” about our reasoning, or “epistemic doubt” about our evidence.
So how can confidence claims help either of these?

Our belief is that logic doubts should be eliminated if at all possible: we are free
to choose our argument and its subclaims and, if we harbor doubt about these, we
should revise them. Thus, we think it is best if the interior or reasoning steps of
an argument are deductive; by its very nature, the premises to a deductive step are
sufficient to compel belief in its conclusion; hence, confidence claims add nothing to
a deductive argument and should not be used with them.

If a system or its assurance case are so complex that it is considered impossible
to formulate all its reasoning steps in deductive form, then it may be acceptable to

40



employ inductive arguments supported by confidence claims. We will see, in Section
6.2.1, that there seems no rigorous way to evaluate an inductive reasoning step (with
or without confidence claims), so there is strong dependence on good judgment.
Suppose for example, that in 2 we had used the subclaim g “Algorithms are

accurate” in place of f “HLR are traceable to SR” as shown below.

INDUCTIVE ARGUMENT Flawed DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

Algorithms are accurate

CONFIDENCE

HLR are traceable to SR

END ARGUMENT

This alternative argument is not logically persuasive, and no addition of confidence
items can make it so; even the addition of f “HLR are traceable to SR” does
not repair the argument if this is merely a confidence item.

However, confidence claims can be appropriate for the leaf or evidential steps of
an argument, where they can provide additional information about our epistemology
and increase our belief in the inductive justification from evidence to claim. Even
here, however, we are inclined to think that many confidence claims would be better
used as direct evidence or assumptions. In 13 , for example, we establish the claim
“Algorithms are accurate” through analysis and simulation. The justification
for this argument step should explain what we did (and why it is sufficient), and
how we did it. Hence, the evidence must address these topics, and the claim of
Independence speaks to “how we did it”—thus, it is a necessary item of evidence,
not a mere confidence factor. However, as we will see in Sections 6.2.1 and 6.2.2,
confidence is not strongly distinguished from evidence in the interpretation of these
steps, and so the choice of label serves human comprehension rather than technical
purposes.

These recommendations—that interior argument steps should be deductive, and
that confidence claims should be avoided—are radical: in current practice, assurance
cases are regarded as quintessentially “inductive” arguments; that is the truth of
the premises should provide strong and convincing evidence for the truth of the
conclusion, but is not expected to provide incontrovertible “proof.” We accept
this, but the question is: where do we allow doubts to reside—in the sufficiency of
our evidence, in the quality of our reasoning, or both? We will return to this in
Section 6 but the motivation for our recommendation is that there no good way to
evaluate an argument in which we have logic doubt, and no good way to evaluate the
contribution of confidence claims to reasoning steps. If we cannot credibly assess
how much doubt we have, nor how much is acceptable, then allowing any doubt

41



at all puts us on a slippery slope; hence, the recommendation that reasoning steps
should be deductive and confidence claims eschewed. Inductive evidential steps do
not pose the same difficulties because they are evaluated epsistemically rather than
logically: we do not ask whether the conjunction of evidence implies the claim, but
whether the combined “weight” of evidence is sufficent to persuade us of the claim.
This epistemic approach cannot be extended to inductive reasoning steps without
abrogating their role as reasoning steps: the local subargument becomes simply a
collection of evidence.

Our recommendations may seem a counsel of perfection: fine in theory but
unattainable in practice. We discuss their feasibility in the Conclusion section, but
note here that software assurance cases, where the top claim is correctness, may
lend themselves more readily to deductive arguments than other cases, where the
top claim is a system property such as safety

Observe that requiring interior argument steps to be deductive has some impact
on the use of nugatory evidence as in the Level D example 14 . When we evaluate
the soundness of interior argument steps, we surely assume that all subclaims will
eventually be validated, but this assumption is repudiated by nugatory evidence
such as 14 . We will return to this topic in Section 6.2.3.

First, however, we revisit the case constructed for DO-178C Section 6.3.1 in light
of the discussion above that casts doubt on the value of confidence claims.

One alternative approach would return to our first step 2 and propose that,
in addition to a “HLR comply with SR” and f “HLR are traceable to SR,” we
should also require that the HLR are “fit for purpose” and then declare the ar-
gument deductive. What were formerly confidence items, then become the evidence
to discharge this new subclaim, as follows.

42



15DEDUCTIVE ARGUMENT DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR,

HLR is fit for purpose

JUSTIFICATION

revised HLR verification rationale

END ARGUMENT

ARGUMENT DO178C HLR fit for purpose

CLAIM

HLR is fit for purpose

ASSUMPTIONS

lowlevel.Target Hardware Performance

PREMISES

HLR are accurate and consistent,

HLR are verifiable,

Algorithms are accurate,

HLR are compatible with target computer,

HLR conform to standards,

JUSTIFICATION

HLR fit for purpose rationale

END ARGUMENT

EVIDENTIAL ARGUMENT Algorithm aspects Level A

CLAIM

Algorithms are Accurate

EVIDENCE

Expert review and simulation,

Independence

JUSTIFICATION

Explanation of expert review and simulation and value of independence

END ARGUMENT

Another point of view is that the argument in support of the claim “HLR
correctly represent SR” is deductively sound without the addition of “fit for

purpose” and the role of the latter is not to bolster the argument, but to provide
confidence for the evidence submitted to discharge its subclaims. For example, evi-
dence in support of the subclaim “HLR comply with SR” is likely to be the result of
human review and traceability checking. The credibility of this review is surely con-
tingent on the quality of the HLR: for example, no conclusion can be trusted if the
HLR are inconsistent. Hence, it is reasonable to use “HLR is fit for purpose”
as a confidence item for the evidential step “HLR Compliance” as shown in 16 .

43



16DEDUCTIVE ARGUMENT DO-178C HLR Verification Process

CLAIM

HLR correctly represent SR

PREMISES

HLR comply with SR,

HLR are traceable to SR

JUSTIFICATION

Simplified HLR verification rationale

END ARGUMENT

EVIDENTIAL ARGUMENT HLR Compliance

CLAIM

HLR comply with SR

EVIDENCE

Human review and tracing

CONFIDENCE

HLR is fit for purpose

JUSTIFICATION

Description of procedures for human review and tracing and their

reliability, and the results obtained

END ARGUMENT

We have no strong opinion of which of these (and other) plausible formulations of
DO-178C Section 6.3.1 as an assurance case is the “best” or is closest to the intent
of the document authors. We do hope, however, that this section has provided
those having special expertise in DO-178C with information that enables them to
explore this topic themselves, and to ask if DO-178C might have been improved, or
at least framed differently, if assurance case principles had been considered during
its development.

3.1.1 Derived Requirements

The assurance case implicit in DO-178C is essentially a correctness argument: it
is assumed that the SR ensure safety—if they are implemented correctly—and the
responsibility of the software assurance case is to establish that correctness. It is
the responsibility of another part of the full assurance case to ensure that the SR
do ensure safety (for aircraft, this case is implicit in guidelines such as ARP 4761
and ARP 4754A). However, new circumstances may come to light during software
development that could affect safety: for example, a condition may be discovered
where the SR do not define a behavior, or it may be impossible to achieve specified
behavior under some conditions. In all these cases, the software developers must
submit the circumstances to the systems engineers who will determine if new (or
adjusted) requirements should be added to the SR. Such amendments to the SR

44



are called “derived requirements” (the name is peculiar, since their essence is that
these requirements were not derived by the primary top-down process).

Hence, a full software assurance case is not just about correctness: it must
include a subargument and supporting evidence that software development includes
a reliable process for identifying and notifying of circumstances that could require
introduction of derived requirements. We note this expansion in the content of a
software assurance case, but do not develop it further in our example.

3.2 A System Assurance Case

An assurance case for software correctness will be only one part of the assurance
case for a complete system and, as we have seen, it tends to have a rather special
form (because it is mostly about correctness, not safety), so before moving on to
other topics we will look at a different example that sketches the case for a complete
system. This example is from the GSN Standard [50], and is also discussed by
Holloway [65].

The top-level claim that this (imaginary and otherwise unspecified) system is
acceptably safe to operate is based on two subclaims: (a) all its hazards have been
eliminated or mitigated (i.e., reduced in frequency or severity) to a sufficient degree,
and (b) its software has been developed to a Software Integrity Level appropriate
for the hazards involved.10 This top level of the argument can then be recorded as
follows.

17CONTEXT control-system-example

USES

control-sys-def-docs, operating-context-docs

INDUCTIVE ARGUMENT system-safety

CLAIM

Control system is acceptably safe to operate

PREMISES

All hazards eliminated or adequately mitigated,

Software developed to SIL appropriate for hazards involved

JUSTIFICATION

System hazards and software hazards are the only safety hazards

and development to an appropriate SIL mitigates software hazards

END ARGUMENT

The JUSTIFICATION provided above is a placeholder: in a real assurance case a
much more detailed explanation would be expected; the same applies to all the
JUSTIFICATION sections below.

10Software Integrity Levels, or SILs, mainly appear in guidelines derived from IEC 61508 [73]
and are similar in concept to the Software Levels, or DALs, of DO-178B/C, but the ordering is
reversed: SIL 4 is the highest and SIL 1 the lowest (cf. Levels A to D in DO-178C).

45



For an assurance case about software correctness, as in the example used in the
first part of this section, a standard method of argument is that everything present
at one level of development (e.g., SR) is completely and correctly represented in
the next level (e.g., HLR), and there is nothing in the lower level that does not
come from the upper level. For an assurance case about a system design, common
methods of argument are to reason over the components of the system (the step
above implicitly does this—dividing the system into software and the rest), or over
the hazards to the system. In the lower-level step below, we will use the “argument
over hazards” style; we consider these stereotypical argument styles in more detail
in Section 4.1.1.

To argue over hazards, we need to identify every hazard and its severity, and
then justify subclaims that the system either eliminates or sufficiently mitigates each
hazard. Here, it is assumed that the identified hazards are named H1, H2, and H3.

18DEDUCTIVE ARGUMENT system-hazards-controlled

CLAIM

All hazards eliminated or adequately mitigated

ASSUMPTION

The only system hazards are H1, H2, and H3,

The worst case severity of H2 is XX,

The worst case severity of H3 is YY

PREMISES

Hazard H1 has been eliminated,

Probability of H2 is below 10E-6 per year,

Probability of H3 is below 10E-3 per year

JUSTIFICATION

Some discussion, presumably referencing regulations from the field

concerned, why these probabilities are sufficient for the hazard

severities concerned

END ARGUMENT

We have recorded the list of identified hazards and their severities as
ASSUMPTIONS; these are logically no different than other premises (recall the discus-
sion on page 36) but the label is useful to indicate that they establish the context
for the other premises.

We have labeled this argument DEDUCTIVE, meaning that we believe the claim is
guaranteed to be true if the premises are. This belief is flawed, since the argument
step assumes the hazards are independent and does not consider combinations of
hazards. One hopes that these oversights would be identified and rectified during
review, and it is our opinion that by labeling the argument DEDUCTIVE we raise the
obligations on such reviews. Since we are merely presenting an existing example
here, we note this weakness and move on; however, we will return to it in Section
4.1.1.

Next, we provide evidence for each of the subclaims used in the step above.

46



19EVIDENTIAL ARGUMENT all-hazards

CLAIM

The only system hazards are H1, H2, and H3,

The worst case severity of H2 is XX,

The worst case severity of H3 is YY

EVIDENCE

Description of hazard analysis performed

JUSTIFICATION

Some discussion why the method of hazard analysis is believed to

identify all hazards, and how the worst-case severities are derived

END ARGUMENT

EVIDENTIAL ARGUMENT H1-eliminated

CLAIM

Hazard H1 has been eliminated,

EVIDENCE

Formal verification

JUSTIFICATION

Explanation why the formal verification is credible and how the

formal text relates to reality

END ARGUMENT

EVIDENTIAL ARGUMENT H2-mitigated

CLAIM

Probability of H2 is below 10E-6 per year

EVIDENCE

Fault-tree analysis

JUSTIFICATION

Explanation why the fault-tree analysis is credible

END ARGUMENT

EVIDENTIAL ARGUMENT H3-mitigated

CLAIM

Probability of H3 is below 10E-3 per year

EVIDENCE

Fault-tree analysis

JUSTIFICATION

Explanation why the fault-tree analysis is credible

END ARGUMENT

In practice, it is likely that the steps above will each be replaced by, or will
reference, standardized and approved subarguments for the efficacy of the meth-
ods employed for hazard analysis, formal verification, fault-tree analysis, and the
architectural modeling required to support these.

Notice that three claims are established by the first of the argument steps above.
We could equivalently have written a single conjoined claim—or we could have

47



provided a separate argument step for each claim, all citing the same evidence and
related justification.

We now turn to the second premise of 17 , which concerns the safety of the
software used in the system.

20DEDUCTIVE ARGUMENT SW-SILs

CLAIM

Software developed to SIL appropriate for hazards involved

ASSUMPTION

All hazards due to software identified and their severity assigned

PREMISES

Primary system SW developed to SIL 4,

Secondary system SW developed to SIL 2

JUSTIFICATION

Some argument about why SIL 4 and 2 are appropriate for the

identified hazard severities

END ARGUMENT

Again, it is likely there will be standardized subarguments relating the adequacy
of various SILs in mitigating hazards due to software. These subarguments would
likely resemble those that could be developed for DO-178C.

Finally, we present the evidence that software hazards were identified correctly
and the software was developed to the appropriate SILs.

48



21EVIDENTIAL ARGUMENT SW-hazards

CLAIM

All hazards due to software identified and their severity assigned

EVIDENCE

Description of hazard analysis performed

JUSTIFICATION

Some discussion why the method of software hazard analysis is

believed to be effective

END ARGUMENT

EVIDENTIAL ARGUMENT Primary-SIL

CLAIM

Primary system SW developed to SIL 4

EVIDENCE

Evidence that Primary SW was developed to SIL 4

JUSTIFICATION

Comparison of the evidence against the requirements for SIL 4

END ARGUMENT

EVIDENTIAL ARGUMENT Secondary-SIL

CLAIM

Secondary system SW developed to SIL 2

EVIDENCE

Evidence that secondary SW was developed to SIL 2

JUSTIFICATION

Comparison of the evidence against the requirements for SIL 4

END ARGUMENT

As with the software assurance case of the previous section, it is appropriate,
now that we have presented this example of a system assurance case, to ask whether
it is a sound and persuasive case.

We think it is not. The problem is that the software aspects of the case are not
integrated into the main argument. We see this first in 17 where the two premises
make different kinds of claim: the first one makes a claim about hazards, while the
second makes a claim about a method. There may certainly be circumstances where
the premises to an argument step rightly address different issues and different kinds
of issues (an example is 18 , where the assumption premises are about hazards and
their severities, while the others are about probabilities), but that does not seem
to be so here. Rather, there seems to be a gap in the reasoning: what is intended
seems to be a claim that hazards to safe operation have been eliminated or mitigated
by methods to be justified further down in the argument. One possibility is that
some of those hazards concern software and the means of mitigation is development
to specific SILs. Another possibility is that rather than being a source of hazards,
software is the means of mitigation for some system hazards, and development to
specific SILs provides confidence that the software will perform as required. In either

49



case, the issue is that software hazards need to be related to system hazards and
analyzed in that context, not elevated to separate and unmotivated treatment at
the top level of the case.

This issue arises again in 19 where the arguments for mitigation of the system
hazards make no mention of software. As we do not have a description of the
system concerned, we can only guess at its structure, and our guess is that the
hazards H2 and H3 relate to subsystems that include software and that the failure
rates established by Fault Tree Analysis (FTA) include assumptions about rates of
software failure, and these rates are assured by development to specific SILs.

It could be that these details are spelled out in fully developed versions of the
JUSTIFICATIONs, for which we have provided only terse placeholders. But that
would repudiate the idea that arguments are structured around explicit claims or
goals: instead, the claims would only be fully interpreted in the justifications and
the structure of claims and subclaims would not provide an accurate overview of
the argument.

A revised assurance case in which the system and software aspects are more
closely integrated can be represented as follows. First, we combine 17 and 18 and
eliminate reference to software hazards at the top level.

CONTEXT control-system-example

USES

control-sys-def-docs, operating-context-docs

DEDUCTIVE ARGUMENT system-safety-revised

CLAIM

Control system is acceptably safe to operate

ASSUMPTION

The only system hazards are H1, H2, and H3,

The worst case severity of H2 is XX,

The worst case severity of H3 is YY

PREMISES

Hazard H1 has been eliminated,

Probability of H2 is below 10E-6 per year,

Probability of H3 is below 10E-3 per year

JUSTIFICATION

The system is considered safe because all hazards to its safe

operation have been eliminated or adequately mitigated

END ARGUMENT

Then we revise the final two evidential steps of 19 so that subclaims about
software development are used in the fault-tree analysis.

50



EVIDENTIAL ARGUMENT H2-mitigated-revised

CLAIM

Probability of H2 is below 10E-6 per year

ASSUMPTION

Primary system SW developed to SIL 4

EVIDENCE

Fault-tree analysis

JUSTIFICATION

Explanation why the fault-tree analysis is credible and

reference to documents that specify allocation of SILs to failure

rates used in FTA

END ARGUMENT

EVIDENTIAL ARGUMENT H3-mitigated

CLAIM

Probability of H3 is below 10E-3 per year

ASSUMPTION

Secondary system SW developed to SIL 2

EVIDENCE

Fault-tree analysis

JUSTIFICATION

Explanation why the fault-tree analysis is credible and

reference to documents that specify allocation of SILs to failure

rates used in FTA

END ARGUMENT

In the section of text associated with Figure 4, we advocated that arguments
should be presented in “simple form” where the premises to evidential argument
steps cite only evidence and interior or reasoning steps cite only subclaims, our rea-
son being that evidential steps are interpreted epistemically, while reasoning steps
are interpreted logically. Yet, in the argument steps above we have evidential steps
that cite subclaims (about SILs) in combination with evidence (about FTA). A
rationale for this is that the subclaims in these evidential steps are used as assump-
tions: they establish a context or “frame” in which the evidence is interpreted. We
still interpret the evidence epistemically, but do so under the stated assumptions,
which seems an acceptable and useful extension to “simple form” arguments.

We complete the revised case by eliminating 20 and the first step of 21 , while
retaining its other two steps. We believe this revision presents the case more clearly
than the original. The revised case interprets the software as playing a role in the
mitigation of system hazards, so that reliability of the software is our main concern.
As noted earlier, another interpretation could be that the software is an active source
of hazards, so our concern then has to be that its development controls these, and
that would require a somewhat different assurance case and further revisions to the
argument. We cannot know which interpretation is correct because the example

51



does not supply enough information, but we hope this discussion and the way in
which issues were brought to the surface has illustrated some potential benefits in
“making the case” for safety through an explicit argument.

3.3 Assurance Cases and Accident Causation Models

Accidents are the antithesis of safety. Thus, one way to organize an assurance
case is by enumerating potential sources of accidents (i.e., hazards) and presenting
evidence and arguments to show that each has been eliminated or mitigated. This
“enumeration over hazards” is a common strategy in GSN, but is less favored in
CAE where greater stress is placed on the positive argument for how the system
“works” (as opposed to how it avoids failing). Nonetheless, an effective method for
identifying and dealing with hazards is an essential part of any method for developing
and assuring critical systems. Methods for hazard analysis derive (usually implicitly)
from models that describe how accidents come about. Therefore, familiarity with
these models is useful when constructing and evaluating assurance cases,

A model is “essentially a simplified representation of something else” [96]. A
model typically has sets of principles, assumptions, and concepts about what is
modeled. A model makes it easier to understand as well as communicate the essen-
tial features of what is modeled. An accident causation model (ACM) is a generic
and simplified representation of accidents, including a description of important char-
acteristics of accidents. Among others, it answers the following questions: What are
accidents? Why do they occur? What contributes to them? To a certain extent, an
ACM is a “lens” through which we see the world of safety. “What you look for is
what you find” and “what you find is what you fix” [64], a phenomenon known as
selective attention. An ACM therefore has significant impact on, and implications
for, safety methods, tools, processes, regulations, and many safety-related activities.

Over the decades, a number of ACMs have been developed that reflect the un-
derstanding of accident causation at different times. Some of them reflect the tradi-
tional approaches to accident causation such as the sequential event-based models
(e.g., Heinrich’s Domino Model of Accident Causation [60]) and chains of time or-
dered events models (e.g., Multilinear Events Sequencing or MES Model [7]). Those
models work well for explaining what causes accidents that occur in relatively sim-
ple systems. However, in modern socio-technical systems such as air transportation
system, an accident is seldom caused by a single factor; often it occurs as a result
of complex interactions among multiple factors (human, technical, environmental,
organizational, and extra-organizational). Those traditional models may not be suf-
ficient for understanding the complexity involved in this type of accidents. A number
of new accident causation models have emerged in an effort to better understand the
complexity. Among others, the Swiss cheese model [97], STAMP (Systems-Theoretic

52



Accident Model and Processes [82,83]), and FRAM (Functional Resonance Accident
Model [63]) are three representative ones.

A safety case is “a structured argument, supported by a body of evidence that
provides a compelling, comprehensible and valid case that a system is safe for a
given application in a given operating environment” [123]. Sound Safety Risk Man-
agement (SRM) is important evidence for a safety case, and hazard identification is
a fundamental phase of SRM [44]. ACMs are related to how complete hazards are
identified. More specifically, hazard identification methods based on problematic
ACMs do not facilitate revealing the full hazard “picture.”

The well known Swiss cheese model [97] provides an organizational view of how
an accident occurs. According to this model, there are multiple slices of cheese
such as front-line personnel, managers, decision-makers, procedures, and rules and
standards. Before there are “holes” in them, each serves as a defense against accident
from occurring. When there are holes in all of the slices, all the defenses against an
accident are penetrated, thus giving a “green light” for an accident to occur.

SOAM (Systemic Occurrence Analysis Methodology) is a method developed by
EUROCONTROL [39] and is based on both the SHEL (Software, Hardware, En-
vironment, and Liveware) model [36] and the Swiss cheese model [97]. The SHEL
model is used for collecting safety-critical data taking into account factors from
software, hardware, liveware or human, environment, and organization. The col-
lected data are then used for guiding the identification of hazards in a Swiss cheese
model-like framework with the following elements: human involvement, contextual
conditions, organizational factors, and other system factors. It is also potentially
useful for covering multiple components of a system. However, the interactions
among factors are not emphasized. Furthermore, it is basically a static approach,
with no capability to capture the dynamic complexity associated with safety issues.

