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ABSTRACT 

The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA 

Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus 

Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked 

line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the 

original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be 

installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be 

used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship 

information and matrix transfonnations necessary to determine star tracker alignment. Unfortunately, due to 

unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube 

calibration data, we required a method that could be used to measure the same reference cube faces as originally 

meas'lfed by the vendor. We describe an alternative technique to theodolite autocollimation for measurement of an 

optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was 

used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also 

discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular 

metrology data. 
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1. INTRODUCTION 

Theodolite autocollimation metrology continues to be an important part of spacecraft optical alignment. Spacecraft 

optical alignment is an art as well as a science for using optical instruments to place or determine the orientation and 

envelope of critical components on space flight hardware. It commonly employs the use of theodolites, alignment 

telescopes, autocollimators, tilting levels and optical transits, but may also include the use of coordinate measurement 

systems such as the laser tracker, laser radar, and coordinate measurement machine (CMM). The subject components are 

typically scientific instruments and attitude control system components such as star trackers, gyroscopes, sun and earth 

sensors, thrusters, or any feature that can be characterized with a unique pointing direction in space. 

The end-to-end optical alignment of NASA's Global Precipitation Measurement (GPM) Spacecraft, which is scheduled 

to launch in early 2014, is an example of how spacecraft optical alignment is currently practiced by the Alignment, 

Integration and Test (AI&T) Group of the Optics Branch at NASA's Goddard Space Flight Center (GSFC). This paper 

specifically addresses the theory of theodolite autocollimation data analysis from measurements on 0.75 and 1.0 inch 

optical reference cubes (although other size reflectors are often used) as a preface to understanding an innovative 

appHcation used on GPM and other NASA missions. 
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2. THEODOLITE AUTOCOLLIMATION MEASUREMENTS 

A theodolite is a small, movable telescope that is mounted within two perpendicular axes of rotation, one vertical and 

one horizontal. The circles of rotation are precisely calibrated to mark the angle of rotation about each axis, thus 

providing the angular orientation of the telescope. The horizontal (azimuth) and vertical (elevation) circles of a 

theodolite are graduated from 0 to 360°. For theodolites used by the GSFC AI&T Group, the zero reading of the 

elevation (vertical circle) indicates the direction exactly opposite to that of gravity, while an elevation reading of 90° or 

270° is the direction perpendicular to gravity. However, other theodolite conventions are possible. Furthermore, 

theodolites may be first order, having a resolution ofO.l arc sec, or second order, having a resolution of 1 arc sec. 

Spacecraft optical alignment at the GSFC makes use offtrst order theodolites, exclusively. 

Theodolite autocollimation measurements are used to determine the relative alignment between various components on a 

test object with respect to a common coordinate system. Generally, the optical axis of each component has been 

previously related to an external optical reference surface, such as a mirror or an optical reference cube, mounted rigidly 

to the component. The theodolite autocollimation measurement of any optical reference mirror or cube face requires that 

the theodolite be properly positioned at a vertical and horizontal position that allows the theodolite to be pointed, using 

its angular adjustments, along a line that intersects the cube face normal to its surface. Autocollimation occurs when 

collimated light emanating from the theodolite is returned along the same path after its reflection from the reflective 

surface (mirror or cube face). A level of skill is required by theodolite operators to gain line-of-sight and to autocollimate 

on various reflective surfaces at various heights and angles that may be required to measure all required cube faces of 

components on a given test object. For a large spacecraft like GPM, a theodolite system consisting of three to four 

theodolites and two to three skilled operators are typically employed. Each theodolite in the system must be critically 

leveled with respect to gravity before a measurement can be made and every measurement must be referenced to the 

''primary" theodolite, which acts as the facility or laboratory azimuth reference for all measurements in the system. The 

theodolite from which light is actually autocollimated on a cube face is called the "subjecf' theodolite for that 

measurement. Often, a subject theodolite cannot be referenced directly to the primary theodolite. The go-between is 

another theodolite called a "secondary" theodolite. The details of the data analysis that lead to the cube face pointing 

directions will be discussed later. 