STAMP [83] is an accident causation model that has gained popularity in recent
years because of its systems approach to safety. It views safety as a control problem;
accidents can result from violation of control constraints (e.g., two aircraft are closer
to each other than the prescribed separation minima); and control constraints are
enforced by a hierarchical socio-technical control structure composed of the basic
control loop (where a human operator directly or through automation interacts with
a piece of equipment or a machine), operations management, company management,
government regulations, and other control mechanisms. STPA, a method based
on STAMP, takes a control view of system safety and is asserted to have many
advantages compared to many of the traditional methods. It can be used to identify
hazards arising from technical, human, and organizational factors and beyond, some
of which cannot be identified using the traditional methods. It is also powerful
when considering multiple components of a system. It is more robust than SOAM
in identifying many interactions among the multitude of factors and components,
and to a certain extent, it can also support the identification of dynamic parts of

53



system complexity. However, it needs to be noted that the combination of STPA
and other methods such as system dynamics (SD) seems to be a promising approach
because SD can augment STPA for capturing dynamic complexity [33].

With the review of the Swiss cheese model and STAMP, as well as the respective
methods based on them, it can be concluded that some ACMs can provide better
guidance on systematic and systemic hazard identification. If hazard identification
is not good enough, then risk analysis and assessment and risk mitigations will be
of low quality, and then the safety case would be questionable or even problem-
atic. That is why ACMs have implications for safety argument and/or confidence
argument. It should be pointed out that not every hazard identification method
is explicitly based on an ACM. See Xu et al [132] for a review of safety methods
including hazard identification methods.

However, despite the importance of ACMs for safety cases, no literature on the
relationship between the two has been found. This topic needs further investigations.

54



4 Assurance Case Notations and Tools

In this section, we briefly describe the concepts, notations, and tools of two popular
methods for organizing and presenting assurance cases (CAE and GSN), and then
outline ideas and issues concerning other approaches, notations, and tools.

4.1 CAE: Claims-Argument-Evidence

Much of the early work on structured assurance cases described in Section 2 was
performed by Adelard LLP [9], which is associated with City University in London,
UK. In particular, the formulation of assurance cases in terms of claims, arguments,
and evidence was developed there and, over the years, this has been systematized
and formalized as a collection of concepts and notations referred to here generically
as CAE (the proper name for Adelard’s specific methodology and notation is Adelard
Safety Case Development, or ASCAD [1]).

justification

argument
name

subclaim 2subclaim 1

backing

system infosubclaim n

claim

side−warrant

Figure 5. Generic CAE Block

The general form of a CAE argument step or “block” is shown in Figure 5; this is
a graphical representation but its interpretation is very similar to the textual form
of argument introduced in the previous chapter. Certainly, the claim, subclaims,
and justification are the same in both cases, but the CAE block also includes some
elements we have not seen before: namely, the side-warrant and the (optional)
backing and system information. These novel elements are derived from a style
of argument introduced by Stephen Toulmin [121] that we will examine in more
detail in Section 6.1.3. Rather than detour into these topics now, it seems best to
proceed using the interpretation that a side-warrant is essentially an assumption

55



(that establishes sufficient conditions for the justification to be sound), and that the
backing and system info are varieties of confidence items.11

With these interpretations, Figure 5 is equivalent to the following textual repre-
sentation.

22ARGUMENT argument-name

CLAIM

claim

ASSUMPTIONS

side-warrant

PREMISES

subclaim-1 ,

subclaim-2 ,

...

subclaim-n

JUSTIFICATION

justification

CONFIDENCE

backing ,

system-info

END ARGUMENT

One of the advantages claimed for a graphical representation such as CAE is
that it can represent larger arguments in a form that facilitates comprehension.
This is accomplished by chaining argument blocks together, so that the claim of
one block becomes a subclaim of another, creating a structure such as that shown
in Figure 6. Of course, one might wonder how well this scales and whether visual
representations do assist the evaluation of large assurance cases. We will examine
these topics in Section 6. Notice that Figure 6 shows only an interior fragment of
a larger argument; a full argument would have evidence at the bottom, represented
by rectangular nodes. Notice also that the argument structure need not be a tree
because one subclaim or item of evidence may support more than one argument
block.

Most CAE cases are far larger than that shown in Figure 6 and it is easy to see
that some form of modularity is required. There are two issues here. In reviewing
a large assurance case presented as a diagram (or, indeed, in any other form), we
clearly need some way to view it at different scales, to collapse subarguments, and to
follow references from one node to another; the issue here is one of providing suitable
support for rendering and browsing diagrams or other representations of CAE cases.

11Whereas Figure 5 portrays the central node as providing merely the “argument name” with
the justification as a separate element, CAE usually moves the justification into the central node,
which is then called the argument with the embedded justification referred to (using Toulmin’s
terminology) as the warrant [11]. These are simply different representations for the same concepts,
and further variants are possible; we prefer our form here simply for consistency of presentation.

56



[ HARMONICS]
(D-N°: 5.4) – Public Case Study: The Stepwise Shutdown System
Dissemination level: PU
Date of issue of this report: 11/01/2015

41

The overall CAE structure to justify the fidelity of the test environment is shown in Figure 18.

Model of the
system usage

is realistic

System M(X1)
under test is

equivalent to X1

Testing
environment

is adequate

The interaction of
assumptions is

taken into account

Decomposition by sources
of doubt and calculation of

overall doubt

Sources of doubts have been

identified and summing doubts
conservative and << k

Doubts from stats
testing assumptions

<< k (see text)

Testing environment is
composed of modeled X1

sw environment, testing
tools and their integration

Decomposition by

components of environment

Testing tools and
environment model are

integrated correctly
Testing tools

work as expected

Model of the use is
composed of test cases and

frequency with which they
are submitted

Frequency of test
demands does not

affect the result

Test cases are
realistic and
statistically

representative

Decomposition by model
usage components

Model of system
environment is

adequate

Decomposition by
testing tools

Oracle only fails

in a fail revealed
manner

Test harness correctly
runs tests and outputs

the results

Test harness
correctly interacts

with oracle

Test tools consist of
test harness, oracle

and their interaction

Figure 18: Claim tree for assumption doubts

It should be noted that the figure above only provides a sketch of the explanation. All
unelaborated subclaims and side warrants would need to be expanded further and
eventually justified by the corresponding evidence.

7.3.3 Analysing�the�number�of�successful�tests�
M oving back to the substitution block shown in Figure 14, we can now expand the structure
further by changing the subclaim about software pfd into a claim about the number of tests
that should be completed successfully to provide the desired level of confidence in the given

Figure 6. CAE Example

True modularity has more to do with a second issue, which is the ability to develop
and review subarguments in relative isolation, while keeping track of what must
be revisited when something changes. This issue is mainly concerned with the
interpretation and scoping of names and identification of the interfaces that connect
different parts of an argument. The same issue is encountered, and adequately
addressed, in modern programming and formal specification languages, and one
would expect notations for assurance cases to adopt similar mechanisms (possibly
“under the hood” of the graphical user interface), rather in the way that our notation

57



in Section 3 employed CONTEXTs and a “dot” notation to reference claims from other
contexts, and USES clauses to identify system documents, as illustrated in 10 .

Descriptions of CAE do not address these issues; it seems their treatment is
delegated to the tools that support CAE. This is unfortunate, as different tools
may adopt different solutions and thereby inhibit exchange and interoperation.

4.1.1 CAE Building Blocks

CAE has been in use for many years, so there is much experience in its applica-
tion and some of this experience has been codified in the form of “building blocks,”
“templates,” and “exemplars” [11]. Building blocks (sometimes called “justification
blocks” [119]) refine the generic block of Figure 5 into several more specialized in-
stances that represent types of argument commonly used as individual steps within
an argument, while templates and exemplars provide guidance on composition of
these blocks into larger and complete arguments. Most importantly, the CAE build-
ing blocks have been subject to careful analysis (including formal modeling in some
cases) and the assumptions required for their use to be sound are recorded in their
side-warrants.

For example, we may have some system X that is composed of subsystems X1,
X2, . . . , Xn and we argue that X satisfies claim C, which we denote C(X), by showing
that each of its subsystems also satisfies C, that is, we use subclaims C(X1), C(X2),
. . . , C(Xn). We might use this argument step to claim that a software system will
generate no runtime exceptions by showing it to be true for each of its software
components. However, this type of argument is not always sound—for example,
we cannot argue that an airplane is safe by arguing that its wheels are safe, its
rudder is safe, . . . and its wings are safe. Soundness is contingent on the property
C, the nature of the system X, and the way in which the subsystems X1, X2, . . . , Xn
are composed to form X. Furthermore, claim C(X) may not follow simply from the
same claim applied to the subsystems, but from different subclaims applied to each:
C1(X1), C2(X2), . . . , Cn(Xn). For example, a system may satisfy a timing constraint
of 10ms. if its first subsystem satisfies a constraint of 3ms., its second satisfies 4ms.
and its third and last satisfies 2ms. (together with some assumptions about the
timing properties of the mechanism that binds these subsystems together).

Thus, we can see that unrestricted “composition” (or “decomposition,” depend-
ing which way you look at it—CAE uses the latter term), is too general to serve as
a building block: it needs to be refined into more specialized cases. Adelard provide
several examples of such refined “decomposition blocks” [10], which are paraphrased
below. The side warrant to each of these blocks must ensure that the conjunction
of subclaims implies the claim; in cases where the subclaims and claim concern the
same property P, this generally follows if P distributes over the components and the
mechanism of decomposition.

58



Component: This is the simplest case considered above: a claim about a system
is established by demonstrating the same claim about its components.

Architecture: This is a more sophisticated form of component decomposition: the
system claim is established by showing that the architecture establishes certain
subclaims and the components establish others. For example, a partitioning
architecture may establish subclaims about fault propagation across compo-
nents, thereby allowing subclaims about components to assume a relatively
benign environment.

Property: Here, it is not the system but the claim that is decomposed: a claim
C is refined as a conjunction of subclaims C1 AND C2 AND ... AND Cn and
the claim is established by showing that each subclaim holds. For example,
the property of security may be decomposed into confidentiality, integrity, and
availability.

Environment: Here it is the system environment that is decomposed and the sys-
tem claim is established by showing that it holds in each environment. For
example, claims about an aircraft system might be shown to hold when the
aircraft is on the ground, in the air, and in transition between these.

Function: The function of the system (i.e., what it does) is decomposed into sub-
functions and suitable subclaims established for each.

Mode: The behavior of the system is decomposed into separate modes (e.g., takeoff,
climb, cruise, etc.) and suitable subclaims established for each.

Configuration: The system exists in different configurations and the claim is es-
tablished for each one.

Hazard: This is a surprising absence from Adelard’s list. One of the most common
ways to structure an assurance argument is to identify all hazards to the safe
operation of the system and then decompose the argument into subclaims
that the system is safe for (or adequately mitigates) each hazard, and their
combinations.

It is possible that Adelard view this as an instance of environment decompo-
sition, because they mention that an argument could be decomposed into the
different kinds of threat posed by the environment.

Phases: Here, the decomposition is on the evolution of the system over time. For
example, we could decompose a claim about a property of the system into
subclaims that the property is true of the system when it initializes, and
remains true thereafter. For assurance cases that consider the risks posed over
the total lifetime of a system (e.g., a nuclear reactor), we might decompose

59



the claim into a subclaim about the safety of the system in operation, and
another subclaim about the safety of its disposal plan.

In addition to those based on various kinds of decomposition, Adelard identify
four additional types of building block, which we sketch below.

Substitution: this is used to argue that a claim for one system follows because
an “equivalent” claim has been established for a different but “substantially
equivalent” system. This style of argument is used for medical devices under
the “510(k) Premarket Notification” procedure of the FDA [75], but it might
also be used to argue that a claim remains true following some change or
upgrade to the system or its method of manufacture. A different application
of this building block is to argue that a property derived by analysis of a
model also holds for the real system, because the model and the system are
adequately “equivalent” for this purpose.

Concretion: this is used to give more precise interpretation to a claim. It is par-
ticularly relevant to regulatory regimes that employ an ALARP (“As Low As
Reasonably Practicable”) principle [98]. For example, the unqualified claim
that a system is “safe” may be replaced by a more quantitative claim about
the probability of various kinds of loss events or failure conditions. Alterna-
tively, the claim that a system is secure might be replaced by the claim that
it is secure against specific threats.

Evidence Incorporation: this building block corresponds to what we call an evi-
dential step; it is used “to demonstrate that a subclaim is directly satisfied by
its supporting evidence” [11].

Calculation: this is used to argue that a claim follows by calculation from other
claims. The notion of “calculation” might be a conventional numerical one
(e.g., average time of data retrieval is computed from its time of retrieval from
the cache vs. from memory, and its probability of being in the cache), but it
could also be interpreted as a mechanized (or mechanically checked) formal
verification of some property of a model or design.

CAE building blocks provide significant guidance in the construction of assurance
case arguments; at each step, consideration of the repertoire of standard building
blocks is likely to suggest a suitable move. Although few details are given, recent
CAE documents suggest how building blocks may be combined to yield complete
arguments [10, 119]. For example, the argument of Figure 6 (taken from [119, page
41]) is built from four different decomposition blocks.

In contrast to the incremental, one step at a time, approach to the construc-
tion of arguments encouraged by CAE building blocks, CAE “templates” and

60



GSN “patterns” (discussed in Section 4.2.1), focus directly on complete arguments.
Substantial examples are available from Adelard at http://www.adelard.com/

services/WOMESafetyEnvCaseTmplt/index.html, where they provide templates
for “weapons, ordnance, munitions and explosives” procured and maintained by
the UK Weapons Operating Centre, together with an approved “code of practice”
for their use [134]. The templates provide guidance not only for the construction of
assurance cases for safety and environmental safety of these kinds of systems, but
also their review.

Observe that whereas building blocks each concern a single argument step
and their side-warrants can accurately document the conditions for applying them
soundly, it is much harder to precisely characterize the assumed context and intended
application for larger units of argument, such as templates. However, it is plausible
that software assurance cases (where the top claim is correctness, not safety) exem-
plify a sufficiently narrow (i.e., well characterized) application that sound templates
can be provided for complete arguments. Sound use of templates in more general
applications seems dependent on human judgement, and suitable guidance would be
welcome. Work on “argument schemes” by Yuan and Kelly [135] proposes guidance
in the form of “critical questions” to be considered when instantiating an argument
scheme.

In our opinion, all these generic “outlines” for partial or complete arguments have
the utmost value. It is not easy to develop or to review the argument of an assurance
case, and use of community-validated outlines complete with side warrants, well-
characterized scope, and critical questions is to be encouraged. We return to this
topic in the Conclusion, Section 7.

4.1.2 CAE Tools

CAE is supported by Adelard’s commercial Assurance and Safety Case Environment
(ASCE, pronounced “ace”) [38].12 This can render arguments in both CAE and GSN
notations and can export documents in Word, html, and pdf formats. A free (but
Windows-only) ASCE-Browser provides capabilities for viewing “HTML exported
ASCE networks” beyond those available in a standard web browser. ASCE is a
comprehensive tool that is widely used in industry and, despite its origins in CAE, it
is said to be the most widely used tool for GSN. ASCE supports modular assurance
cases in both CAE and GSN (apparently based on the GSN extensions described in
Section 4.2.1) and can access external data sources such as system documentation,
hazard logs, and other ASCE networks, and it provides a form of version control
over these. An entire assurance case represented in ASCE can be exported as an
XML document and imported elsewhere. Regular “ASCE User Group” meetings

12There seems to be no readily accessible paper that describes modern versions of ASCE; however,
some documentation is available at the web site http://www.adelard.com/asce/.

61

http://www.adelard.com/services/WOMESafetyEnvCaseTmplt/index.html
http://www.adelard.com/services/WOMESafetyEnvCaseTmplt/index.html
http://www.adelard.com/asce/


provide a forum for information exchange and presentations by both developers and
users.

The notations supported by ASCE are provided by means of “schemas” that can
be extended or developed by users; schemas determine both the internal structure
(represented in XML) and the way it is rendered. The slides for one presentation
contain an intriguing reference to “challenge schema” [37] but no details are given.
The analysis and reporting capabilities of ASCE can likewise be extended with
“plugins.” Thus, a schema can (indeed, has been) written to represent fault trees
in ASCE and a plugin can then perform an analysis based on semantics it ascribes
to that representation. ASCE itself seems not to apply any interpretation to its
representation of arguments. Some experimental plugins do perform “quantitative
confidence propagation” [37] but this is based on simple propagation of structural
information (namely, the extent to which the evidential leaves of each subargument
are populated).

4.2 GSN: Goal Structuring Notation

The University of York was an important contributor to the development of struc-
tured assurance cases [129]. The Goal Structuring Notation (GSN) was developed
there in the 1990s [130], most particularly in the doctoral thesis of Tim Kelly [78].
Like CAE, it has evolved over time, mostly through simplification. It is a graphi-
cal notation built on five basic node types as described in Figure 7, which is taken
from [31]. Observe that the shape of each node indicates its type.

With respect to the terminology introduced in Section 3, GSN goals correspond
to claims, solutions to evidence, and strategies to arguments. The kind of argument
employed (e.g., an argument over hazards, or over components) is written inside the
strategy box, so that GSN strategies typically behave like CAE decomposition blocks
(these were described in Section 4.1.1). The interpretations of GSN assumptions and
justifications correspond to the same terms in Section 3. Note that assumptions
and justifications in GSN are both represented by elliptically shaped nodes, so a
subscripted A or J is used to distinguish them. The GSN notion of context is
currently subject to debate and is described later.

A GSN example is displayed in Figure 8; the textual assurance case presented in
17 and subsequent boxes in Section 3.2 was based on this example, which is from
the GSN Community Standard [50]. A diagram such as Figure 8 is referred to as a
“Goal Structure.”

There are obvious similarities between GSN and CAE, but also some differences.
For example, GSN often connects goals to subgoals without an intervening strategy
(i.e., argument step) to justify this: for example, the top goal G1 in Figure 8 is
directly connected to the two subgoals G2 and G3. The explanation seems to be
that GSN generally assumes that goals are related to subgoals by some kind of

62



The purpose of a Goal Structure is

and eventually supported by evidence (

whilst making clear the 

the rationale for the approach (

and the 

are broken into sub−goalsto show how 

)

adopted,

in which goals are stated

goals

solutions

strategies

)assumptions, justifications

context

A/J

Figure 7. GSN Elements

decomposition, and it is unnecessary to provide a strategy to describe this when it
is suitably obvious. The language of the GSN Community Standard seems to suggest
that providing a strategy to explain the decomposition of goals into subgoals is the
exception rather than the rule.

“When documenting how claims are said to be supported by sub-claims,
it can be useful to document the reasoning step—i.e., the nature of the
argument that connects the claim to its sub-claims. This is done in GSN
by documenting the strategy of the argument which links goals” [50,
Section 0.4.4].

Similarly, all the solutions at the bottom of the figure are directly connected to their
parent subgoals without intervening strategies.

Furthermore, it seems that providing a justification for the application of a
strategy is optional.

“Argument authors may feel the need to justify a particular claim or
argument strategy, to provide some explanation as to why they consider

63



G1

Control System is 
acceptably safe to 
operate

G2

All identified hazards have 
been eliminated or 
sufficiently mitigated

C1

Operating Role 
and Context

C2

Control System 
Definition

G3

Software in the Control System 
has been developed to SIL 
appropriate to hazards 
involved

C4

Hazards identified 
from FHA (Ref Y)

C3

Tolerability 
targets (Ref Z)

C5

SIL Guidelines 
and Processes

S1

Argument over each 
identified hazard

S2

Argument over allocated 
SIL for Primary and 
Secondary elements

C6

Identified 
software hazards

G4

Hazard H1 has been 
eliminated

G5

Probability of Hazard H2 
occuring < 1x10-6 per 
year 

G6

Probability of Hazard H3 
occuring < 1x10-3 per 
year

Sn1

Formal 
Verification

Sn2

Fault Tree 
Analysis

G7

Primary Protection 
System Developed to 
SIL 4

G8

Secondary Protection 
System Development to 
SIL2

Sn3

Process 
Evidence for 

SIL4

Sn4

Process 
Evidence for 

SIL2

A

A1

All hazards have 
been identified

J

J1

SIL apportionment is 
correct and complete

Figure 8. GSN Example

it acceptable. This is achieved in GSN by the use of the justification
element” [50, Section 0.4.7].

Neither the principles described in Section 3 nor CAE countenance omission of
strategies (cf. arguments) or justifications (CAE does allow evidence to be directly
connected to subclaims without intervening arguments, although this is deprecated).
However, these omissions in GSN can be seen as simple abbreviations: some stan-
dard “default” strategy and justification is implicitly inserted whenever these nodes
are missing. The danger, of course, is that the default strategy and justification
are not documented, so different stakeholders may mentally supply different inter-
pretations. And, as we saw in the discussion of CAE decomposition blocks in the
previous section, some decompositions require fairly complex assumptions.

In addition to permitting no strategy between a goal and its subgoals, GSN also
allows multiple strategies. The idea is that “both lines of argument are required
to support the goal” [50, Section 1.3.3]. It seems that this also can be interpreted
as an abbreviation: one that elides the decomposition (and corresponding strategy
and justification) of the original top goal into two intermediate subgoals. In our
opinion, it would be better to avoid all these elisions (of strategies, justifications,
and subgoals), or to at least specify precisely how they are to be interpreted.

The example in Figure 8 uses two different kinds of arrowheads: solid and open.
The former indicate “SupportedBy, that is, inferential or evidential, relationships

64



between elements,” while the latter indicate “InContextOf, that is contextual rela-
tionships” [50]. These distinctions seem redundant: solid arrowheads always point
to goal, solution, or strategy nodes, while open ones always point to assumptions,
justifications, or context nodes; hence, no additional information is conveyed by the
different arrowheads.

We now return to the interpretation of context nodes in GSN. Graydon [48]
provides a very careful examination of three different interpretations for this ele-
ment and observes that a mismatch between the interpretations applied by different
stakeholders can have serious consequences. Graydon specifically considers the node
C2 “control system definition” that provides context to the goal G1 “control
system is acceptably safe to operate” in Figure 8. One interpretation is that
the context is asserting a claim that the system as operated matches the definition
stated in the context node. We think this interpretation is better represented by
an assumption. A second interpretation is that the context is providing additional
information; it seems to us that this also is better represented as an assumption or
additional premise. The third interpretation, and the one advocated by Graydon, is
that contexts provide “explications”: that is “the text in a context element must be
of the form X: Y where X is a phrase and Y is its explication. . . Y should identify
relevant documentation where appropriate. . . Arguments should be understood as if
explicated terms were replaced by their explications.” This interpretation of GSN
context nodes coincides with that of the MEANS clause of the textual language used
in the previous section.

GSN diagrams often contain a large number of context nodes that can obscure
the structure of the argument (see Figure 8, for example, where context nodes com-
prise more than a third of the total). If Graydon’s recommended interpretation
is adopted, then it seems that context nodes can simply be eliminated from the
diagrams. Text in all GSN nodes is terse and surely requires amplification or “ex-
plication” elsewhere. In a graphical environment, we might expect that hypertext
links would lead to this explication and there is no need for a special node in the
diagram.

4.2.1 Modularity and Patterns in GSN

As discussed for CAE, large assurance cases demand some form of modularity. GSN
provides this by allowing nodes to be decorated with symbols (typically a “file folder”
icon) that indicate an “away” node: decoration at the top means this node is being
defined in the local document and can be referenced from other documents, while
decoration at the bottom indicates this is a reference to a node defined elsewhere.
Finally, a small diamond can be used to represent part of a goal structure that is
yet to be developed. Other than away nodes, names are presumably local to the
document in which they appear, but these and related language issues (recall, for

65



example, the discussion on page 36 of the logical context in which claims or goals
are interpreted) are not described in GSN reference documents.

There has been much work on “patterns” for common styles of argument in GSN,
rather like blocks and templates for CAE. Kelly’s doctoral thesis [78] includes a
collection of patterns derived from examples; Weaver’s Thesis [127] develops patterns
for software assurance that are designed to be connected together to compose a larger
argument from the individual patterns; and Ye’s thesis [133] considers systems with
COTS components and provides patterns for arguing that evidence is adequate to
support a claim at a given assurance level.

More recent work describes patterns for software safety arguments [56] and their
evaluation on two case studies [55]. Whereas the CAE building blocks outlined in
Section Section 4.1.1 focus on individual argument steps (strategies in GSN terms),
the GSN software safety argument patterns address complete safety arguments (for
aircraft software this would include topics covered by ARP 4761 and ARP 4754A in
addition to those of DO-178C). There are five patterns, which are sketched in [56]
and presented in detail in [86, pp. 150–178]. Paraphrasing [56], the patterns are as
follows.

High-Level Software Safety Argument Pattern: This integrates the patterns
below.

Software Safety Contribution Pattern: This pattern assumes a layered soft-
ware development process and focuses on management of system hazards in-
troduced at each layer or “tier.”

Derived Requirements Pattern: This pattern focuses on assurance that “de-
rived requirements” (recall Section 3.1.1) are adequately captured at each
tier.

Hazardous Contribution Pattern: This focuses on the argument that all po-
tentially hazardous failures are captured by “derived requirements.” (The
relationship between this pattern and the one above is unclear to us.)

Strategy Justification Pattern: This concerns the argument that the strategy
adopted in a software safety argument provides adequate confidence in the
claim.

The evaluation study [55] proposed four “assurance considerations” for each
“tier” of a layered software development process. Paraphrased and reordered these
are as follows.

1. Safety requirements at each tier are appropriate for the design at that tier and
traceable to higher tiers.

66



2. Each tier satisfies its safety requirements (i.e., it is correct with respect to
these requirements).

3. Each tier introduces no hazardous flaws.

4. Hazardous failure behavior at each tier is identified and mitigated.

Although we have reservations about these particular patterns and the evaluation
considerations (e.g., why are these not goals?), the general direction seems a good
one: it attempts to link sound practices for developing safe systems with arguments
for their assurance. The rationale for these particular patterns is derived from the
“six step method” for constructing arguments described in [78]. A somewhat similar
idea of “assurance-based development” is proposed in [47] and it would be valuable
to develop a rigorous link between these process-oriented development methods and
the static description provided by an assurance case template.

The DEOS project, which is outlined in Section 4.3, has developed and imple-
mented a language that can describe GSN patterns and instantiate them appropri-
ately, and has applied it to many of the patterns found in the literature [85].

4.2.2 Assured Safety Arguments

As we saw in Section 3, some of the subclaims in an argument may directly support
the parent claim, while others provide “confidence” in some aspect of the argument.
And, as we also saw (and will examine again in the next chapter), the appropriate
use of confidence claims, and their logical interpretation, are difficult topics. A
paper by Hawkins et al [57] makes a significant proposal on the appropriate use
of confidence claims and suggests suitable modifications to GSN that seem to be
gaining acceptance. Hawkins et al observe that a typical goal structure mixes two
kinds of arguments and claims: those about safety and those about confidence in the
argument for safety. Almost any argument step or item of evidence may be deemed
relevant under one or other of these headings, leading to a tendency to include them
all “just in case,” resulting in “voluminous, rambling, ad infinitum arguments” [57]
that fail to fulfill the primary purpose of an assurance case, which is to communicate
a clear argument.

Hawkins et al [57] propose that a safety case should provide an “assured safety
argument” in which the primary argument is solely concerned with safety (or the
topic of the top-level claim, in the case of an assurance case about something other
than safety). They suggest that this argument should be focused on the identi-
fication and mitigation of hazards associated with the system. We consider this
recommendation rather too specific as there are other ways to argue safety than
by decomposition over hazards, but let us accept it for the time being. The safety
argument is composed of various types of node such as contexts, assumptions, sub-
goals, solutions, and strategies, and the essence of Hawkins et al ’s proposal is that

67



confidence claims should be attached to some of these rather than included in the
general goal structure. Specifically, they propose that each (group of) confidence
claims should be associated with some particular link in the goal structure of the
safety argument, referred to as its Assurance Claim Point (ACP), and indicated by
a black square on the corresponding link as illustrated in Figure 9.

Figure 9. Assurance Claim Points in GSN

Hawkins et al limit ACPs to links incoming to (i.e., referring to) strategies,
contexts, and solutions (cf. ACP1, ACP2, and ACP3, respectively, in Figure 9).

Confidence claims attached to a link incoming to a strategy yield an asserted
inference and the purpose of such claims is to justify the inference associated with
the strategy (i.e., to make the case that the goal follows from the subgoals). In
our opinion, this is the role of the justification that is (optionally) attached to each
strategy, and it is a mistake to conflate this with a confidence claim. In particular,
they are different kinds of objects: a justification provides a warrant, whereas a
claim is a predicate.

Confidence claims attached to a link incoming to a context yield an asserted
context but, in light of Graydon’s proposal that GSN contexts should be interpreted
as explications (recall the discussion on page 65), we see no purpose in such ACPs:

68



an explication simply defines what a term means—hence, it cannot be right or wrong
and is not subject to confidence.

Confidence claims attached to a link incoming to a solution yield an asserted solu-
tion and serve to support the claim that the cited evidence establishes the associated
goal. As explained in the text associated with Figure 4 on Page 38, multiple items
of evidence are interpreted “cumulatively,” and we agree that confidence claims can
be added to this accumulation.

Thus, we agree with the recommendation of [57] that confidence claims should
not be part of the general claim or goal structure, but disagree with their proposal
for “assured safety arguments” and reject two of their three specific kinds of “claim
points”; in our opinion, confidence claims are useful (and can be given a semantics)
only in support of evidential steps (i.e., asserted solutions).

4.2.3 GSN Tools

The Website that hosts the GSN Standard [50] lists several tools implementing
GSN,13 but most of these no longer seem to be available. Here, we briefly outline
five tools that are currently available.

Although initially developed for CAE, Adelard’s ASCE is said to be the most
widely used GSN tool. As we described in Section 4.1.2, ASCE can be customized
by means of schemas and plugins, and a schema that supports GSN is a standard
part of the system. All the capabilities of ASCE apply to GSN in the same way as
to CAE.

Another tool from the UK is ISCaDE (Integrated Safety Case Development En-
vironment), which is a product of a company called RCM2. The tool and its docu-
mentation are available at http://www.iscade.co.uk/, together with its specifica-
tion [95] and an example of its use for a railway application [42]. A unique attribute
of ISCaDE is said to be its integration with DOORS, which is a widely used tool
for the management of requirements.

Astah is a Japanese company whose tools for UML and SysML are widely used,
particularly in Japan where they are said to be the market leaders. They have
recently released Astah GSN, which is available at http://astah.net/editions/

gsn. One novelty of this system is that it supports dialectical examination of an
argument with pro and con subarguments using the approach of Takai and Kido [118]
that is outlined in the next section.

The Safety Case Toolkit (SCT) from Dependable Computing is a comprehensive
system for development, management, and presentation of assurance cases [3]. In-
formation about SCT, and also about the less comprehensive Argument Editor and
free GSN Editor are available at http://www.dependablecomputing.com/tools/

13See http://www.goalstructuringnotation.info/archives/41.

69

http://www.iscade.co.uk/
http://astah.net/editions/gsn
http://astah.net/editions/gsn
http://www.dependablecomputing.com/tools/index.html
http://www.dependablecomputing.com/tools/index.html
http://www.goalstructuringnotation.info/archives/41
http://www.dependablecomputing.com/tools/index.html


index.html. SCT is intended to support large assurance cases and builds on stan-
dard tools for version control and workflow management. Most GSN tools provide
some means to render a Goal Structure as text or html for external review or as doc-
umentation but SCT seems unique in that it can render a complete assurance case
as a standalone web site with extensive hyperlinking between the Goal Structure
and its supporting assets (e.g., items of evidence and documentation) and sophisti-
cated functions for browsing in different levels of detail. Whereas other tools likely
require reviewers to have access to the tool itself, the website generated by SCT
may provide adequate functionality for this purpose.

The previous tools are commercial; AdvoCATE (the Assurance Case Automa-
tion ToolsEt) is a research tool developed at NASA Ames Research Center [29].
Although it provides an Eclipse-based environment for constructing and reviewing
GSN diagrams “by hand,” its primary purpose is to explore various kinds of au-
tomated support. These include the derivation of assurance cases from automated
proofs [26], and methods to assist comprehension of large assurance cases by extract-
ing views based on queries [25], and hierarchy [30]. Another NASA-sponsored tool is
CertWare from Kestrel Technology, which is described as a “workbench to develop,
maintain, and analyze safety cases.” There is little documentation at present but
the system is available at http://nasa.github.io/CertWare/.

AutoFocus is a model-based development platform that originally came from
the Technical University of Munich; the latest version, known as AF3, is developed
by its spinoff institute Fortiss. AF3 provides substantial support for integrating
model-based development with construction of safety cases, which it can render in
GSN [124]. AF3 is available under the Eclipse Public License.

4.3 Other Approaches, Notations, and Tools

Here we describe approaches, notations, and tools that are related to assurance cases
but do not fall under either of the two traditions considered so far.

4.3.1 DEOS and Related Work in Japan

Much work on assurance cases has been accomplished in Japan as part of the DEOS
project (Dependable Operating Systems for Embedded Systems Aiming at Practical
Applications), which ran from 2008 to 2013. The overall ambition of DEOS is large:
it is to ensure the dependability of open systems subject to change [120]. In DEOS,
a system assurance case is maintained as part of the system and is used to guide
its adaptation to failure and to changed requirements. For local adaptation (e.g.,
responding to failure), an online representation of the assurance case (called a D-
Case) is used to guide adjustments to the system, potentially automatically, under
the guidance of a scripting language call D-Script and associated tools [80].

70

http://www.dependablecomputing.com/tools/index.html
http://www.dependablecomputing.com/tools/index.html
http://nasa.github.io/CertWare/


D-Case assurance cases are developed and maintained with the D-Case editor [24]
and its associated tools, which include an assurance case language [84] and a library
of patterns [85]. The language resembles a functional programming language, but is
based on GSN and assurance cases can be created and rendered in GSN using the
D-Case editor (which is an Eclipse plugin). An interesting feature of the language
is its support for patterns, which can be defined generically and instantiated with
appropriate replication (e.g., a pattern for argument over hazards, called Hazard
Avoidance Pattern, can be instantiated with as many hazards as necessary). Support
for the language includes an extensive pattern library, whose members are based on
examples described in the GSN literature. There is also an experimental connection
to the Agda theorem prover, but apparently no other automated or interactive
support for challenging or evaluating an assurance case.

Many papers from DEOS and its related and descendent projects are only now
reaching publication. One such proposes a GSN extension to support dialectical
examination of assurance cases [118]. The idea is that additional subarguments can
be attached to the nodes of an existing argument and labeled either pro or con: the
former supports the node concerned while the latter challenges it. Con arguments
are related to the idea of defeaters, which will be introduced in Section 6.1.2, and
con arguments may themselves be challenged by cons to their own components or
pros to the nodes that they attack. Rules are defined for “adding up” pro and con
subarguments and deriving an evaluation for confidence in the overall argument;
again, this is related to ideas in defeasible logic and eliminative induction that will
be discussed in Sections 6.1.2 and 6.1.4.

4.3.2 Interchange Formats

The basic elements of assurance cases are few and simple: claims (or goals), evidence
(or solutions), and arguments (or strategies). The specific differences between CAE
and GSN are more in matters of emphasis and style than fundamentals. Thus, it is
not unreasonable to suppose that tools supporting different methods and notations
could, nonetheless, share a common underlying representation. Such a representa-
tion, known as the Structured Assurance Case Metamodel (SACM) has been devel-
oped under the auspices of the Object Management Group (OMG) [112]. SACM
comprises two formerly separate parts: an Argumentation Metamodel (ARM) and
a Software Assurance Evidence Metamodel (SAEM). The models are defined using
the MOF (Meta-Object Facility), XML (Extensible Markup Language), and XMI
(XML Metadata Interchange) formats of OMG. Several tools, including ASCE,
SCT, Astah GSM, and AdvoCATE, are able to import and export assurance cases
represented in SACM.

Although its initial purpose was to support existing notations for assurance cases,
SACM goes beyond CAE and GSN in some respects. For example, one or more

71



claims can be declared to challenge another claim, thereby providing a mechanism
for exploring dialectical challenge to an argument. Observe that this mechanism is
different to that of Takai and Kido described above: in their proposal, a claim is
declared to be pro or con another claim (i.e., the annotation is associated with the
first claim), whereas in SACM the annotation is attached to the relation between
the two claims, not to the claims themselves.

It should be noted that the academic field of Argumentation (mentioned in Sec-
tion 6.1.4) has an Argument Interchange Format (AIF) whose draft specification [15]
has more than 200 citations. A website for argument interchange using AIF is pro-
vided at http://www.argumentinterchange.org and a list of tools that can use
AIF is available at http://www.argumentinterchange.org/library. AIF is in-
tended to support models of human arguments and arguments in contested domains,
so it can represent defeasible and dialectical reasoning; on the other hand, it has
little support for representing the provenance of evidence, which has rich support in
SACM.

4.3.3 Relation to Formal Methods

Assurance cases have something in common with formal methods insofar as both
concern reasoning, so it is worth examining their relationship in a little more detail.
Modern formal methods are essentially synonymous with formal verification, where
methods of automated deduction (i.e., automated or interactive theorem proving,
model checking, abstract interpretation, and related techniques) are used to prove
or verify properties (e.g., invariants) of a formal system description, or a relation-
ship between one formal description and another (e.g., that a program implements
a specification). An assurance case argument whose reasoning or interior steps are
deductively sound is likewise a proof of its top claim from its evidence. This similar-
ity may prompt some to suggest that the proof extracted from a formal verification
can form part of an assurance case, or that the methods of formal verification can be
used to evaluate the argument of an assurance case or to automate its construction.
In their simple forms, these suggestions are mistaken in our view, but there are ways
in which assurance cases and formal methods can be combined productively.

In our view, the automated deduction performed as part of formal verification
should be viewed as a calculation, just like the computational fluid dynamics per-
formed as part of the analysis of an airfoil: it is an atomic item of evidence. Proof
steps and internal claims used in performing the formal verification are unlikely to
be of interest at the level of the assurance case and so it is not useful to generate
parts of the assurance case argument by extracting these from the verification. In-
stead, the assurance case should focus on the credibility of the formal verification:
why do we believe that the formally verified property (a string of symbols in some
mechanized logic) bears the interpretation (presumably some real-world claim stated

72

http://www.argumentinterchange.org
http://www.argumentinterchange.org/library


in natural language) used in the assurance case; similarly, why do we believe that
the verified system model (e.g., a Simulink diagram, or a state machine expressed
in the language of a model checker) accurately represents the corresponding real-
world artifact (e.g., a C program, or its compiled EOC); and why do we trust the
formal verification (i.e., the automated deduction that is employed, and the many
translations from one representation to another that are typically performed inside
the verification system)?

Dually, we are skeptical of the value in using the techniques of formal verifica-
tion (or, indeed, any automated method) to generate parts of an assurance case.
The essence of an assurance case is that its argument is the focus of human re-
view, and it therefore seems that its construction should likewise be the product
of human consideration. There may, however, be value in automatically generating
subclaims, and even outline arguments, for standardized activities—but the tem-
plates for these (and, indeed, they would be very much like the building blocks,
templates, and patterns described in Sections 4.1.1 and 4.2.1) should be products
of human construction rather than automation.

4.3.4 Assurance Case Workflows

One area where we believe that integration of assurance cases with formal—or, at
least, logic-driven—methods could have great value is in managing and maintaining
an assurance case during system development and evolution. The assurance case
should not be an afterthought but an integral part of system development—possibly
even its driver [47]—and there will be many items of evidence associated with the
assurance case that need to be revised as system development proceeds (e.g., hazard
logs and analyses, documentation, tests, reviews, formal verifications). Software
systems are generally developed in environments with automated version control
(e.g., git) and build systems (e.g., make) and it is feasible for an assurance case
tool to use these to manage the regeneration of evidence as necessary—SCT, for
example, does this.

Conventional build tools like make have software development as their focus
and keep track of linear dependencies among components—so that if a component
changes, those that use it must be rebuilt, and so on transitively to the target of the
build (e.g., “make main”). In building or updating an assurance case, however, the
target is to (re)establish truth of a claim, and propagation of linear dependencies is
not the best way to do this: for example, if the claims associated with a component
remain true following changes to its design, there is no need to reconsider the claims
higher up the argument. Thus, the build process for an assurance case needs to be
based on the logic of its argument. It may be more complicated than this, however:
some items of evidence that correspond to atomic claims in the assurance argument
may be the products of complex workflows (e.g., a counterexample-guided abstrac-

73



tion refinement loop for formal verification, construction and analysis of fault-trees,
or an extensive set of tests). Hence, the build process that supports an assurance
case should be driven by a logic-based specification of workflows. Some assurance
case tools provide for this: for example, SCT uses BPMN2 (Business Process Mod-
elling Notation 2) [13] and the Activiti open source workflow engine.

The Evidential Tool Bus (ETB) from SRI [20] takes this further: as its name
suggests, the ETB is a framework that enables multiple tools to collaborate in the
construction and management of evidence. It uses an extension of Datalog as its
workflow language [21]; Datalog is based on Horn clauses and, as we explained earlier
(Section 3.1), assurance case case arguments naturally take the form of Horn clauses,
so the ETB is able to manage the workflows for construction of complete assurance
cases, and is used experimentally by one aerospace company in the management
of workflows for DO-178C. Whereas a software build process generally involves at
most two platforms (i.e., development and target), an assurance case may involve
many (e.g., tests may require a specialized platform with simulated or hardware-
in-the-loop sensors and actuators, while verification may require high-performance
machines with specialized software), and some of them may require human partic-
ipation (e.g., a manual review). Thus, the ETB is fully distributed and can invoke
and coordinate activity on multiple platforms; an evidence-producing activity is
connected to the ETB by means of a “wrapper,” and for a human-mediated ac-
tivity the effect of the wrapper may be to send an email (e.g., “please review the
following change to HLR xxx and update database zzz accordingly”). The results of
workflow-initiated activities are recorded in a “claims table” from which the current
state of the assurance case can be derived.

74



5 Survey of Some Existing Assurance Cases

In this section, we present a brief survey of uses of assurance cases in industry. A list
of selected but representative uses of assurance cases is compiled based on published
materials. For each use discovered, the following items are documented: name of
the project; domain of the project; organizations involved (including regulatory
authorities, if any); standards followed in producing the assurance case (if any);
notations used; assessment of whether the project was a success or failure and why;
availability of the actual assurance case(s) to the public; and source(s) of information
(including web pages). In the course of our survey, we derived the following general
observations.

Concepts of assurance cases (claims, evidence, and arguments) have been widely
used in a number of industries including aviation, railways, medical devices, and
power systems (including nuclear systems). In most cases, the assurance cases are
presented in a report in the form of natural language statements. When formal
notations were used, the most common notation was Goal Structuring Notation
(GSN). The use of assurance cases was found to be most prevalent in Europe.

Surveying assurance cases in industry is difficult to do without some form of
bias. In most cases, assurance cases are an element of broader safety cases and
safety procedures. Those are normally proprietary between the company generating
the safety case and its regulator. In some cases, the documents can be obtained,
but only on a specific-request basis to the company or via a Freedom of Information
request filing in the UK or US. Safety case information is usually more available
after an accident, because specific requests for release of the information have been
made. However, relying on accident records as a starting point for obtaining safety
cases runs the risk of selecting for safety cases that have in some sense “failed.” We
have attempted to avoid that bias by searching in various industries for safety or
assurance cases that are associated with projects that are not particularly notable;
that is, searching for projects that have been conducted well enough to have largely
escaped public attention for either great successes or great failures.

Most of these projects were considered to be successful. In some cases, the goals
of the project were modified during the project execution (reduced scope in one
case, changed focus in others), and the final results matched the updated goals.
One notable failure is the Nimrod project, where safety cases were used to prove
that the airplane was safe, and subsequent to a crash, it was later determined that
the initial safety assessment suffered from Confirmation Bias. At the time of the
safety analysis and generation of safety cases, the airplane had been flying for about
30 years without incident. But design changes during those 30 years introduced
vulnerabilities. These should have been caught by the safety analysis, but were not.

Trends we have noticed as a result of conducting the survey are these:

75



• Safety cases have gradually been becoming more formalized over the course of
the last 50 years.

• Increasing formalism has gradually included the use of assurance cases to man-
age the many different forms of analyses, tests, and arguments used in safety
cases.

• Assurance cases appear to be more commonly used in Europe than in the
United States.

• The use of assurance cases within the safety context has become most prevalent
in the nuclear power and petrochemical industries, perhaps because of the
significant consequences of rare; but, potentially catastrophic events.

• The use of assurance cases is becoming more prevalent in the rail transporta-
tion and medical device industries, though the British rail industry appears to
have had its evolution from standards-based safety compliance to goal-based
safety assurance partially reversed in 2006 by adopting standards-based EU
rail safety regulations.

• Within aerospace, the use of assurance cases is growing for ground opera-
tions and commercial flight management; but, is not common on the aircraft
development side.

• The use of assurance cases appears to be just emerging in the automotive
industry.

The following 14 sections list the uses of assurance cases in industry that com-
prised our survey.

5.1 Eurocontrol Whole Airspace ATM

Domain: Aviation

Organization: AEA Technology, EUROCONTROL

Standards: n/a

Notation: Goal Structuring Notation

Assessment: This was a preliminary study whose purpose was to motivate a need
for Assurance Cases and to demonstrate its feasibility and usefulness using a
simple generic system. For this limited purpose, this project can be considered
a success. However, this project was stopped after one year, and we are not
aware of any follow-on funding for similar work from EUROCONTROL.

76



Availability of Assurance Case: The report presents a few high-level assurance
cases in the final report. No other assurance cases are available.

Sources of Information:
http://www.eurocontrol.int/eec/public/standard_page/proj_CARE_

INO_I_Safety_Case.html

5.2 The EUR RVSM Pre-Implementation Safety Case

Domain: Aviation

Organization: EUROCONTROL

Standards: EATMP Safety Policy, Safety Objectives of the ATM 2000+ Strategy

Notation: Textual, Goal Structuring Notation

Assessment: The amount of detail and the number of references of this work indi-
cate that this Safety Case use was successful; but, one must understand what
success means in this case. Conceptually, this study was to show the safety of
a small change to an existing system. However, the change, though small, had
significant implications because the system being altered was a large, mature
system. There were many details to be tended to, and a substantial number
of people who were aware of those details. History since the early 2000’s has
shown this application of Safety Cases was successful, and that success is due
in large measure to the case being used to evaluate a small change to a well-
understood system. The document itself is sizable due to its application to a
large and well-studied system, not due to the complexity of the change.

Availability of Assurance Case: The report presents detailed assurance cases.
No other artifacts are available.

Sources of Information:
http://dependability.cs.virginia.edu/research/safetycases/EUR_

RVSM.pdf

5.3 ACAS II Post-Implementation Safety Case

Domain: Aviation

Organization: EUROCONTROL

Standards: ESARR 4. CR 2096/2005. SRC Policy Document 2. EUROCON-
TROL ANS Safety Assessment Methodology.

77

http://www.eurocontrol.int/eec/public/standard_page/proj_CARE_INO_I_Safety_Case.html
http://www.eurocontrol.int/eec/public/standard_page/proj_CARE_INO_I_Safety_Case.html
http://dependability.cs.virginia.edu/research/safetycases/EUR_RVSM.pdf
http://dependability.cs.virginia.edu/research/safetycases/EUR_RVSM.pdf


Notation: Textual, Goal Structuring Notation

Assessment: Project successfully integrated Air Collision Avoidance System safety
analyses and studies into a coherent document.

Availability of Assurance Case: Main report is publically available. Reports
on systems for automated air collision avoidance systems exist, but are not
generally publically available.

Sources of Information:
http://www.eurocontrol.int/sites/default/files/

article/content/documents/nm/safety/ACAS/acas-

aposcacasiipostimplementationsafetycasev2.3-2011.pdf,

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1195482

5.4 Nimrod Safety Case; Phases 1, 2, and 3

Domain: Defense Aviation

Organization: BAe Systems, Nimrod IPT, and QinetiQ.

Standards: Regulations of the Airworthiness of Ministry of Defence Aircraft, JSP
318B.

Notation: Textual

Assessment: Failure. Evidenced by the fire and crash of Nimrod XV 230 in 2006
and documented in “The Nimrod Review” by Charles Haddon-Cave in 2009.

Availability of Assurance Case: The Safety Case itself appears not to be pub-
licly available. Defense Safety Cases are likely to be unavailable unless an
unusual event creates an official demand that results in a public release.

Sources of Information:
An Independent Review into the Broader Issues Surrounding the loss of the
RAF NIMROD MR2 Aircraft XV230 in Afghanistan in 2006 by Charles
Haddon-Cave QC.

5.5 London Underground Railway Safety Case

Domain: Railway

Organization: London Underground

Standards: n/a

78

http://www.eurocontrol.int/sites/default/files/article/content/documents/nm/safety/ACAS/acas-aposcacasiipostimplementationsafetycasev2.3-2011.pdf
http://www.eurocontrol.int/sites/default/files/article/content/documents/nm/safety/ACAS/acas-aposcacasiipostimplementationsafetycasev2.3-2011.pdf
http://www.eurocontrol.int/sites/default/files/article/content/documents/nm/safety/ACAS/acas-aposcacasiipostimplementationsafetycasev2.3-2011.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1195482


Notation: Textual

Assessment: This is a living document, created in 2007, and being updated every
5 years. Given that it was updated on schedule in 2012, this project was
successful.

Availability of Assurance Case: The textual discussion of the safety cases is
presented in the document.

Sources of Information:
http://www.tfl.gov.uk/cdn/static/cms/documents/safety-

certification-complete.pdf

5.6 Tube Lines’ Contractual Safety Case

Domain: Railway

Organization: Tube Lines Limited (TLL), London Underground Limited (LUL)

Standards: LUL Standard “Safety Justification and ALARP” LUL Standard
“Contractual safety cases” Railways (Safety Case) Regulations 2000

Notation: Textual

Assessment: The Contractual Safety Case was constructed during 2002-2004 time-
frame. Given that it is still being used to ensure system safety, this effort
should be considered a success.

Availability of Assurance Case: The textual discussion of the safety cases is
presented in the document.

Sources of Information:
http://dependability.cs.virginia.edu/research/safetycases/Tube_

Lines.pdf

5.7 Idaho National Laboratory Advanced Test Reactor Probabilis-
tic Risk Assessment

Domain: Power Systems - Nuclear Fission Energy

Organization: Idaho National Laboratory

Standards: DOE-

Standards: -1628-2010 Draft Development of Probabilistic Risk Assessments for
Nuclear Safety Applications

79

http://www.tfl.gov.uk/cdn/static/cms/documents/safety-certification-complete.pdf
http://www.tfl.gov.uk/cdn/static/cms/documents/safety-certification-complete.pdf
http://dependability.cs.virginia.edu/research/safetycases/Tube_Lines.pdf
http://dependability.cs.virginia.edu/research/safetycases/Tube_Lines.pdf


Notation: Textual

Assessment: Successful, Advanced Test Reactor program approved for next step.

Availability of Assurance Case: TBD. Papers are available about the safety
case; but, availability of the safety case documents themselves is TBD.

Sources of Information:
http://energy.gov/iea/downloads/doe-draft-standard-development-

and-use-probabilistic-risk-assessments-department

5.8 Tokamak Fusion Test Reactor Deuterium-Tritium Campaign

Domain: Power Systems - Nuclear Fusion Energy

Organization: Princeton Plasma Physics Laboratory

Standards: NRC, starting in 1976. Evolved over next 20 years to DoE standards.

Notation: Textual

Assessment: Successful. Facility operated with D-T from 1993 to 1997. Success-
fully decommissioned.

Availability of Assurance Case: TBD. Papers are available about the safety
case; but, availability of the safety case documents themselves is TBD.

Sources of Information:
http://nuclear.inl.gov/fusionsafety/meetings/iea-task-5-2003/

docs/levine_ieatask52003.pdf,

http://fire.pppl.gov/TFTR_ITER_Tritum_Environ_Levine_2014.

ppthttp://fire.pppl.gov/Preparing_for_DT_on_TFTR.pptx

5.9 Joint European Torus Deuterium-Tritium Operation

Domain: Power Systems - Nuclear Fusion Energy

Organization: JET Joint Undertaking

Standards: Office for Nuclear Regulation (GB) - Safety Assessment Principles for
Nuclear Facilities

Notation: Textual

Assessment: Successful. JET approved for D-T operation. Has been in D-T op-
eration since 1991 without serious mishap.

80

http://energy.gov/iea/downloads/doe-draft-standard-development-and-use-probabilistic-risk-assessments-department
http://energy.gov/iea/downloads/doe-draft-standard-development-and-use-probabilistic-risk-assessments-department
http://nuclear.inl.gov/fusionsafety/meetings/iea-task-5-2003/docs/levine_ieatask52003.pdf
http://nuclear.inl.gov/fusionsafety/meetings/iea-task-5-2003/docs/levine_ieatask52003.pdf
http://fire.pppl.gov/TFTR_ITER_Tritum_Environ_Levine_2014.ppt http://fire.pppl.gov/Preparing_for_DT_on_TFTR.pptx
http://fire.pppl.gov/TFTR_ITER_Tritum_Environ_Levine_2014.ppt http://fire.pppl.gov/Preparing_for_DT_on_TFTR.pptx


Availability of Assurance Case: TBD. Papers are available about the safety
case; but, availability of the safety case documents themselves is TBD.

Sources of Information:
http://www.iop.org/Jet/fulltext/JETP99007.pdf,

http://www.onr.org.uk/saps/

5.10 The Safety Case for the use of Fuel Elements and Stringer
Components having Sleeves and Retaining Rings made from
Graphite Produced with Bilbaina Binder Pitch

Domain: Power Systems - Nuclear Fission Energy

Organization: British Energy Generation Ltd.

Standards: Health and Safety Executive (GB) Safety Assessment Principles and
Technical Assessment Guides.

Notation: Textual

Assessment: Successful. Sought to substitute one supplier’s product for another.
Analysis and testing indicated products were physically and functionally iden-
tical, within product tolerances.

Availability of Assurance Case: Publically available as result of a specific Free-
don of Information Act 2000 request to Health and Safety Executive (GB)

Sources of Information:
http://www.hse.gov.uk/foi/releases/hinkleyb2.htm,

http://www.hse.gov.uk/foi/releases/hink2a.pdf

5.11 Development of a Safety Case for the Use of Current Limit-
ing Devices to Manage Short Circuit Currents on Electrical
Distribution Networks

Domain: Power Systems - Distribution

Organization: Parsons Brinckerhoff Ltd, Department of Trade and Industry (UK)

Standards: As Low As Reasonably Practicable (ALARP)

Notation: Textual

Assessment: The goals of the project changed during the project lifetime to em-
phasize legislative issues, and to change the focus to a generally applicable
safety case. The project was a success with respect to its ultimate goals.

81

http://www.iop.org/Jet/fulltext/JETP99007.pdf
http://www.onr.org.uk/saps/
http://www.hse.gov.uk/foi/releases/hinkleyb2.htm
http://www.hse.gov.uk/foi/releases/hink2a.pdf


Availability of Assurance Case: The textual discussion of the safety cases is
presented in the document.

Sources of Information:
http://dependability.cs.virginia.edu/research/safetycases/

Parsons_Current.pdf

5.12 Project Opalinus Clay

Domain: Power Systems - Nuclear Fission Energy

Organization: Nagra, Vibro-Consult AG, Colenco Power Engineering AG, Safety
Assessment Management Ltd

Standards: n/a

Notation: Textual

Assessment: This report is widely considered to be a good exposition of safety
cases. The project was successful in achieving its objectives.

Availability of Assurance Case: The textual discussion of the safety cases is
presented in the document.

Sources of Information:
http://curie.ornl.gov/system/files/documents/21/nagra_

entsorgungsnachweis.pdf,

http://curie.ornl.gov/content/project-opalinus-clay-safety-

report-demonstration-disposal-feasibility-spent-fuel-vitrified

5.13 Scottish Power Process Safety Management

Domain: Petrochemical - Fossil Fuel Energy

Organization: Scottish Power Ltd.

Standards: HSG254 Developing Process Safety Indicators

Notation: TBD

Assessment: Presumed successful due to lack of significant incidents since adopting
the process. Believed by authors to have reduced o&m costs and improved
availability.

Availability of Assurance Case: Not publicly available. Report about the pro-
cess available.

82

http://dependability.cs.virginia.edu/research/safetycases/Parsons_Current.pdf
http://dependability.cs.virginia.edu/research/safetycases/Parsons_Current.pdf
http://curie.ornl.gov/system/files/documents/21/nagra_entsorgungsnachweis.pdf
http://curie.ornl.gov/system/files/documents/21/nagra_entsorgungsnachweis.pdf
http://curie.ornl.gov/content/project-opalinus-clay-safety-report-demonstration-disposal-feasibility-spent-fuel-vitrified
http://curie.ornl.gov/content/project-opalinus-clay-safety-report-demonstration-disposal-feasibility-spent-fuel-vitrified


Sources of Information:
http://www.hse.gov.uk/comah/case-studies/case-study-scottish-

power.pdf

5.14 Towards an Assurance Case Practice for Medical Devices

Domain: Medical Devices

Organization: CMU/SEI

Standards: n/a

Notation: Goal Structuring Notation

Assessment: This project illustrates how Assurance Cases can be applied to a
generic infusion pump. Within its narrow scope, this could be considered a
success.

Availability of Assurance Case: The report presents detailed assurance cases.
No other artifacts are available.

Sources of Information:
http://www.sei.cmu.edu/reports/09tn018.pdf

83

http://www.hse.gov.uk/comah/case-studies/case-study-scottish-power.pdf
http://www.hse.gov.uk/comah/case-studies/case-study-scottish-power.pdf
http://www.sei.cmu.edu/reports/09tn018.pdf


84



6 Assurance Case Evaluation

We have introduced and illustrated the general principles of assurance cases and
outlined the notations commonly used to represent them, and we now turn to the
question of how to determine whether an assurance case is sound and whether it
has sufficent strength to instill the confidence necessary to justify deployment of the
system under consideration.

There are some difficult topics here: for example, what is the difference between
an unsound case and a sound one in which we have low confidence? What is going
on when we deliberately weaken a case, as is done for the lower Software Levels in
DO-178C? We examine these topics in Section 6.2.

Finally, what exactly is an assurance case? It is described as providing an
argument that evidence about the system supports a significant claim about it, but
what is an argument, and how does it differ from a proof?

The following sections consider these topics in the reverse order to their intro-
duction above. We begin by discussing argumentation and the nature of assurance
cases.

6.1 Assurance Cases and Argumentation

In informal speech, the word “argument” is used in several ways that are also rele-
vant to assurance. One way carries the sense that an argument is a way of getting
at the truth (e.g., “That’s a valid argument!”), another invokes the to-and-fro, or
dialectical, nature of argument (e.g., “We argued our way to a satisfactory conclu-
sion.”), while a third stresses the rhetorical or persuasive content of argument (e.g.,
“That’s a very good argument!”).

Since the time of the ancient Greeks, separate subfields of philosophy have de-
veloped around each of these different topics. To get at the truth, we need to apply
sound reasoning to solid facts; sound reasoning is the subject of logic, while solid
facts or, more fundamentally, the question of what it is to know something, is the
subject of epistemology. The dialectical element has traditionally been subsumed
under study of the methods of philosophy (e.g., “the Socratic Method” or “Scientific
Method”), but lately has become (a large part of) a distinct field known as argumen-
tation. Persuasion is the subject of rhetoric, which is often viewed negatively (e.g.,
as Sophistry), but has a positive contribution as the art of clear communication [94].

A comprehensive treatment of assurance cases must draw on all these areas
of inquiry (indeed, one of the standards for assurance cases requires them to be
“compelling, comprehensible and valid” [123]). An assurance case surely aims for
the truth, so we need to understand something of logic and epistemology. This
understanding can save us from major errors, but the ultimate evaluation of an
assurance case always rests on human judgment. Unfortunately, human beings are

85



prone to confirmation bias, so it will be wise to subject the case to dialectical
scrutiny. But we do not want its scrutineers nor its ultimate consumers to be
flummoxed by gratuitous complexity in the case—one of the goals of an assurance
case is to communicate its argument—so some awareness of rhetorical theory could
be useful. Accordingly, we briefly examine each of these areas in the subsections
that follow.

6.1.1 Logic

Logic, the study of valid reasoning, is obviously relevant to any treatment of as-
surance cases. More controversial is the idea that conventional or deductive logic
is the appropriate model for argumentation in assurance cases; in this model, an
assurance case argument should have the character of a proof. An alternative view
is that inductive logic is the appropriate model for assurance cases. We examine
inductive logic in Section 6.2.1; here we examine deductive logic, generally referred
to as simply logic.

Aristotle was the first to undertake a systematic study of logic and his formu-
lation of the syllogism dominated the topic for 2,000 years. A canonical example is
shown below.

Premise 1 : All men are mortal
Premise 2 : Socrates is a man

Conclusion : Socrates is mortal

(3)

Modern logic builds on the 19th Century innovations of Boole and Frege, of which
the most important were the introduction of explicit quantification with bound
variables and functional notation for predicates (e.g., man(x) below).14 Using these,
the example above can be rendered as follows.15

Premise 1 : FORALL x : man(x) IMPLIES mortal(x)
Instance 1.1 : man(Socrates) IMPLIES mortal(Socrates)

Premise 2 : man(Socrates)

Conclusion : mortal(Socrates)

(4)

Here, derivation of the line labeled “Instance 1.1” from Premise 1, and derivation
of the Conclusion from that instance and Premise 2, follow by rules of logic. In this
case, we are using First Order Logic, and the rules involved are called specialization
and modus ponens, respectively.

14Explicit quantification is far more expressive than the syllogism; for example, “every man has
a father” requires double quantification:

FORALL x : man(x) IMPLIES EXISTS y : man(y) AND father(y, x).
15There are other ways to do this; in a multi-sorted logic, we could dispense with the predicate

“man” and treat this as a sort, but these variations do not affect the substance of the discussion.

86



The point about logic is that it guarantees that if the conclusion can be derived
from the premises by applying the rules of logic, then it will be a true statement
about the world, provided the premises are. Thus (and this was another key con-
tribution of Aristotle), logic separates (truth of) the subject matter of an argument
(encoded in its premises) from validity of the reasoning performed upon it. This
separation requires that the reasoning in the argument above must be valid, inde-
pendently of its subject matter: that is, independently of what “man,” “mortal,”
and “Socrates” mean. We can illustrate this by replacing these specific terms (con-
sistently) by arbitrary symbols as follows.

Premise 1 : FORALL x : p(x) IMPLIES q(x)
Instance 1.1 : p(a) IMPLIES q(a)

Premise 2 : p(a)

Conclusion : q(a)

(5)

Logic focuses on what FORALL and IMPLIES (and other quantifiers and connec-
tives) mean, and provides rules for these, while p, q, and a are left open to interpre-
tation (e.g., as “man,” “mortal,” and “Socrates,” respectively). A valid argument
is one that is true in all interpretations, meaning that we can substitute anything
for p, q, and a, and the conclusion will be true if the premises are. Notice that
an argument is valid (or not), independently of whether its premises are true. To
draw a useful conclusion, the argument must be sound : that is, it must be valid and
its premises must be true statements about the world. Validity can be established
using the laws of the logic concerned (and partially or completely automated using
a theorem prover for that logic); the truth of the premises can be established only
by human judgement.

The subject matter of our example is the mortality of Socrates, and our knowl-
edge of relevant aspects of the world is recorded in the two premises of (4). In
logic, these are referred to as “nonlogical axioms” (“nonlogical” because they are
not axioms of logic itself, but are about the subject matter of this specific argument)
and, as far as logic is concerned, they have equal status: both must be true if the
conclusion is to be so.

But as we discussed in Section 3, in an assurance case, premises like the one
labeled Premise 1 (i.e., having the form of an implication) are representative of
the interior or reasoning steps of our argument, while those like the one labeled
Premise 2 are representative of its evidential steps. Thus, we validate the first kind
of premise by introspection and discussion, and the second kind by the collection
and examination of evidence. There is nothing in logic that mandates this approach
to the validation of nonlogical axioms, it merely seems appropriate to the kind of
arguments that are used in assurance cases.

An argument expressed in logic as in (4) actually provides a proof of its conclu-
sion. If we take logic and proof as our model for the argument in an assurance case

87



(and, as we noted earlier, this is a controversial position), then there are two things
we must do to be sure that a case is sound: check that the premises are true (which
itself divides into two parts, with different kinds of checks for the reasoning and the
evidential steps), and check that the rules of logic are applied correctly. There are
two ways to perform the latter check: rely on human judgment, or use automation.

There is much experimental evidence that humans are not, in general, very
good at logical reasoning and fail even quite simple tests (Kahneman gives several
examples [76]16). We might expect, or hope, that those who develop and review
assurance cases will perform better than the general population, but the evidence
suggests otherwise. Greenwell and colleagues examined three published assurance
cases and found that all of them employed fallacious reasoning [49]. These cases
did not frame their arguments deductively, so the fallacies that were observed do
not exactly correspond to logic errors: indeed, one of the reasons for proposing that
assurance cases should be framed deductively is that this imposes a discipline that
renders such fallacies less likely and detection more certain.

One might also hope that independent, external review would detect logic errors,
and this was indeed how the fallacies reported by Greenwell et al were found. How-
ever, close reading of their paper [49] shows that different reviewers found different
errors, so this might not be a reliable method.

An alternative is to use automated deduction—theorem provers—to check for
logic errors. Internally, such an automated check would abstract an assurance case
argument to its logical form, for example, (3) would be abstracted to (5), and the
theorem prover would verify its validity or report an error. The speed and effec-
tiveness of automated deduction is related to the expressiveness of the underlying
logic. Even the weakest useful logic—propositional logic—is NP Complete, while
richer logics such as First Order and Higher Order Logic, especially when enriched
with theories such as arithmetic, are highly undecidable. Despite these theoreti-
cal barriers, modern theorem provers are extraordinarily powerful and effective on
many problems of practical interest. It is routine to apply SAT solvers (for propo-
sitional logic) and SMT solvers (SAT enriched with theories such as arithmetic and
datatypes) to problems with millions of terms. As we discussed in Section 3.1, the
interior steps of an assurance case argument should almost certainly take the form
of Horn clauses (recall (1) on page 25) and this, a restricted form of First Order
Logic, has very effective automation.

In addition to checking that our arguments are valid, we should also check for
other kinds of flaw. The most egregious flaw is (sets of) premises that contradict
each other. An example (6) appears later, where we note that the problem with

16One is the following sylogism, which many university students (incorrectly) declare to be valid.
Premise 1 : All roses are flowers
Premise 2 : Some flowers fade quickly

Conclusion : Some roses fade quickly

88



inconsistent premises is that they can be used to prove anything. It is feasible to
demonstrate consistency with a theorem prover (e.g., by exhibiting a constructively-
defined interpretation), and for simple logics it is easy to detect inconsistency auto-
matically, or to exclude its possibility (e.g., in the absence of explicit negation, Horn
clauses cannot be inconsistent). Other simple checks can ensure that the argument
is connected, non-circular, and complete.

Automated checks of the kind suggested above will reliably detect logic errors in
the argument of an assurance case; for example they would identify the logic error
in the following fallacious variant on our original syllogism.

Premise 1 : All men are mortal
Premise 2 : Socrates is a man

Conclusion : Socrates is dead

However, automation cannot detect errors in the subject matter of our argu-
ments; that is, in the premises. To detect the fallacies in the following two argu-
ments, we must examine the content of their premises.

Premise 1 : All men are blue-eyed
Premise 2 : Socrates is a man

Conclusion : Socrates is blue-eyed

In the example above, it is Premise 1 that is suspect: it is representative of a flawed
reasoning step in an assurance case. In the example below, it is Premise 2 that is
suspect: it represents a flawed evidential step in an assurance case.

Premise 1 : All men are mortal
Premise 2 : Spiderman is a man

Conclusion : Spiderman is mortal

The only way to validate the premises to an assurance case is through human
challenge and review. In the next section, we will look at methods for adjusting logic
so that it can support some kinds of challenges to the premises of an argument.

6.1.2 Defeasible Logic

Let us return to our original argument about Socrates (3) and suppose that a re-
viewer challenges Premise 1: he says “I have a CD at home called ‘The Immortal
James Brown,’17 so Premise 1 can’t be right.” This new claim about James Brown

17The CD in question is actually called “Immortal R&B Masters: James Brown.”

89



could be expressed in logic and added to (4) labeled as Premise 3, as shown below.

Premise 1 : FORALL x : man(x) IMPLIES mortal(x)
Instance 1.1 : man(Socrates) IMPLIES mortal(Socrates)
Instance 1.2 : man(JamesBrown) IMPLIES mortal(JamesBrown)

Premise 2 : man(Socrates)
Premise 3 : man(JamesBrown) AND NOT mortal(JamesBrown)

Conclusion : ?

(6)

The problem is that this premise contradicts Instance 1.2 of Premise 1. If we
interpret this in conventional logic, the contradiction among the premises renders
the argument unsound, and we can conclude nothing.18

But there are some applications where it is reasonable to proceed with inconsis-
tent premises and to make adjustments to the rules of logic so that they deliver a
“reasonable” conclusion. Examples are interpreting information from sensors that
periodically update their readings, and resolving arguments on topics where partic-
ipants hold different views, such as ethics, politics, or aesthetics.

When a new object enters the field of view of a robot, for example, some of its
cameras may detect the object earlier than others; later on, one feature detection
algorithm may report a person, while another reports multiple people, and a third
reports an inanimate source of heat. If the robot uses deduction to plan its actions,
then its deductive apparatus must produce useful results from such incomplete or
conflicting information and must revise the plan as new information arrives. The
same idea would apply to an emergency room physician, updating her diagnosis and
adjusting her treatment plan as new observations and test results become available.
In arguments on controversial topics, participants might announce general principles
that are in conflict, but then qualify them in different ways and possibly reach agree-
ment on particular cases. As in the robot, the logic that interprets their argument
must cope with evolving sets of premises that may be incomplete and inconsistent.
Similarly, a jury that convicts a defendant in a criminal case must decide “beyond
reasonable doubt” in the face of contradictory accounts.

Adjusting conventional logic to cope with these challenges has been studied under
different names in different fields. Logic speaks of “nonmonotonic” logics, while
artificial intelligence and argumentation speak of “defeasible” logics. One approach
is to prefer the most specific rules that apply, so that in (6) we can conclude that
James Brown is not mortal (preferring Premise 3 over Premise 1 and its Instance
1.2), while Socrates is (provided he and James Brown are not the same).

Of course, a proponent of the original argument (4) might observe that James
Brown is dead (citing Google) and therefore indubitably mortal. If this were added
to the argument, we would have two contradictory premises about James Brown
that are equally specific and need some way to choose between them.

18Actually, the problem with contradictory premises is that they can be used to prove anything.

90



A popular approach is to note whether premises defeat each other and track
whether defeaters are themselves defeated. For example, Premise 3 defeats Instance
1.2, but the new premise about James Brown being dead would defeat Premise 3,
thereby restoring Instance 1.2. There is an active area of research with an extensive
literature that explores and develops these ideas [16,90].

A related approach defines an attack relation between entire arguments (note
that the defeats relation is between premises); roughly, one argument attacks another
if it has premises that defeat some of those in the other. For example, argument
(6) attacks the original argument (4). The attack relation yields an argumentation
structure, which is just a graph (i.e., the arguments themselves are abstracted to
uninterpreted nodes), and graph theoretic algorithms are defined that calculate the
surviving arguments. This is another active area of research with a large literature
[16].

These treatments of defeasible reasoning are of great intellectual interest and
probably of practical value in fields where it is necessary to draw reasonable conclu-
sions in the face of changing, incomplete, or inconsistent information. But assurance
cases, in our opinion, are not like this and, in consequence, we do not see a role for
defeasible argumentation in evaluation of assurance cases. We appreciate that devel-
opers and reviewers of assurance cases are neither infallible nor omniscient, but their
responsibility is to do the best they can; if they encounter incomplete, inconsistent,
or disputed elements in their reasoning or evidence, they should not use a defeasible
logic to calculate a “reasonable” conclusion; instead, they should resolve the prob-
lems, record their reasoning, and apply conventional logic to derive a deductively
valid conclusion.

Of course, this raises the questions how incomplete, inconsistent, and just plain
wrong information or reasoning might be detected in an assurance case argument,
how reviewers might actively challenge an argument, and how the consequences of
challenges might be calculated. Certainly, the field of defeasible logic provides the
very useful notion of “defeater” and it is conceivable that one way to challenge an
assurance case argument is to propose defeaters and then use defeasible logic to
calculate the consequences—but this would be for the purpose of investigation, not
evaluation. We consider these topics in Section 6.2, but note that defeasible logic
builds on conventional, deductive logic, so we should first consider the alternative
point of view, that an assurance case is an inductive argument. The work of Stephen
Toulmin provides an influential account of nondeductive arguments and this is the
topic of the next section.

6.1.3 Inductive and Toulmin-Style Arguments

We noted in section 6.1.1 that conventional logic focuses on the meaning attached
to quantifiers like FORALL and logical connectives like IMPLIES and provides rules

91



so that arguments employing these can derive valid conclusions no matter what
meanings are attached to the other “nonlogical” terms appearing in the argument.
Toulmin [121] observes that this privileges a certain kind of reasoning and neglects
others that may be more useful and important in the real world. In particular,
the deductive IMPLIES is about certainty, whereas in daily life we often assert more
nuanced relations among terms and qualify implications with words like “probably,”
“possibly,” “presumably” and so on, or we say merely “this suggests that.” One of
Toulmin’s examples, which may be compared to the syllogism (3) is the following.

Premise 1 : Scarcely any Swedes are Roman Catholics
Premise 2 : Peterson is a Swede

Conclusion : Almost certainly, Peterson is not Roman Catholic

(7)

This introduces the idea of an inductive argument, in which truth of the premises
does not (as in a deductive argument) guarantee truth of the conclusion, but supports
it with various degrees of force. But once we abandon the framework of deductive
logic, we lose its deep metatheory, its algorithms, and its tools. There are approaches
that try to reconcile logic with less-than-certain inference, such as probabilistic and
Markov logics, but Toulmin had a different goal. He sought to develop a style of
argument that more closely integrated our knowledge of a subject and our reasoning
about it—in contrast to deduction, where the logic and the subject matter of an
argument are separated.

Toulmin’s motivation derived from philosophy and epistemology (i.e., to chal-
lenge the primacy of deductive reasoning) but his work was adopted by some of
those working in rhetoric, law, and other fields that concern real-world arguments.
Those who first developed the ideas of safety cases were conscious that absolute
certainty is unattainable, for it is impossible to know everything that might affect
the safety of a system, and so they, too, drew on Toulmin’s approach.

(Argument)

(Evidence)

Backing

Grounds
Qualifier Claim

Rebuttal
Warrant

subclaim
Grounds

(Evidence)

Figure 10. Toulmin’s Model of Argument

Toulmin’s model of argument has the following six elements (the descriptions
are taken from [2]), which are also portrayed in Figure 10.

Claim: This is the expressed opinion or conclusion that the arguer wants accepted
by the audience.

92



Grounds: This is the evidence or data for the claim.

Qualifier: An adverbial phrase indicating the strength of the claim (e.g., certainly,
presumably, probably, possibly, etc.).

Warrant: The reasoning or argument (e.g., rules or principles) for connecting the
grounds to the claim.

Backing: Further facts or reasoning used to support or legitimate the warrant.

Rebuttal: Circumstances or conditions that cast doubt on the argument; it repre-
sents any reservations or “exceptions to the rule” that undermine the reasoning
expressed in the warrant or the backing for it.

Figure 10 portrays a single argument step and suggests how these can be chained
together, with the (sub)claim at one level providing the grounds (evidence) at a
higher level. Toulmin’s original formulation did not anticipate this hierarchical form
and used a less symmetrical graphical representation; explicit chaining of argument
steps seems to be due to Newman and Marshall [87].

If we were to rotate Figure 10 through 90 degrees counterclockwise, it would
closely resemble Figure 5, which portrayed the basic argument step used in CAE
notation. This is no accident for, as noted, the developers of CAE and GSN explicitly
acknowledge a debt to Toulmin. The claim, grounds, and warrant of Toulmin’s
approach correspond to the claim, evidence, and justification of an argument step
in an assurance case.

Toulmin’s qualifier seems not to be employed in assurance cases, even in those
frameworks such as GSN (and, to a lesser extent, CAE) that explicitly endorse
inductive (i.e., less than definitive) reasoning. Our opinion is that any assurance
case that is not fully deductive should employ qualifiers to indicate for each reasoning
step whether that step should be interpreted deductively (i.e., the premises imply
the conclusion) or inductively (i.e., the premises suggest the conclusion).

Toulmin’s backing seems to function rather like a confidence item in an assurance
case: that is, it provides additional reasons why we should believe the claim, while
the rebuttal is rather like a negated assumption (i.e., it specifies conditions under
which the argument step does not apply).

Toulmin’s approach is often used in both teaching and performing the analysis
of informal arguments: the idea is to identify the claim, warrant, qualifier, and so
on and then consider these within Toulmin’s framework. Adelman and colleagues
conducted an empirical evaluation of such an application of Toulmin’s approach in
which subjects were asked to evaluate the soundness of arguments presented in two
concocted “magazine articles” [2]. The results were inconclusive, and the authors
suggest “one needs to be cautious of the claimed value of structured argumentation
tools employing the Toulmin formalism.” This particular experiment does not seem

93



well-aligned with possible use of Toulmin’s approach in assurance cases, but the
suggestion of caution is appropriate.

The case that Toulmin advances against classical, deductive logic has some ap-
peal when the topics of discourse are ethics, religion, or aesthetics, say, but it is
less persuasive for the topic of assurance (though Cassano and Maibaum provide a
sympathetic account [14]). There will certainly be areas of doubt in an assurance
case, and human judgment and experience may be the appropriate recourse, but
these doubts concern our ignorance or uncertainty about the world (i.e., the formu-
lation of our premises) and do not require reformulation of the notion of logic (i.e.,
rejection of the idea that validity of the reasoning in an argument can be separated
from the truth of its subject matter). This is different than arguments in ethics, for
example, where the entire basis for debate may be contested and reasonable people
may come to different conclusions.

There are several systems that provide support for representation and evaluation
of human arguments using Toulmin’s model. Araucaria is one that is widely-cited
and seems well-supported [99]; it is available at http://araucaria.computing.

dundee.ac.uk/. Araucaria also supports other styles of human argument and is
able to represent arguments using various forms of diagram [100].

6.1.4 Argumentation and Dialectics

Argumentation is an academic field that mainly focuses on the back-and-forth or
dialectical nature of debate and argument. One of the goals of dialectical debate
is to reach an agreed conclusion, so the methods employed are sometimes referred
to as agreement technologies. Since evaluation of assurance cases should probably
involve back-and-forth debate with reviewers, tools and methods for argumentation
and agreement could be relevant and useful.

Unfortunately, the fields of argumentation and assurance developed in mutual
isolation. The journal Argumentation (published by Springer) contains no reference
to assurance or safety cases among more than 1,000 published articles available on-
line. Neither does a major compendium on agreement technologies [90]. However,
some recent work on exploration of assurance cases does draw on work in argumenta-
tion. In particular, work by Takai and Kido [118] builds on ideas from the Carneades
argumentation framework [46] and, dually, the Argumentation Interchange Format
(AIF) standard [15] does mention the ASCE assurance case tool.

Carneades is a system that supports dialectical reasoning, allowing a subargu-
ment to be pro or con its conclusion and allowing weights to be attached to evidence.
A proof standard is calculated by “adding up” the pros and cons supporting the con-
clusion and their attendant weights. For example, a claim is “in” if it is not the
target of a con that is itself “in” (unless it is also the target of an “in” pro. . . ); a
conclusion is supported to the preponderance of evidence proof standard if it has at

94

http://araucaria.computing.dundee.ac.uk/
http://araucaria.computing.dundee.ac.uk/


least one pro argument that is “in” and weighs more than any “in” con argument.
The system, which is available at http://carneades.github.io/, provides several
kinds of argument graphs for visualizing arguments.

We have now surveyed four interpretations for the argumentation employed in
assurance cases: classical logic, defeasible reasoning, Toulmin’s approach, and dialec-
tics. Classical logic regards an argument as a proof, defeasible reasoning tolerates
inconsistency and provides methods for resolving contested arguments, Toulmin’s
approach is representative of methods that employ inductive and informal logic,
while dialectical methods support the to-and-fro of debated arguments.

In the following section we examine the application of these methods to assurance
cases.

6.2 Assessing the Soundness and Strength of an Assurance Case

There is uncertainty in the world, and imperfection in human understanding and
knowledge about the world—even about artifacts of our own construction. Thus, an
assurance case cannot establish conclusively that a system is safe, or has some other
desired attribute. Regulatory and certification regimes recognize this and do not
expect assurance cases to guarantee that mishaps cannot occur, merely that they
will be suitably rare (with tolerable likelihood inversely proportional to severity).

As noted in the previous paragraph, there are two sources of uncertainty in the
claim delivered by an assurance case. One is uncertainty in the world (e.g., random
hardware failures), the other is imperfection in the reasoning and the evidence about
the world employed by the argument of the case. We cannot do much about the
first of these (although we must measure or calculate its statistical properties and
design to these constraints) but it is our responsibility to control and evaluate the
second. Observe, however, that we do not always expect or desire an assurance case
to be fully sound, or even “as sound as possible”: in DO-178C, for example, the
required objectives are deliberately reduced or weakened as we move from Level A
to Level D software, so that even if the implicit assurance case for DO-178C Level
A were totally sound, those for the lower levels cannot be—they are deliberately
flawed. So the question is: given an assurance case, how can we determine what are
its flaws (both deliberate and accidental), and how can we estimate their impact on
our confidence in the case, and on the (probabilistic) safety of the system?

6.2.1 What Assurance Case Assessment Must Accomplish

It follows from the considerations above that the overall argument of an assurance
case will be inductive rather than deductive: that is, it strongly suggests, but cannot
prove, that its top-level claim is true. But does this mean that every step of the
argument may likewise be inductive? To examine this question, we need to recall
the structure of an assurance case argument.

95

http://carneades.github.io/


In Section 3.1, we proposed that arguments should be presented in “simple form”
and noted that any argument can easily be converted to this form (recall Figure
4). In simple form, all argument steps are either reasoning (or interior) steps,
or evidential (or leaf) steps; the former establish a claim from subclaims (which
themselves must be established by lower-level arguments), while the latter establish
subclaims from evidence. Evidential steps are necessarily inductive (we explain why
this is so below), but reasoning steps could be either inductive or deductive.

If a reasoning step is inductive, it means that we have some doubt whether the
subclaims are sufficient to establish the claim. But how much doubt is permissible?
And can we estimate its magnitude?

We may surely assume that any inductive step is “almost” deductive. That is
to say, the following generic inductive step

p1 AND p2 AND · · · AND pn SUGGESTS c (8)

would become deductive if we added some missing (and presumably unknown) sub-
claim or assumption a (which, of course, may actually be a conjunction of smaller
subclaims), as shown below.19 (It may be necessary to adjust the existing subclaims
p1 to p′1 and so on if, for example, the originals are inconsistent with a).

a AND p′1 AND p′2 AND · · · AND p′n IMPLIES c. (9)

If we cannot imagine such a “repair,” then surely (8) must be utterly fallacious.
It then seems that any estimation of the doubt in an inductive step like (8) must
concern the “gap” represented by a. Now, if we knew anything at all about a it
would be irresponsible not to add it to the argument. But since we did not do so, we
must be ignorant of a and it follows that we cannot estimate the doubt in inductive
argument steps.

If we cannot estimate the magnitude of our doubt, can we at least reduce it?
This seems to be the purpose of confidence claims, but what exactly is their logical
role? One possibility is that confidence claims eliminate some sources of doubt.
For example, we may doubt that the subclaims imply the claim in general, but the
confidence claims restrict the circumstances so that the implication is true in this
case. But such use of confidence claims amounts to a “repair” in the sense used
above: these claims are really assumptions that should be added to the argument as
additional subclaims (recall the derivation following (2) on page 36), thereby making
it deductively sound, or at least less inductive.

The logical role of other kinds of confidence claims is less clear; our suspicion is
that they serve no purpose at all. In our opinion, use of inductive argument steps
and confidence claims opens Pandora’s Box, for these cannot be evaluated in any

19There are other, logically equivalent, ways to interpret the repair: for example, we could suppose
that the premises stay the same but the conclusion is weakened to the claim c OR NOT a.

96



strict sense and there is no way to determine that we have “enough.” There is then a
temptation to employ complex, but still inductive, reasoning steps, buttressed with
numerous confidence claims “just in case.” As Hawkins et al observe, this results
in “voluminous, rambling, ad infinitum arguments” [57]. They recommend an ap-
proach in which confidence claims are removed from the main safety argument but
linked to it through assurance claim points (ACPs) at restricted locations. These
“assured safety arguments” were described in Section 4.2.2. One kind of ACP at-
taches confidence claims to reasoning steps (specifically, to GSN strategies, yielding
“asserted inferences”) and therefore seems to address our current topic. However,
the purpose of assured safety arguments is simply to improve the readability of ar-
guments that use confidence claims and [57] provides no guidance on how to assess
their contribution. Thus, we know of no established or proposed method to assess
the contribution of confidence claims to the evaluation of inductive reasoning steps
in assurance arguments.

Our recommendation is that the reasoning steps of a assurance argument should
be deductive: if the subclaims to the step are true, then truth of the claim must
follow. Confidence claims add nothing to deductive reasoning steps and can be elim-
inated, thereby simplifying formulation of the argument. The main reason to prefer
deductive to inductive reasoning steps is that it is clear what their evaluation must
accomplish: evaluation of a deductive step must review its content and justification
and assent (or not) to the proposition that the subclaims truly imply the claim.
A secondary reason is that superfluous subclaims are likely to complicate rather
than strengthen the justification for a deductive step. Hence, the requirement for
deductive soundness encourages the formulation of precise subclaims and concise
arguments.

Recall from Sections 2.3 and 2.4 that early safety cases employed a “narrative”
argument from evidence to top claim that was often difficult to comprehend and
to evaluate. Structured cases introduced explicit stepwise arguments and graphical
representations that facilitated comprehension of the overall case. But cases are
generally very large and cannot truly be comprehended in toto: a modular or com-
positional method is required. Observe that soundness of deductive reasoning steps
can be assessed in just such a modular fashion, one step at a time. In addition to
local soundness, we need also to be sure that subclaims are interpreted consistently
between the steps that establish them and the steps that use them, but this, too, is
a modular process. Thus, deductive reasoning steps thus support modular assess-
ment in a way that inductive steps do not—for when a step is labeled inductive, we
are admitting a gap in our reasoning: we must surely believe either that the gap is
insignificant, in which case we could have labeled the step deductive, or that it is
taken care of elsewhere, in which case the reasoning is not modular.

The obvious objection to the recommendation for deductive reasoning steps is
that it may be very difficult to construct these, and still harder to assemble them into

97



a complete case. One response is that this may accurately reflect the true difficulty
of our enterprise, so that simplifications achieved through inductive reasoning may
be illusory. Also note that, while the top claim and some of the evidential subclaims
may be fixed (by regulation and by available evidence, respectively), we are free to
choose the others. Just as formulation of good lemmas can simplify a mathematical
proof, so skillful formulation of subclaims may make a deductive assurance argument
tractable.

Another potential objection derives from claims that science itself may not sup-
port deductive theories. This is a contoversial topic in the philosophy of science that
concerns “provisos” (sometime spelled “provisoes”) or ceteris paribus clauses20 in
statements of scientific laws. For example, we might formulate the law of thermal
expansion as follows: “the change in length of a metal bar is directly proportional to
the change in temperature.” But this is true only if the bar is not partially encased
in some unyielding material, and only if no one is hammering the bar flat at one
end, and . . . . This list of provisos is indefinite, so the simple statement of the law
(or even a statement with some finite set of provisos) can only be inductively true.
Hempel [61] asserts there is a real issue here concerning the way we understand
scientific theories and, importantly, the way we attempt to confirm or refute them.
Others disagree: in an otherwise sympathetic account of Hempel’s work in this area,
his student Suppe describes “where Hempel went wrong” [117, pp. 203, 204], and
Earman and colleagues outright reject it [35].

Rendered in terms of assurance cases, the issue is the following. During devel-
opment of an assurance case argument, we may employ a reasoning step asserting
that its claim follows from some conjunction of subclaims. The assertion may not
be true in general, so we restrict it with additional subclaims representing necessary
assumptions and provisos that are true (as other parts of the argument must show)
in the context of this particular system. The “proviso problem” is then: how do
we know that we have not overlooked some necessary assumption or proviso? The
answer is that the justification for the step should explain this, and we may provide
evidential subclaims that cite the methods used (e.g., to show that we have not
overlooked a hazard, we will supply evidence about the method of hazard analysis
employed) but, lacking omniscience, we cannot be totally certain that some “un-
known unknown” does not jeopardize the argument. It can then be argued that
the only philosophically sound position is to regard the reasoning step (indeed, all
reasoning steps) as inductive.

A counterargument would ask: what does this gain us? If we cannot estimate
the size and significance of these “unknown unknowns” (and, indeed, we cannot do
this, as explained a few pages back in the paragraph following (9)) then we may gain
philosophical purity but no actionable insight, and we lose the benefits of deductive

20This latin phrase is usually translated “other things being equal.”

98



reasoning. Furthermore, there is also a loss in our psychological position: with
an inductive reasoning step we are saying “this claim holds under these provisos,
but there may be others,” whereas for a deductive step we are saying “this claim
holds under these provisos, and this is where we make our stand.” This alerts
our reviewers and raises the stakes on our justification. There may, of course, be
unknown provisos, but we are confident that we have identified the only ones that
matter. Philosophically, this is hubris, but for assurance it is the kind of explicit
and definitive assertion that induces effective review.

If, as we propose, all reasoning steps are deductive, yet the overall assurance case
is necessarily inductive, it follows that our doubts must focus on the evidential steps.
This is exactly as it should be: evidential steps connect the real world (evidence) to
the world of concepts (subclaims); these are different kinds of thing and we have only
imperfect knowledge of the first (cf. Popper’s “Three Worlds” and its interpretation
for engineering [115,116]).

If evidential steps are inductive, it might seem that their evaluation would be
susceptible to the same criticisms as inductive reasoning steps. However, we do not
think this is so, for the reason that evidential steps are not interpreted the same way
as reasoning steps. When an evidential step uses two or more items of evidence to
support a subclaim (as, for example, at the lower left of either argument in Figure
4), the interpretation is not that the conjunction of the evidence logically supports
the subclaim, but that each supports it to some degree and together they support
it to a greater degree. The reason we have several items of evidence supporting
a single claim is that there are rather few claims that are directly observable. A
simple property like length can be measured directly, but more abstract concepts like
“correctness” can (in practice) only be inferred from indirect observations; because
the observations are indirect and imprecise we combine several of them, in the
belief that, together, their different “views” provide an accurate representation of
that which cannot be observed directly. Thus, the assessment of evidential steps is
not a problem in logic (i.e., we are not deducing the claim from the evidence) but
in epistemology: we need to assess the extent to which the evidence allows us to
know the truth of the subclaim. One way to frame these questions of “degree” and
“extent” of knowledge and belief is in terms of probabilities.

Bayesian Confirmation Theory [34] (a subfield of Bayesian Epistemology [12])
defines various measures for the extent to which evidence supports or confirms a
hypothesis, and Bayesian Belief Networks (BBNs) provide methods and tools for
evaluating these. Alternatives to BBNs include “possibility theory” based on fuzzy
sets and the Dempster-Shafer “theory of evidence” (all three are compared in [131]).
Whether we use these formal approaches to confirmation and quantify our confi-
dence, or rely on more informal approaches, the essential point is that the evidential
steps of an assurance argument are assessed by “weighing” the evidence using ideas
that can be grounded in probability and epistemology. When the weight of evidence

99



supplied in an evidential step crosses some threshold, we regard its claim as a “set-
tled fact” that may then be propagated through the reasoning steps in the upper
levels of the argument.

C

AS1

SC

E E

AS

2 3

2

E1 1

C

ES

E1 E2
E3

Figure 11. Flattening an Argument by Eliminating Subclaims

A reasonable question then is: why can we not apply the same ideas to rea-
soning steps and thereby allow these to be inductive? Some advocate doing this;
for example [6, 136] apply Dempster-Shafer analysis throughout an assurance case,
while [27] uses BBNs in a similar way. In our opinion we should not do this because
reasoning steps are about just that—reasoning—not epistemology, and should be
evaluated by logical rather than epistemological methods. Epistemological methods
are insensitive to the logical content of reasoning steps, so analyzing the whole argu-
ment by epistemological methods is effectively to flatten the argument by removing
subclaims so that only evidence is left, as portrayed in Figure 11. But this just
takes us back to approaches such as DO-178C, where all we have is a collection of
evidence, and loses the whole essence of argument-based assurance.

The idea of structured argument is to facilitate modular comprehension and
assessment of the case. If we look at this top-down, we divide each claim into com-
ponents whose conjunction implies the claim, and recurse down to subclaims sup-
ported by evidence; if we look at it bottom-up, we treat each evidentially-suported

100



subclaim as an independently settled fact and conjoin these to produce higher-level
subclaims that combine recursively to deliver the top claim. In either case (and, of
course, a real assurance case is developed and understood through a combination
of top-down, bottom-up, and middle-out reasoning), the interior or reasoning steps
are understood logically—as conjunctions—of recursively established facts, and not
as accumulations of evidence. And since we are free to choose the reasoning steps
and their subclaims, we can choose to ensure that each step is deductive: if the sub-
claims to a reasoning step do not imply its claim, we should have chosen a different
claim or subclaims.

It could be argued that subclaims that are strong enough to imply our claim
might themselves have poor evidential support: we would be better off, this argu-
ment might go, to use subclaims that have stronger evidential support, even if these
provide merely inductive support for the desired claim. Our response is that this
is a false dilemma: neither approach is satisfactory and if we cannot build a better
assurance argument for the system as designed, we should change its design.

Let us now draw together the various threads of the discussion above and summa-
rize our recommendations. First, arguments should be normalized to simple form,
where we can distinguish reasoning steps from evidential steps and apply different
methods to each. Next, evidential steps are evaluated epistemologically by weighing
the evidence and its supporting justifications to ensure that collectively these cross
some threshold that allows the evidential subclaim to be regarded as a settled fact.
Reasoning steps are evaluated in logic to ensure that the conjunction of subclaims
deductively entails the claim. Finally, when an argument is logically valid and all
its steps satisfy these criteria, we will say that the argument is sound.

In the next section we consider how these evaluations might be performed, and
then examine the case of “graduated assurance” (as in DO-178C) where the argu-
ment is deliberately weakened for systems that pose lesser risks.

6.2.2 How Assurance Case Assessment Might Be Performed

The overall evaluation of an assurance case argument is accomplished by determining
that all its evidential steps cross some threshold of epistemic credibility, which may
be either a qualitative or (e.g., if BBNs are employed) a quantitative judgment,
and that all its reasoning steps are logically true (either inductively or, preferably,
deductively) in their intended interpretation.

It requires human judgment to make these determinations. Human judgment
is an excellent instrument, but it is known to be prone to confirmation bias (i.e.,
a tendency to seek information that will confirm a hypothesis, rather than refute
it) so there is legitimate concern that developers of an assurance case will seek to
justify it rather than seriously challenge it [81, 126]. On the other hand, motivated
outsiders are known to be effective critics of the arguments of others.

101



So now we should ask whether there are systematic procedures or techniques
that can reduce or compensate for confirmation bias on the part of assurance case
developers, or increase the effectiveness of external reviewers.

First, we should observe that one notorious assurance case—that for the UK
Royal Air Force Nimrod airplane, one of which exploded in mid-air with the loss
of all onboard—was egregiously flawed [51]. Henceforth, we assume that assurance
cases are developed in a context with sufficient management discipline and control on
the custody of evidence that this level of malpractice (essentially, failure to disclose
known hazards) is prevented.

Next, it surely desirable that assurance cases should be aided by some degree
of computerized support. At the very least, some method for managing and cross-
linking claims, evidence, arguments, justifications, and other components of a case
should be provided, together with automation to ensure their consistent use and to
report on the overall coherence and completeness of the assurance case. This level
of support simply organizes and manages text and files and is largely independent
of the semantics ascribed to the case. Graphical presentation (and, if desired, a GUI
interface) can be provided, too.

Once we have this level of computer support, it becomes feasible to explore and
probe a case systematically. Graphical representations may be useful for exploration
and navigation of a case, but we are skeptical that they can provide much help in the
assessment of a case. For credible assessment, we need to examine the content of the
case in detail. First, we should review, discuss, and revise as necessary, the narrative
justification for each argument step and the meanings (i.e., intended interpretations)
attached to its claim and each of its subclaims or items of evidence. Then, in the
same way that we look for hazards when exploring the safety of a design, so we can
look for defeaters to the argument. (What we are referring to as “defeaters” are
generally called “Assurance Deficits” in the GSN community.)

When the reasoning steps of an argument are deductive, a defeater for a step is
any reason for doubting that its claim must be true when its subclaims are. One
approach is to hypothesize a situation that contradicts the claim, then check that
it is excluded by at least one of the subclaims. For example, in the DO-178C HLR

Verification Process argument of 16 on page 44, we might hypothesize that
the HLR could specify a behavior about which the SR says nothing (potentially an
unintended function), thereby contradicting the claim HLR correctly represent

SR. This is not excluded by the subclaim HLR comply with SR, which requires only
that behavior that is specified in the SR is correctly represented in the HLR. So
now it comes down to interpretation of the subclaim HLR are traceable to SR.
If “traceable” means only that all the explicit conditions governing behavior in the
HLR must correctly trace back to conditions in the SR, then we might ask about
actions specified in the HLR under ELSE or other default clauses (the specification
language used for the HLR might provide such clauses while that used for the SR

102



does not). This may lead us to sharpen the interpretation attached to the subclaim
HLR are traceable to SR and to reexamine the subargument used to establish it.

In general, we propose that the process of challenging the reasoning steps of an
assurance case argument can be systematized as a process of hypothesizing potential
defeaters. Just as systematic methods have emerged for undertaking hazard analy-
sis on systems, so might systematic methods be developed to generate substantive
defeaters to assurance arguments. Analysis of these should provide a credible means
for assessing the soundness of the reasoning steps of an assurance argument.

Notice that if reasoning steps are allowed to be inductive rather than deductive,
the process of postulating and analyzing defeaters is likely to lead to “repair” in the
way described for (8) on page 96. That is, “NOT a” would be proposed as a defeater,
found to be effective, and the argument would be revised to yield the deductive step
(9) with a as an assumption. Thus, even if inductive reasoning steps are considered
acceptable, a strenuous challenge process is likely to refine them until they become
deductive.

But what if a reasoning step remains inductive even after such scrutiny? Pre-
sumably this means we are unable to assent that the subclaims truly imply the
claim, but we cannot formulate additional assumptions, constraints, or other ex-
plicit caveats that eliminate (or even identify) the source of doubt. We know of no
rigorous way to evaluate the “size” of the doubt in such cases, nor do we know how
to evaluate the contribution of any “confidence” claims, if the step is interpreted
in logic. One possibility is instead to interpret the step epistemically, as discussed
below for evidential steps.

Evidential steps are necessarily inductive, but they are assessed epistemically
rather than logically and so the process of challenge by potential defeaters works out
differently. Recall that an evidential step is assessed by “weighing” the combination
of evidence supplied to ensure that it crosses some threshold that allows its claim to
be regarded as a “settled fact.” A defeater for such a process could hypothesize a
case where an artifact violates the claim yet “sneaks though” the evidential checks.
Consider, for example, an evidential step that uses testing as evidence to discharge
the subclaim that executable object code (EOC) is correct with respect to low level
requirements (LLR). Defeaters for this step might challenge the test coverage metric
used, how well it is measured, and the quality of the test oracle employed. Responses
to these challenges might be careful justification for the choices made and methods
employed, or they might add new items of evidence (e.g., independent evaluation
of the test oracle). Other defeaters might hypothesize that the EOC fails only on
scenarios much longer than those used to establish test coverage. A response might
be to offer formal verification (which can cover all possible scenarios) as additional
evidence but this might not be considered cost-effective in the given circumstances.
An alternative would be to offer sound static analysis, which also covers all possible
scenarios, but only for predefined properties (typically runtime exceptions), not the

103



application-specific properties described in the LLR. A third response might argue
that the software concerned is a cyclic control function that does not accumulate
state and therefore long scenarios are no more revealing than those used to establish
coverage.

Whereas assessment of reasoning steps has to determine if they are logically true,
assessment of evidential steps has to determine if the evidence is suitably persuasive.
The purpose of proposing defeaters for evidential steps is to ensure that “persuasive”
is not taken lightly. Assessment of evidential steps and evaluation of the impact of
potential defeaters may be by review and debate, but it can also employ probabilistic
reasoning.

In summary, we propose a two-part process for the assessment of assurance case
arguments: one part uses epistemic methods to evaluate the credibility of evidential
steps, the other uses logic to evaluate the truth of deductive reasoning steps. This
combination of logical and epistemic methods seems natural and straightforward,
but we have not seen it explicitly described elsewhere. Haley and colleagues [52]
describe a method where reasoning steps are evaluated in formal logic (they call this
the Outer Argument) while evidential steps are evaluated informally using Toulmin’s
approach (they call this the Inner Argument). They acknowledge that the inner
argument concerns “claims about the world” [52, pp. 140] but, unlike us, they use
informal reasoning rather than explicitly epistemic methods.

A consequence of our proposed approach to assessment, as well as our philosoph-
ical preference, is that reasoning steps should be deductive. There seems to be no
good way to evaluate inductive reasoning steps in logic; one possible response is to
collapse all the reasoning below any inductive steps and apply epistemic methods
to the combination of evidence at the leaves. But this largely vitiates the purpose
of structured argumentation and leaves us with evidence alone.

Evaluation of both reasoning and evidential steps should actively challenge the
case by hypothesizing potential defeaters. The idea of defeaters comes from epis-
temology, where Pollock [92, page 40] defines a rebutting defeater as one that (in
our terminology) contradicts the claim of an argument step, while an undercutting
defeater doubts the step itself (i.e., doubts that the claim really does follow from the
proffered subclaims or evidence); others subsequently defined undermining defeaters
as those that doubt some of the evidence or subclaims used in an argument step.
The last of these seem inappropriate to the evaluation of assurance arguments: in
each step, we provisionally accept the subclaims as “settled facts” and our task is
to satisfy ourselves that the claim necessarily follows; evaluation of the subclaims
is performed (recursively) in steps where they are the conclusion. Although the
general idea of defeaters is valuable, in our opinion this classification of them adds
little to the process of human challenge and review for assurance case arguments.
On the other hand, it is conceivable that it could be exploited by some form of

104



automated exploration, possibly using the techniques of defeasible reasoning and
argumentation outlined in Section 6.1.2.

Closely related to the idea of defeaters is the far older notion of eliminative
induction, which is a formulation of scientific method due to Francis Bacon (in the
Novum Organum of 1620). Roughly, this formulation holds that a scientific theory
becomes increasingly tenable as reasons for doubting it are eliminated. Perhaps
surprisingly, there is a strong connection between this ancient idea and modern
Bayesian Confirmation Theory [58].21

Goodenough and colleagues advocate eliminative induction both as a way to
evaluate assurance cases [128] and as an alternative way to argue confidence in
system properties [45]. In both cases, they argue for systematic exploration of
defeaters, using the classification mentioned above (rebutting, undercutting, and
undermining) to guide a systematic search for reasons why a claim might be falsified
or an argument step defeated.

In the earlier reference [128], the number of challenges by potential defeaters
that an assurance argument successfully withstands is used as a rough measure of
confidence in the argument; more specifically, the ratio of the number of defeaters
successfully withstood to total number considered is used a measure and referred to
as Baconian probability.

Although challenge by potential defeaters seems an excellent way to validate an
assurance case, there are objections to Baconian probability as a measure. First, it
is not a probability in the mathematical sense (i.e., it does not satisfy the properties
expected of a probability, namely the Kolmogorov Axioms); second, it is easy to
inflate the measure by proposing numerous similar and easily countered defeaters.

Baconian probability was extensively developed and advocated by Cohen in the
1970s as an alternative to traditional “Pascalian” probability [17] (the book is hard
to obtain, a review by Wagner provides a useful summary [125]). His position was
hotly disputed—see, for example, the intemperate exchanges between him and Kah-
neman and Tversky [18,19, 77]. Although the foundations of subjective probability
and Bayesian methods were developed by Ramsey, di Finetti, and others in the
1920s, and 30s, and their application to the “weighing of evidence” was established
by Good and others in the 1940s and 50s, Cohen makes no mention of these ap-
proaches and, indeed, they did not become mainstream until the 1980s and 90s.
In our opinion, Bayesian methods provide a more secure foundation for the evalua-
tion of assurance cases than Baconian probabilities. That said, we are aware of no
Bayesian proposal for deriving a measure for confidence in an assurance case that
accounts for defeaters.

In the second reference [45], Goodenough and colleagues go further and pro-
pose that eliminative argumentation should be used directly as a means to argue

21Despite its ancient roots, Eliminative Induction remains a plausible account for how science is
done; Popperian Falsification [93] provides one view of what science is.

105



confidence in system properties. They propose Confidence Maps as a graphical rep-
resentation for the conduct of eliminative induction that is like a “dual” to GSN.
Whereas GSN, or any other representation for an assurance case, describes the “pos-
itive” argument for safety (or other assured property), a confidence map portrays
ways in which it could fail to achieve the desired claim (i.e., its hazards and defeaters)
and explains how these are countered. This resonates with a recommendation by
Haddon-Cave, who conducted the enquiry into the Nimrod disaster. He found that
safety cases were often “compliance-only exercises” that “failed to see the wood for
the trees” and provided only “paper safety”; he recommended they should be made
more “proportionate and relevant” and renamed “Risk Cases” [51, Chapter 22].

Again, although we are sympathetic to use of defeaters in validation of assurance
case arguments, we are less enthusiastic about making defeaters the main focus. A
defeater does not stand alone: there must be a positive case for it to “defeat”; fur-
thermore, the most telling defeaters are likely to be those that ask probing questions
about how the system works (to achieve safety or other top claim) and these simply
cannot be formulated in the absence of a detailed positive argument about how it is
meant to work. Also, there is no criterion for believing that a collection of defeaters
is in any sense “complete,” whereas a positive assurance argument must possess an
internal coherence that does entail some notion of completeness.

In summary, our opinion is that assessment of an assurance case requires hu-
man judgement to ensure that all its evidential steps provide sufficient “weight” of
evidence that their subclaims may be considered “settled facts,” and that all its
reasoning steps are inductively or (preferably) deductively true: that is, their sub-
claims truly suggest or (preferably) imply their conclusions. Despite best efforts
and good intentions, however, there is a risk of confirmation bias, so the case should
be challenged by considering potential defeaters to the argument. In addition to
representing the argument in a form that can be readily examined and probed, any
tool support for assurance case argumentation should provide a way to document
the defeaters that have been considered, and other challenges to which an argument
has been exposed, together with their associated analyses. It is a topic for future
research to discover whether automated support (perhaps in the form of defeasi-
ble reasoning) can assist in exploring assurance case arguments and their defeaters,
and whether metrics (such as Baconian “probabilities”) or representations (such as
confidence maps) add value to the exploration of defeaters.

Related to the soundness of an assurance case argument is the additional idea
of its “strength.” This topic is significant for assurance regimes that allow reduced
levels of assurance for those systems that pose lesser degrees of risk, and is considered
in the next section.

106



6.2.3 Graduated Assurance

DO-178C recognizes that software deployed for different functions may pose different
levels of risk and it accepts reduced assurance for airplane software that poses less
risk. In particular, the number of assurance objectives are reduced from 71 for Level
A software (that with the potential for a “catastrophic” failure condition) to 69 for
Level B, 62 for Level C, and 26 for Level D, and the number of objectives that
must be performed “with independence” is likewise reduced from 33 to 21, 8, and
5, respectively. This is an example of graduated assurance, and it is found in similar
form in many standards and guidelines.

On the one hand, this seems very reasonable, but on the other it poses a serious
challenge to the idea that an assurance case argument should be sound. We may
suppose that the Level A argument is sound, but how can the lower levels be so
when they deliberately remove or weaken some of the supporting evidence and,
presumably, the implicit argument associated with them?

There seem to be three ways in which an explicit assurance case argument can
be weakened in support of graduated assurance, and we consider these in turn.

First, we could simply eliminate certain subclaims or, equivalently, provide nuga-
tory evidence for them (recall 14 on page 40). This surely renders the full argument
unsound: any deductive reasoning step that employs the eliminated or trivialized
subclaim cannot remain deductively sound with one of its premises removed (unless
there is redundancy among them, in which case the original argument should be
simplified). This approach reduces a deductively sound argument to one that is, at
best, inductive, and possibly unsound; consequently, we deprecate this approach.

Second, we could eliminate or weaken some of the evidence supplied in support
of selected subclaims. This is equivalent to “lowering the bar” on what constitutes a
“settled fact” and does not threaten the soundness of the argument, but does seem
to reduce its strength. Intuitively, the strength of a sound assurance case argument
is a measure of its evidential support—that is the height of the bars that determine
settled facts. If all evidential steps are equally important, then overall strength
would seem to be a “weakest link” property—that is, determined by the evidential
step with the lowest bar. On the other hand, some claims may be considered more
important than others, and the evidential support for more important claims might
be given greater weight. Thus, comprehending the consequences for the strength of
the overall argument due to weakening individual items of evidence seems to require
considerable human skill and experience.

It could be argued that there is surely no difference between lowering the thresh-
old for evidential support of a given claim and using that same evidence to provide
strong support for a weaker claim, which could then provide only inductive support
to those reasoning steps that use it—yet we assert that the former is acceptable and

107



the latter is not. Our justification is pragmatic: we have a rigorous procedure for
evaluating deductive reasoning steps but not inductive ones.

Third, we could restructure the argument. Michael Holloway’s reconstruction of
the argument implicit in DO-178C [67,68] suggests that this underpins the changes
from Level C to Level D of DO-178C. The Low Level Requirements (LLR) and
all their attendant objectives are eliminated in going from Level C to Level D; the
overall strategy of the argument, based on showing correctness of the EOC with
respect to the SR, remains the same, but now employs a single step from HLR to
source code without the LLR to provide an intermediate bridge. This also seems a
valid form of weakening. It is a topic for future research to discover whether suitable
restructurings can be given a concise description that allows their soundness to be
derived by calculation from their parent argument.

108



7 Conclusion

Assurance Cases are a significant contribution to system and software assurance and
certification. The principal advance offered by assurance cases compared to other
forms of assurance is provision of an explicit argument. The argument provides
a context in which to justify and assess the quality and relevance of the evidence
submitted, and the soundness of the reasoning that relates this to the hierarchy
of subclaims that leads to the top-level claim. In contrast, traditional guidelines
such as DO-178C specify the evidence to be submitted, but do not document the
rationale for its selection.

For the first time, it may now be feasible to assess whether the basis for certifica-
tion is intellectually sound. That is, assurance cases provide a framework in which
assurance and certification can be set on a rigorous footing—although there are
several issues and details that must be resolved before that promise can be realized.
Principal among these is the need to provide a solid interpretation for inductive
reasoning steps and associated confidence claims, or to demonstrate that realistic
cases can be constructed in which the reasoning (i.e, interior) steps are strictly de-
ductive; related topics include improvement in the languages and notations used to
present assurance cases and the tool support for these. Examples of these topics
include explication of the interpretation for backing nodes in CAE and for contexts
in GSN; annotations to indicate whether argument steps are to be interpreted as de-
ductive, inductive, or evidential; integration with other tools and documents under
configuration management; tool-supported assessment of simple properties such as
completeness, circularity and local notions of logical validity; and tool support (in
the sense of recording and managing, not evaluation) for challenging and probing
cases using postulated defeaters or by other means.

We advocate that assurance cases are structured in “simple form” where each
argument step is supported either by subclaims (i.e., an interior or reasoning step)
or by evidence (i.e., a leaf or evidential step), but not by a mixture (although we
can allow evidential steps in which subclaims are used as assumptions). The reason
is that the two kinds of argument step should be interpreted differently. Eviden-
tial steps connect the real world of measurement and observation to the concep-
tual world of claims: they are the bridge between epistemology and logic, and are
quintessentially inductive (i.e., they can strongly support but seldom guarantee their
claim). Multiple items of evidence are interpreted cumulatively : informally they are
“weighed in the balance” and if their combined weight crosses some threshold we
treat their claim as a “settled fact”; more formally, this accumulation can be under-
stood within the probabilistic framework of Bayesian Epistemology and evaluated
and explored using BBNs, although the feasibility and benefit of doing this awaits
practical demonstration.

109



Interior argument steps are about reasoning: they should be interpreted in logic,
not epistemology. Multiple subclaims supporting a claim are interpreted as a con-
junction. Our own preference is for assurance cases in which the reasoning steps are
deductive, meaning the conjunction of subclaims necessarily entails the supported
claim. We know no good semantics for reasoning steps that are inductive, where
the subclaims merely suggest the claim, and no good interpretation for confidence
claims in reasoning steps. Defeasible logics and argumentation structures do provide
semantics for closely related notions, but our opinion is that assurance cases are a
sufficiently distinct context that their treatments are unsuitable.

Current practice accepts inductive reasoning steps and the use of confidence ar-
guments, so recommending that these should be eschewed may regarded as imprac-
tical at best, and misguided at worst. Certainly, it seems challenging to structure
large system assurance cases so that all interior steps are deductive, but we note
that current cases often mix epistemic accumulation (which is necessarily inductive)
with logical conjunction. Hence, a first measure would be to restructure such cases
into simple form, which can be performed algorithmically—as exemplified in Figure
4 on Page 38. We suspect that many inductive elements (and associated confidence
claims) will migrate to the evidential steps and the interior steps will be simplified.
It will then be feasible to review the extent to which interior reasoning steps are,
and should remain, inductive. Especially for software, where the top-level claim is
correctness rather than safety, we believe that purely deductive reasoning steps is a
feasible and worthwhile aim. Others may believe that forcing all interior steps to be
deductive will distort the argument and render it less rather than more understand-
able and persuasive. The only way to evaluate the merits of our recommendation
and objections to it is by experiment—perhaps by reworking some existing cases.

Confirmation bias is an ineradicable human propensity, so evaluation of an as-
surance case requires effective external review and vigorous challenge. Tool support
for assurance cases should support challenge and active forms of review, not mere
browsing. Reviewers should be able to readily discover the evidential support for
any claim, and the consequences of denying or perturbing a claim, item of evidence,
or argument step. Some of the techniques from defeasible reasoning and dialectics
could be useful here during active review, but we are skeptical that such techniques
should be used to evaluate the final case: defeasible reasoning and dialectics are
motivated by reasoning under uncertainty or in contested domains, or to explore
human reasoning; assurance cases are a different type of application, where the goal
is to develop an unimpeachable argument based on agreed evidence.

Although guidelines and standards might not have such a sound intellectual
foundation as assurance cases, they do seem to work, and one of the reasons may be
the intense challenge and scrutiny these undergo in committee. It is reasonable to
be concerned that a bespoke assurance case may not receive such effective scrutiny.

110



It is plausible that assurance cases could largely be assembled in a modular
fashion from pre-developed and “validated” component subcases. The blocks and
patterns developed for CAE and GSN are significant steps in this direction. The
danger, of course, is that safety and other critical properties are seldom composi-
tional (i.e., the safety of parts does not imply safety of the whole) so this may merely
replace concern about the inner details of subcases by concern for the relevance and
appropriateness of a pre-developed subcase in its specific context. Nonetheless, this
is a fertile area for investigation. Assurance is currently a craft, where apprentices
must learn by experience at the knee of a master; predefined subcases would help
codify the “lore” and enable the transition from craft to engineering. What seems
desirable is the rigor of CAE blocks combined with the larger scope of GSN patterns.

We recommend that guidelines and standards should be restructured as as-
surance cases: at first retrospectively, as with Michael Holloway’s Explicate’78
project [66–68], and then prospectively, as they are revised. This can do no harm—
indeed, might improve them—but would make it much easier to adapt them to new
contexts (e.g., new kinds of systems, such as low-altitude UAS, new combinations
of systems, such as NextGen, and new methods of assurance, such as sound or un-
sound static analysis), and would also provide a source of “validated subcases” for
the construction of bespoke cases.

A more aggressive proposal (which we first heard from John Knight [79]) calls
for wholesale replacement of existing standards—for example, DO-178C (software)
and all its supplements, DO-254 (complex hardware), DO-197 (Integrated Modular
Avionics), DO-278A (Air Traffic Management), ARP 4754A (aircraft systems)—
by a single generic assurance case for “design assurance” plus guidelines on “best
practice” for its instantiation and application to different technical areas. This
would couple well with another aggressive proposal (which we first heard from Alan
Wassyng) that fully bespoke assurance cases should be discouraged and instantiation
of standardized templates encouraged. The reason for this is that it is difficult to
avoid confirmation bias and hard to obtain really effective review for fully bespoke
cases, whereas standardized templates could draw on the same dialectical committee
processes that seem to be quite effective for conventional standards and guidelines.
We are sympathetic to these proposals.

We regret the graphical focus of current assurance case notations such as CAE
and GSN: we accept that diagrams can be effective means of communication (at least
for small problems, or for fragments of larger ones) but would prefer to see these as
renderings of a textual base language having a well-defined semantics that pays full
attention to issues such as scoping of names, and the logical context in which claims
are interpreted. Such a language could have graphical renderings that (exactly)
resemble CAE or GSN, but would provide a much stronger basis for automated
support and analysis.

111



Stronger relationships between the presentation of assurance cases and the safety
engineering that shapes their construction seems desirable. The identification of
hazards is of central importance in most approaches to safety engineering and is
itself strongly influenced by the accident causation model (ACM) employed. Despite
their importance, no literature relating ACMs and assurance cases has been found;
nor is their much discussion on the relationships between assurance cases and safety
methods such as FTA and FMEA. These topics deserve further investigation.

We are intrigued by futuristic ideas expressed in the DEOS [120] and AMADEOS
[4] projects and by the SM@RT (Safety Models at RunTime) community [122], which
anticipate that safety-critical systems might assemble dynamically (as, for example,
when an agricultural implement attaches to a tractor, or a pulse oximeter is con-
nected to the same patient as an analgesia-dispensing infusion pump). Conceptually,
the component systems exchange their assurance cases and a case for the composed
system is calculated at runtime [109,110], possibly with automated synthesis of pro-
tective wrappers—which is feasible (if, indeed, it is feasible) only if the constituent
cases are represented in a form that supports automated interpretation and anal-
ysis. Similar ideas can be used to “update” an assurance case when the system is
modified or its environment changes [28].

Finally, we observe that construction and evaluation of a system assurance case
is one of the most challenging and intellectually stimulating of human endeavors;
it draws on topics that have occupied mankind since the dawn of philosophical
inquiry—argumentation, logic, and epistemology—but aims to reintegrate and apply
these at industrial scale, and to partially automate their support and evaluation.
This is a rich field for theoretical and practical research and socially productive
application.

112



References

1. ASCAD: Adelard Safety Case Development Manual. Adelard LLP, London,
UK, 1998. Available from http://www.adelard.com/resources/ascad/. 21,
55

2. Leonard Adelman, Paul E. Lehner, Brant A. Cheikes, and Mark F Taylor. An
empirical evaluation of structured argumentation using the Toulmin argument
formalism. IEEE Transactions on Systems, Man, and Cybernetics—Part A:
Systems and Humans, 37(3):340–347, May 2007. 92, 93

3. M. Anthony Aiello, Ashlie B. Hocking, John Knight, and Jonathan Rowanhill.
SCT: A safety case toolkit. In ASSURE: Second International Workshop on
Assurance Cases for Software-Intensive Systems [71], pages 216–219. 69

4. Basic SoS Concepts, Glossary and Preliminary Conceptual Model. AMADEOS
Project, June 2014. http://amadeos-project.eu/documents/public-

deliverables/. 112

5. B. Scott Andersen and George Romanski. Verification of safety-critical soft-
ware. Communications of the ACM, 54(10):52–57, 2011. 24

6. Anaheed Ayoub, Jian Chang, Oleg Sokolsky, and Insup Lee. Assessing the
overall sufficiency of safety arguments. In Chris Dale and Tom Anderson,
editors, Assuring the Safety of Systems: Proceedings of the 21st Safety-Critical
Systems Symposium, pages 127–144, Bristol, UK, February 2013. 100

7. L. Benner. Accident investigation: Multilinear events sequencing methods.
Journal of Safety Research, 7(2):67–73, 1975. 52

8. Roger E. Bilstein. Orders of Magnitude: A History of the NACA and NASA,
1915-1990. The NASA History Series, Washington DC, November 1989.
NASA/SP-4406. 15

9. Robin Bloomfield and Peter Bishop. Safety and assurance cases: Past, present
and possible future—an Adelard perspective. In Chris Dale and Tom Ander-
son, editors, Advances in System Safety: Proceedings of the Nineteenth Safety-
Critical Systems Symposium, pages 51–67, Bristol, UK, February 2010. 20, 21,
55

10. Robin Bloomfield, Sofia Guerra, and Kateryn Netkachova. Guidance on CAE:
Concepts, Blocks, Templates. Adelard LLP, London, UK, April 2014. Draft.
58, 60

113

http://www.adelard.com/resources/ascad/
http://amadeos-project.eu/documents/public-deliverables/
http://amadeos-project.eu/documents/public-deliverables/


11. Robin Bloomfield and Kateryn Netkachova. Building blocks for assurance
cases. In ASSURE: Second International Workshop on Assurance Cases for
Software-Intensive Systems [71], pages 186–191. 56, 58, 60

12. Luc Bovens and Stephan Hartmann. Bayesian Epistemology. Oxford University
Press, 2003. 99

13. BPMN. OMG Buiness Process Model and Notation BPMN home page. http:
//www.omg.org/spec/BPMN. 74

14. V. Cassano and T. S. E. Maibaum. The definition and assessment of a safety
argument. In ASSURE: Second International Workshop on Assurance Cases
for Software-Intensive Systems [71], pages 180–185. 94

15. Carlos Chesñevar et al. Towards an argument interchange format. The Knowl-
edge Engineering Review, 21(4):293–316, 2006. 72, 94

16. Carlos Iván Chesñevar, Ana Gabriela Maguitman, and Ronald Prescott Loui.
Logical models of argument. ACM Computing Surveys, 32(4):337–383, 2000.
91

17. L. Jonathan Cohen. The Probable and The Provable. Clarendon Press, Oxford,
UK, 1977. 105

18. L. Jonathan Cohen. On the psychology of prediction: Whose is the fallacy?
Cognition, 7:385–407, 1979. 105

19. L. Jonathan Cohen. Whose is the fallacy? a rejoinder to Daniel Kahneman
and Amos Tversky. Cognition, 8:89–92, 1980. 105

20. Simon Cruanes, Grégoire Hamon, Sam Owre, and Natarajan Shankar. Tool
integration with the Evidential Tool Bus. In Roberto Giacobazzi, Josh Berdine,
and Isabella Mastroeni, editors, Verification, Model Checking, and Abstract
Interpretation, 14th International Conference, VMCAI 2013, Volume 7737 of
Springer-Verlag Lecture Notes in Computer Science, pages 275–294, Rome,
Italy, January 2013. 74

21. Simon Cruanes, Stijn Heymans, Ian Mason, Sam Owre, and Natarajan
Shankar. The semantics of Datalog for the Evidential Tool Bus. In S. Iida,
J. Meseguer, and K. Ogata, editors, Specification, Algebra, and Software, A
Festschrift Symposium in Honor of Kokichi Futatsugi, Volume 8373 of Springer-
Verlag Lecture Notes in Computer Science, pages 256–275, Kanazawa, Japan,
April 2014. 74

114

http://www.omg.org/spec/BPMN
http://www.omg.org/spec/BPMN


22. The Hon. Lord William Douglas Cullen. The public inquiry into the Piper
Alpha disaster. Report, The Stationery Office, London, UK, November 1990.
Two volumes. 19

23. The Hon. Lord William Douglas Cullen. The development of safety legislation.
Royal Academy of Engineering and Royal Society of Edinburgh Lecture, 1996.
Available at http://www.scribd.com/doc/57924918/THE-DEVELOPMENT-OF-
SAFETY-LEGISLATION. 14

24. D-Case. D-Case Editor home page. http://www.dcase.jp/editor_en.html.
71

25. Ewen Denney, Dwight Naylor, and Ganesh Pai. Querying safety cases. In
SafeComp 2014: Proceedings of the 33rd International Conference on Com-
puter Safety, Reliability, and Security, Volume 8666 of Springer-Verlag Lecture
Notes in Computer Science, pages 294–309, Florence, Italy, September 2014.
70

26. Ewen Denney and Ganesh Pai. Automating the assembly of aviaiton safety
cases. IEEE Transactions on Reliability, 63(4):830–849, December 2014. 70

27. Ewen Denney, Ganesh Pai, and Ibrahim Habli. Towards measurement of confi-
dence in safety cases. In Fifth International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 380–383, IEEE Computer Soci-
ety, Banff, Canada, September 2011. 100

28. Ewen Denney, Ganesh Pai, and Ibrahim Habli. Dynamic safety cases for
through-life safety assurance. In Proceedings of the 37th International Confer-
ence on Software Engineering (ICSE), New Ideas and Emerging Results Track
(NIER), Florence, Italy, May 2015. 112

29. Ewen Denney, Ganesh Pai, and Joe Pohl. AdvoCATE: An assurance case
automation toolset. In Proceedings of the Workshop on Next Generation of
System Assurance Approaches for Safety Critical Systems (SASSUR), Magde-
burg, Germany, September 2012. 70

30. Ewen Denney, Ganesh Pai, and Iain Whiteside. Hierarchical safety cases. In
NASA Formal Methods, Volume 7871 of Springer-Verlag Lecture Notes in Com-
puter Science, pages 478–483, Mountain View, CA, May 2013. 70

31. George Despotou. GSN Reference Card. University of York, UK, v1.2 edition,
2010. Available at http://bit.ly/cEWA5B. 62

32. Homayoon Dezfuli et al. NASA System Safety Handbook Volume 1, System
Safety Framework and Concepts for Implementation. NASA Headquarters,
Washington DC, November 2011. NASA/SP-2010-580. 22

115

http://www.scribd.com/doc/57924918/THE-DEVELOPMENT-OF-SAFETY-LEGISLATIO N
http://www.scribd.com/doc/57924918/THE-DEVELOPMENT-OF-SAFETY-LEGISLATIO N
http://www.dcase.jp/editor_en.html
http://bit.ly/cEWA5B


33. N. Dulac. A Framework for Dynamic Safety and Risk Management Model-
ing in Complex Engineering Systems. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, 2007. 54

34. John Earman. Bayes or Bust? A Critical Examination of Bayesian Confirma-
tion Theory. MIT Press, 1992. 99

35. John Earman, John Roberts, and Sheldon Smith. Ceteris Paribus lost. Erken-
ntnis, 57(3):281–301, 2002. 98

36. E. Edwards. Man and machines: Systems for safety. In Proceedings of the
BALPA Technical Symposium, pages 21–36, London, UK, 1972. 53

37. Luke Emmet. Quantitative Confidence Propagation Across ASCE Net-
works? Adelard LPP, London, UK, December 2013. Slide presen-
tation at http://www.adelard.com/asce/user-group/4-Dec-2013/ASCE_

confidence_propagation%20-%20Luke%20Emmet.pdf. 62

38. Luke Emmet and George Cleland. Graphical notations, narratives and persua-
sion: A pliant systems approach to hypertext tool design. In Thirteenth ACM
Conference on Hypertext and Hypermedia, pages 55–64, ACM, College Park,
MD, June 2002. 61

39. Guidelines on the Systemic Occurrence Analysis Methodology (SOAM), EAM
2/GUI 8. EUROCONTROL, Brussels, Belgium, 2005. Available at http:

//www.skybrary.aero/bookshelf/books/275.pdf. 53

40. Certification Specifications and Acceptable Means of Compliance for Large
Aeroplanes, CS-25 and AMC-25. The European Aviation Safety Agency
(EASA), July 2011. Amendment 11; available at http://www.easa.eu.int/

agency-measures/certification-specifications.php#CS-25. 16

41. Conducting Software Reviews Prior to Certification. FAA Aircraft Certification
Service, rev 1 edition, January 2004. Software Review Job Aid. 24

42. Saeed Fararooy. Managing a system safety case in an integrated environ-
ment. Available at http://www.iscade.co.uk/downloads/rcm2sf_rhas_

paper.pdf. 69

43. Special Conditions: Boeing Model 787-8 Airplane; Systems and Data Networks
Security-Protection of Airplane Systems and Data Networks from Unauthorized
External Access. Federal Aviation Administration, December 28, 2007. Listed
in the Federal Register on date shown. 16

116

http://www.adelard.com/asce/user-group/4-Dec-2013/ASCE_confidence_propa gation%20-%20Luke%20Emmet.pdf
http://www.adelard.com/asce/user-group/4-Dec-2013/ASCE_confidence_propa gation%20-%20Luke%20Emmet.pdf
http://www.skybrary.aero/bookshelf/books/275.pdf
http://www.skybrary.aero/bookshelf/books/275.pdf
http://www.easa.eu.int/agency-measures/certification-specifications.php #CS-25
http://www.easa.eu.int/agency-measures/certification-specifications.php #CS-25
http://www.iscade.co.uk/downloads/rcm2sf_rhas_paper.pdf
http://www.iscade.co.uk/downloads/rcm2sf_rhas_paper.pdf


44. Air Traffic Organization Safety Management System Manual, Version 2.1.
Federal Aviation Administration, 2008. Available at http://www.faa.gov/

air_traffic/publications/media/ATOSMSManualVersion2-1_05-27-08_

Final.pdf. 53

45. John B. Goodenough, Charles B. Weinstock, and Ari Z. Klein. Eliminative
argumentation: A basis for arguing confidence in system properties. Tech-
nical Report CMU/SEI-2014-TR-013, Carnegie Mellon Software Engineering
Institute, Pittsburgh, PA, 2014. 105

46. Thomas F. Gordon, Henry Prakken, and Douglas Walton. The Carneades
model of argument and burden of proof. Artificial Intelligence, 171(10):875–
896, 2007. 94

47. Patrick J. Graydon, John C. Knight, and Elisabeth A. Strunk. Assurance-
based development of critical systems. In The International Conference on
Dependable Systems and Networks, pages 347–357, IEEE Computer Society,
Edinburgh, Scotland, June 2007. 67, 73

48. Patrick John Graydon. Towards a clearer understanding of context and its
role in assurance argument confidence. In SafeComp 2014: Proceedings of the
33rd International Conference on Computer Safety, Reliability, and Security,
Volume 8666 of Springer-Verlag Lecture Notes in Computer Science, pages
139–154, Florence, Italy, September 2014. 65

49. William S. Greenwell, John C. Knight, C. Michael Holloway, and Jacob J.
Pease. A taxonomy of fallacies in system safety arguments. In Proceedings of
the 24th International System Safety Conference, Albuquerque, NM, 2006. 88

50. GSN Community Standard Version 1. GSN Working Group, York, UK, 2011.
Available at http://www.goalstructuringnotation.info/. 45, 62, 63, 64,
65, 69

51. Charles Haddon-Cave. The Nimrod Review: An independent review into the
broader issues surrounding the loss of the RAF Nimrod MR2 Aircraft XV230
in Afghanistan in 2006. Report, The Stationery Office, London, UK, Octo-
ber 2009. Available at http://www.official-documents.gov.uk/document/
hc0809/hc10/1025/1025.pdf. 102, 106

52. Charles B. Haley, Robin Laney, Jonathan D. Moffett, and Bashar Nuseibeh.
Security requirements engineering: A framework for representation and anal-
ysis. IEEE Transactions on Software Engineering, 34(1):133–153, 2008. 104

53. David Hamilton, Rick Covington, and John Kelly. Experiences in applying
formal methods to the analysis of software and system requirements. In WIFT

117

http://www.faa.gov/air_traffic/publications/media/ATOSMSManualVersion2- 1_05-27-08_Final.pdf
http://www.faa.gov/air_traffic/publications/media/ATOSMSManualVersion2- 1_05-27-08_Final.pdf
http://www.faa.gov/air_traffic/publications/media/ATOSMSManualVersion2- 1_05-27-08_Final.pdf
http://www.goalstructuringnotation.info/
http://www.official-documents.gov.uk/document/hc0809/hc10/1025/1025.pdf 
http://www.official-documents.gov.uk/document/hc0809/hc10/1025/1025.pdf 


’95: Workshop on Industrial-Strength Formal Specification Techniques, pages
30–43, IEEE Computer Society, Boca Raton, FL, 1995. 31

54. Code of Hammurabi, c. 1772 BC. English translation by L.W. King available
at http://eawc.evansville.edu/anthology/hammurabi.htm. 13

55. Richard Hawkins, Kester Clegg, Rob Alexander, and Tim Kelly. Using a soft-
ware safety argument pattern catalogue: Two case studies. In SafeComp
2011: Proceedings of the 30th International Conference on Computer Safety,
Reliability, and Security, volume 6894 of Lecture Notes in Computer Science,
pages 185–198. Springer-Verlag, Naples, Italy, September 2011. 66

56. Richard Hawkins and Tim Kelly. A systematic approach for developing soft-
ware safety arguments. Journal of System Safety, 46(4):25–33, 2010. 66

57. Richard Hawkins, Tim Kelly, John Knight, and Patrick Graydon. A new
approach to creating clear safety arguments. In Chris Dale and Tom Ander-
son, editors, Advances in System Safety: Proceedings of the Nineteenth Safety-
Critical Systems Symposium, pages 3–23, Southampton, UK, February 2011.
67, 69, 97

58. James Hawthorne. Bayesian induction IS eliminative induction. Philosophical
Topics, 21(1):99–138, 1993. 105

59. Using Safety Cases in Industry and Healthcare. The Health Foundation, Lon-
don UK, December 2012. 22

60. H. W. Heinrich, D. Petersen, and N. Roos. Industrial Accident Prevention.
McGraw-Hill, New York, NY, 1980. 52

61. Carl G. Hempel. Provisoes: A problem concerning the inferential function of
scientific theories. Erkenntnis, 28:147–164, 1988. Also in conference proceed-
ings “The Limits of Deductivism,” edited by Adolf Grünbaum and W. Salmon,
University of California Press, 1988. 98

62. E. G. Hiller. On the working of the boiler explosions acts 1882 and 1890.
Transactions of the Institution of Mechanical Engineers, xvii:19–53, 1898. 14

63. Erik Hollnagel. Barriers and Accident Prevention. Ashgate, Aldershot, UK,
2004. 53

64. Erik Hollnagel. Human factors: From liability to asset, 2007. Available at
http://www.vtt.fi/liitetiedostot/muut/HFS07Hollnagel.pdf. 52

118

http://eawc.evansville.edu/anthology/hammurabi.htm
http://www.vtt.fi/liitetiedostot/muut/HFS07Hollnagel.pdf


65. C. Michael Holloway. Safety case notations: Alternatives for the non-
graphically inclined? In 3rd IET International Conference on System Safety,
The Institutions of Engineering and Technology, Birmingham, UK, October
2008. 45

66. C. Michael Holloway. Towards understanding the DO-178C/ED-12C assurance
case. In 7th IET International Conference on System Safety, The Institution
of Engineering and Technology, Edinburgh, UK, October 2012. 111

67. C. Michael Holloway. Making the implicit explicit: Towards an assurance
case for DO-178C. In Proceedings of the 31st International System Safety
Conference, Boston, MA, August 2013. 108, 111

68. C. Michael Holloway. Explicate ’78: Discovering the implicit assurance case in
DO-178C. In Mike Parsons and Tom Anderson, editors, Engineering Systems
for Safety. Proceedings of the 23rd Safety-critical Systems Symposium, pages
205–225, Bristol, UK, February 2015. 2, 9, 108, 111

69. Alfred Horn. On sentences which are true of direct unions of algebras. Journal
of Symbolic Logic, 16(1):14–21, 1951. 25

70. Patrick J. Hurley. A Concise Introduction to Logic. Cengage Learning, 12th
edition, 2015. 22

71. ASSURE: Second International Workshop on Assurance Cases for Software-
Intensive Systems, Naples, Italy, November 2014. IEEE International Sympo-
sium on Software Reliability Engineering Workshops. 113, 114

72. J. R. Inge. The safety case: Its development and use in the United Kingdom.
In Equipment Safety Assurance Symposium, 2007. 20

73. IEC 61508—Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-Related Systems. International Electrotechnical Commission,
Geneva, Switzerland, March 2004. Seven volumes; see http://www.iec.ch/

zone/fsafety/fsafety_entry.htm. 45

74. Leslie A. (Schad) Johnson. DO-178B, “Software Considerations in Airborne
Systems and Equipment Certification”. Crosstalk, October 1998. See http:

//www.crosstalkonline.org/back-issues/ and http://www.dcs.gla.ac.

uk/~johnson/teaching/safety/reports/schad.html. 17, 18

75. Jonathan S. Kahan. Premarket approval versus premarket notification: Differ-
ent routes to the same market. Food, Drug, Cosmetic Law Journal, 39:510–525,
1984. 60

119

http://www.iec.ch/zone/fsafety/fsafety_entry.htm
http://www.iec.ch/zone/fsafety/fsafety_entry.htm
http://www.crosstalkonline.org/back-issues/
http://www.crosstalkonline.org/back-issues/
http://www.dcs.gla.ac.uk/~johnson/teaching/safety/reports/schad.html
http://www.dcs.gla.ac.uk/~johnson/teaching/safety/reports/schad.html


76. Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011.
88

77. Daniel Kahneman and Amos Tversky. On the interpretation of intuitive prob-
ability: A reply to Johnathan Cohen. Cognition, 7:409–411, 1979. 105

78. Tim Kelly. Arguing Safety—A Systematic Approach to Safety Case Manage-
ment. DPhil thesis, Department of Computer Science, University of York, UK,
1998. 21, 62, 66, 67

79. John C. Knight. Advances in Software Technology Since 1992 and a Modest
Proposal for their Incorporation Into Certification. University of Virgina, 2008.
Presented to annual FAA Software Assurance workshop; available at http:

//www.cs.virginia.edu/7Ejck/publications/FAA.SW.AEH.2008.PDF. 111

80. Kimio Kuramtisu. D-Script: Dependable scripting with DEOS process. In
3rd International Workshop on Open Systems Dependability (WOSD), pages
326–330, Pasadena, CA, November 2013. Workshop held in association with
ISSRE’13. 70

81. Nancy Leveson. The use of safety cases in certification and regulation. Journal
of System Safety, 47(6):1–5, 2011. 101

82. Nancy G. Leveson. A new accident model for engineering safer systems. Safety
Science, 42(4):237–270, 2004. 53

83. Nancy G. Leveson. Engineering a Safer World: System Thinking Applied to
Safety. MIT Press, Cambridge, MA, 2011. 53

84. Yukata Matsuno. A design and implementation of an assurance case language.
In The International Conference on Dependable Systems and Networks, pages
630–641, IEEE Computer Society, Atlanta, GA, June 2014. 71

85. Yukata Matsuno. Design and implementation of GSN patterns: A step toward
assurance case language. Information Processing Society of Japan, Transac-
tions on Programming, 7(2):1–10, 2014. 67, 71

86. Catherine Menon, Richard Hawkins, and John McDermid. Interim standard
of best practice on software in the context of DS 00-56 Issue 4. Document
SSEI-BP-000001, Software Systems Engineering Initiative, University of York,
UK, August 2009. 66

87. Susan Newman and Catherine Marshall. Pushing Toulmin too far: Learning
from an argument representation scheme. Technical Report SSL-92-45, Xerox
PARC, Palo Alto, CA, 1992. 93

120

http://www.cs.virginia.edu/7Ejck/publications/FAA.SW.AEH.2008.PDF
http://www.cs.virginia.edu/7Ejck/publications/FAA.SW.AEH.2008.PDF


88. Sven Nordhoff. DO-178C/ED-12C. SQS Software Quality Systems, Cologne,
Germany, Undated. White Paper available at http://www.sqs.com/us/

_download/DO-178C_ED-12C.pdf. 24

89. Infusion Pumps Total Product Life Cycle Guidance for Industry
and FDA Staff. Office of Device Evaluation, Center for Devices
and Radiological Health, Food and Drug Administration, December
2014. Available at http://www.fda.gov/downloads/MedicalDevices/

DeviceRegulationandGuidance/GuidanceDocuments/UCM209337.pdf. 22

90. Sascha Ossowski, editor. Agreement Technologies. Law, Governance and Tech-
nology Series, vol. 8. Springer, 2013. 91, 94

91. D. L. Parnas and P. C. Clements. A rational design process: How and why
to fake it. IEEE Transactions on Software Engineering, SE-12(2):251–257,
February 1986. Correction: Aug 86, page 874. 24

92. John L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person.
MIT Press, 1995. 104

93. Karl Popper. The Logic of Scientific Discovery. Routledge, 2014. First pub-
lished in German 1934, English 1959. 105

94. John D. Ramage, John C. Bean, and June Johnson. Writing Arguments: A
Rhetoric With Readings. Longman, 10th edition, 2015. 85

95. RCM2 Limited. Specification for ISCaDE Pro. Available at http://www.

iscade.co.uk/downloads/ISCaDEProWhitePaper.pdf. 69

96. J. Reason, E. Hollnagel, and Paries. J. Revisiting the “Swiss Cheese” Model of
Accidents. EUROCONTROL, Brussels, Belgium, 2006. 52

97. James Reason. Human Error. Cambridge University Press, Cambridge, UK,
1990. 52, 53

98. Felix Redmill. ALARP explored. Technical Report CS-TR-1197, Department
of Computing Science, University of Newcastle upon Tyne, UK, March 2010.
60

99. Chris Reed and Glenn Rowe. Araucaria: Software for argument analysis, dia-
gramming and representation. International Journal on Artificial Intelligence
Tools, 13(4):961–979, 2004. 94

100. Chris Reed, Douglas Walton, and Fabrizio Macagno. Argument diagramming
in logic, law and artificial intelligence. The Knowledge Engineering Review,
22(01):87–109, 2007. 21, 94

121

http://www.sqs.com/us/_download/DO-178C_ED-12C.pdf
http://www.sqs.com/us/_download/DO-178C_ED-12C.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance /GuidanceDocuments/UCM209337.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance /GuidanceDocuments/UCM209337.pdf
http://www.iscade.co.uk/downloads/ISCaDEProWhitePaper.pdf
http://www.iscade.co.uk/downloads/ISCaDEProWhitePaper.pdf


101. DO-178B: Software Considerations in Airborne Systems and Equipment Cer-
tification. Requirements and Technical Concepts for Aviation (RTCA), Wash-
ington, DC, December 1992. This document is known as EUROCAE ED-12B
in Europe. 18

102. DO-178C: Software Considerations in Airborne Systems and Equipment Cer-
tification. Requirements and Technical Concepts for Aviation (RTCA), Wash-
ington, DC, December 2011. 1, 10, 18, 23, 24, 25, 27

103. DO-330: Software Tool Qualification Considerations. Requirements and Tech-
nical Concepts for Aviation (RTCA), Washington, DC, December 2011. 18

104. DO-331: Model-Based Development and Verification Supplement to DO-178C
and DO-278A. Requirements and Technical Concepts for Aviation (RTCA),
Washington, DC, December 2011. 18

105. DO-332: Object-Oriented Technology and Related Techniques Supplement to
DO-178C and DO-278A. Requirements and Technical Concepts for Aviation
(RTCA), Washington, DC, December 2011. 18

106. DO-333: Formal Methods Supplement to DO-178C and DO-278A. Require-
ments and Technical Concepts for Aviation (RTCA), Washington, DC, De-
cember 2011. 18

107. The Hon. Lord Alfred Robens et al. Safety and health at work: Report of the
committee 1970-72. Report, The Stationery Office, London, UK, June 1972.
19

108. J. Roxborough. Basic safety training for personnel. In Safety and Health in the
Oil and Gas Extractive Industries, Proceedings of an International Symposium,
pages 97–109, Commission of The European Communities, Luxembourg, April
1983. 13

109. John Rushby. Just-in-time certification. In 12th IEEE International Con-
ference on the Engineering of Complex Computer Systems (ICECCS), pages
15–24, IEEE Computer Society, Auckland, New Zealand, July 2007. 112

110. John Rushby. Runtime certification. In Martin Leucker, editor, Eighth Work-
shop on Runtime Verification: RV08, Volume 5289 of Springer-Verlag Lecture
Notes in Computer Science, pages 21–35, Budapest, Hungary, April 2008. 112

111. John Rushby. New challenges in certification for aircraft software. In Sanjoy
Baruah and Sebastian Fischmeister, editors, Proceedings of the Ninth ACM
International Conference On Embedded Software: EMSOFT, pages 211–218,
Association for Computing Machinery, Taipei, Taiwan, 2011. 24

122



112. SACM. OMG Structured Assurance Case Metamodel (SACM) home page.
http://www.omg.org/spec/SACM/. 71

113. Aerospace Recommended Practice (ARP) 4754: Certification Considerations
for Highly-Integrated or Complex Aircraft Systems. Society of Automotive
Engineers, November 1996. Also issued as EUROCAE ED-79; revised as ARP
4754A, December 2010. 24

114. Aerospace Recommended Practice (ARP) 4761: Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne Systems and
Equipment. Society of Automotive Engineers, December 1996. 24

115. Mark Staples. Critical rationalism and engineering: Ontology. Synthese,
191(10):2255–2279, July 2014. 99

116. Mark Staples. Critical rationalism and engineering: Methodology. Synthese,
192(1):337–362, January 2015. 99

117. Frederick Suppe. Hempel and the problem of provisos. In James H. Fetzer,
editor, Science, Explanation, and Rationality: Aspects of the Philosophy of
Carl G. Hempel, chapter 8, pages 186–213. Oxford University Press, 2000. 98

118. Toshinori Takai and Hiroyuki Kido. A supplemental notation of GSN to deal
with changes of assurance cases. In 4th International Workshop on Open Sys-
tems Dependability (WOSD), pages 461–466, IEEE International Symposium
on Software Reliability Engineering Workshops, Naples, Italy, November 2014.
69, 71, 94

119. Nguyen Thuy et al. Public case study: The stepwise shutdown system. Deliv-
erable 5.4, European Commission HARMONICS Project, January 2015. Avail-
able at http://harmonics.vtt.fi/publications.htm. 58, 60

120. Mario Tokoro. Open Systems Dependability—Dependability Engineering for
Ever-Changing Systems. CRC Press, 2013. 70, 112

121. Stephen Edelston Toulmin. The Uses of Argument. Cambridge University
Press, 2003. Updated edition (the original is dated 1958). 21, 23, 55, 92

122. Mario Trapp and Daniel Schneider. Safety assurance of open adaptive
systems—a survey. In Nelly Bencomo, Robert France, Betty H.C. Cheng, and
Uwe Assmann, editors, Models@Run.Time: Foundations, Applications, and
Roadmaps, volume 8378 of Lecture Notes in Computer Science, pages 279–318.
Springer-Verlag, 2014. 112

123

http://www.omg.org/spec/SACM/
http://harmonics.vtt.fi/publications.htm


123. Defence Standard 00-56, Issue 4: Safety Management Requirements for De-
fence Systems. Part 1: Requirements. UK Ministry of Defence, June 2007.
Available at http://www.dstan.mod.uk/data/00/056/01000400.pdf. 22, 23,
53, 85

124. Sebastian Voss, Bernhard Schätz, Maged Khalil, and Carmen Carlan. Towards
modular certification using integrated model-based safety cases, July 2013. Pre-
sented at VeriSure 2013, part of CAV; available at http://download.fortiss.
org/public/projects/af3/research/2013/SafetyCasesinAF3.pdf. 70

125. Carl G. Wagner. Review: The probably and the provable. by jonathan l. cohen.
Duke Law Journal, 28(4):1071–1082, 1979. 105

126. Alan Wassyng, Tom Maibaum, Mark Lawford, and Hans Bherer. Software cer-
tification: Is there a case against safety cases? In Radu Calinescu and Ethan
Jackson, editors, 16th Monterey Workshop: Foundations of Computer Soft-
ware. Modeling, Development, and Verification of Adaptive Systems, Volume
6662 of Springer-Verlag Lecture Notes in Computer Science, pages 206–227,
Redmond, WA, 2011. 101

127. Rob A. Weaver. The Safety of Software—Constructing and Assuring Argu-
ments. PhD thesis, Department of Computer Science, University of York, UK,
2003. 66

128. Charles B. Weinstock, John B. Goodenough, and Ari Z. Klein. Measuring
assurance case confidence using Baconian probabilities. In 1st International
Workshop on Assurance Cases for Software-Intensive Systems (ASSURE), San
Francisco, CA, May 2013. 105

129. S. P. Wilson, T. P. Kelly, and J. A. McDermid. Safety case development: Cur-
rent practice, future prospects. In Roger Shaw, editor, Safety and Reliability
of Software Based Systems (Twelfth Annual CSR Workshop), pages 135–156,
Bruges, Belgium, September 1995. 21, 62

130. S. P. Wilson, J. A. McDermid, C. Pygott, and D. J. Tombs. Assessing com-
plex computer based systems using the goal structuring notation. In Seconf
IEEE International Conference on the Engineering of Complex Computer Sys-
tems (ICECCS), pages 498–505, IEEE Computer Society, Montreal, Canada,
October 1996. 21, 62

131. David Wright and Kai-Yuan Cai. Representing uncertainty for safety critical
systems. PRDCS Technical Report 135, City University, London, UK, May
1994. 99

124

http://www.dstan.mod.uk/data/00/056/01000400.pdf
http://download.fortiss.org/public/projects/af3/research/2013/SafetyCas esinAF3.pdf
http://download.fortiss.org/public/projects/af3/research/2013/SafetyCas esinAF3.pdf


132. X. Xu, M. L. Ulrey, J. A. Brown, J. Mast, and M. B. Lapis. Safety sufficiency
for NextGen: Assessment of selected existing safety methods, tools, processes,
and regulations. Contractor report, NASA Langley Research Center, Hampton,
VA, 2013. 54

133. Fan Ye. Justifying the Use of COTS Components within Safety Critical Ap-
plications. PhD thesis, Department of Computer Science, University of York,
UK, 2005. 66

134. Fan Ye and George Cleland. Weapons Operating Centre Approved Code of
Practice for Electronic Safety Cases. Adelard LLP, London, UK, March 2012.
61

135. Tangming Yuan and Tim Kelly. Argument schemes in computer system safety
engineering. Informal Logic, 31(2):89–109, 2011. 61

136. Fuping Zeng, Manyan Lu, and Deming Zhong. Using D-S evidence theory
to evaluation of confidence in safety case. Journal of Theoretical and Applied
Information Technology, 47(1):184–189, January 2013. 100

125



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2.  REPORT TYPE 

Contractor Report
 4.  TITLE AND SUBTITLE

Understanding and Evaluating Assurance Cases

5a. CONTRACT NUMBER

NNL13AC555T

 6.  AUTHOR(S)

Rushby, John; Xu, Xidong; Rangarajan, Murali; Weaver, Thomas L.

 7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

  NASA Langley Research Center
  Hampton, Virginia 23681-2199                                                                    
                                                                                                                                     

 9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546-0001

 8. PERFORMING ORGANIZATION
     REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: C. Michael Holloway

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified 
Subject Category  62
Availability:   NASA STI Program (757) 864-9658

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email:  help@sti.nasa.gov)

14. ABSTRACT

Assurance cases are a method for providing assurance for a system by giving an argument to justify a claim about the system, 
based on evidence about its design, development, and tested behavior. In comparison with assurance based on guidelines or 
standards (which essentially specify only the evidence to be produced), the chief novelty in assurance cases is provision of an 
explicit argument. In principle, this can allow assurance cases to be more finely tuned to the specific circumstances of the 
system, and more agile than guidelines in adapting to new techniques and applications. The first part of this report (Sections 1–
4) provides an introduction to assurance cases. A brief survey of some existing assurance cases is provided in Section 5. The 
second part (Section 6) considers the criteria, methods, and tools that may be used to evaluate whether an assurance case 
provides sufficient confidence that a particular system or service is fit for its intended use.

15. SUBJECT TERMS

Argument; Assurance; Assurance cases; Certification

18. NUMBER
      OF 
      PAGES

136
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

a.  REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF 
      ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3.  DATES COVERED (From - To)

15 October 2013 to 16 September 2014

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

534723.02.02.07.10 

11. SPONSOR/MONITOR'S REPORT
      NUMBER(S)

NASA/CR-2015-218802

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY)

09 - 201501-


	List of Figures
	Executive Summary
	Introduction
	Assurance Cases in a Historical Perspective
	Early Industrial Regulations and Codes
	Civil Aviation Regulations and Guidelines
	Safety Cases
	Structured Safety Cases

	Assurance Case Principles
	A Software Assurance Case
	Derived Requirements

	A System Assurance Case
	Assurance Cases and Accident Causation Models

	Assurance Case Notations and Tools
	CAE: Claims-Argument-Evidence
	CAE Building Blocks
	CAE Tools

	GSN: Goal Structuring Notation
	Modularity and Patterns in GSN
	Assured Safety Arguments
	GSN Tools

	Other Approaches, Notations, and Tools
	DEOS and Related Work in Japan
	Interchange Formats
	Relation to Formal Methods
	Assurance Case Workflows


	Survey of Some Existing Assurance Cases
	Eurocontrol Whole Airspace ATM 
	The EUR RVSM Pre-Implementation Safety Case 
	ACAS II Post-Implementation Safety Case 
	Nimrod Safety Case; Phases 1, 2, and 3 
	London Underground Railway Safety Case 
	Tube Lines' Contractual Safety Case 
	Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment 
	Tokamak Fusion Test Reactor Deuterium-Tritium Campaign 
	Joint European Torus Deuterium-Tritium Operation 
	The Safety Case for the use of Fuel Elements and Stringer Components having Sleeves and Retaining Rings made from Graphite Produced with Bilbaina Binder Pitch 
	Development of a Safety Case for the Use of Current Limiting Devices to Manage Short Circuit Currents on Electrical Distribution Networks 
	Project Opalinus Clay 
	Scottish Power Process Safety Management 
	Towards an Assurance Case Practice for Medical Devices 

	Assurance Case Evaluation
	Assurance Cases and Argumentation
	Logic
	Defeasible Logic
	Inductive and Toulmin-Style Arguments
	Argumentation and Dialectics

	Assessing the Soundness and Strength of an Assurance Case
	What Assurance Case Assessment Must Accomplish
	How Assurance Case Assessment Might Be Performed
	Graduated Assurance


	Conclusion
	References