3. THEORY OF MEASUREMENT 

3.1 Angular conventions 

The initial goal of a theodolite measurement is to obtain the roll and zenith of the reflective surface in the coordinate 

system of the primary theodolite. The angular conventions used in data analysis are defined below and shown in the 

schematic of Figure 1. The +X axis is defmed to be the_ direction anti-parallel to_gravity and the azimuth circle of rotation 

for a theodolite is about the direction parallel to the +X axis. The word "counterclockwise" used in the definitions below 

and elsewhere in this document assumes a right handed coordinate system. To visualize a counterclockwise angle or 

rotation, one places the thumb of the right hand in the positive axial direction. The fingers can then curl about the 

direction of the thumb in the counterclockwise sense. 

Zenith: The direct angle that the vector makes with the +X -axis and has a value between 0° and 180°. 

Roll: The counterclockwise angle about the +X-axis made by the vector's projection in the YZ plane and 

measured with respect to the +Z-axis. 

Pitch: The counterclockwise angle about the +Y -axis made by the vector's projection in the ZX plane and 

measured with respect to the +X axis. 

Yaw: The counterclockwise angle about the +Z-axis made by the vector's projection in the XY plane and 

measured with respect to the +Y axis. 
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Figure 1. Optical Alignment Data Analysis Conventions 

3.2 Elevation reference 
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To obtain meaningful data, the vertical and horizontal circles of a theodolite require references. Gravity is the natural, 

absolute reference for the vertical circle, but there is no such corresponding natural reference for the horizontal circle. In 

practice, the zenith reference for a theodolite only requires that the theodolite be leveled to gravity within a few arc 

seconds. When this leveling is accomplished, the calculation of the zenith for a given elevation measurement is straight 

forward and given below. 

Zenith = 180° - Elevation (1) 
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Figure 2. Zenith relationship to elevation 



3.3 Azimuth references (roll references) 

Though no natural reference for the theodolite horizontal circle (azimuth) exists, a number of solutions have been used at 

GSFC, such as a ftxed reference mirror, a leveled dihedral in conjunction with a leveled rotary table, or another 

theodolite. Figure 3 shows the simplicity of using a reference mirror as a ftxed azimuth reference. Accordingly, the 

measurements of Cube Face A and Cube Face B have the same pointing reference, the reference mirror. Therefore: 

a = Subject Azimuth A - Azimuth Reference A 

p = Subject Azimuth B - Azimuth Reference B 

roll difference (between Cube Face A and Cube Face B)= a - p (2) 

Cube Face B 

Reference Mirror 

Figure 3. Reference mirror used as a fixed azimuth (roll) reference 

However, the use of a theodolite as ftxed azimuth reference is the most convenient and least limiting choice. This 

method was used for all measurements on GPM and is the method assumed in discussions that follow. For most 

measurements there are generally three geometries of concern, leading to three types of roll calculations. The most basic 

is when the primary theodolite is also the subject theodolite. The relationship between the roll and the azimuth of the 

primary theodolite (Prim Az) is given by the equation: 

Roll = 360° - Prim Az (3) 

By definition (see section 3.1 ), the roll is a counterclockwise measure, while the azimuth of a theodolite is a clockwise 

measure. 

Primary theodolite azimuth reference (subject to primary) 

Figure 4 is a schematic of a theodolite system employing two theodolites, a primary and a subject, to measure two 

adjacent faces of cubes A, Band C. The primary theodolite acts as the fixed azimuth reference for all theodolite 

measurements in the theodolite system. The cube face viewed by the primary theodolite provides it with its own ftxed 

azimuth reference. The subject theodolite can be moved to obtain measurements about the spacecraft, and for this case, 

would be repositioned to measure a second face for cubes A and B and two faces of cube C . Each time the theodolite is 

moved in space, it must again be referenced to gravity (re-leveled) and to the primary in order to obtain a meaningful 



measurement. Referencing the primary, referred to as "bucking the theodolites," means that the primary and subject 

theodolites have been aligned to each other such that each instrument views the opposing instrument's collimated light 

(in the shape of reticles) aligned with its flxed reticles. As designated in the geometry ofFigure 4, the reading of the 

subject theodolite is called the Subject Azimuth Reference (Sub Az Ref) while the reading of the primary theodolite is 

called the Primary Azimuth Reference (Prim Az Ref). 
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Figure 4: Primary and subject theodolite setup 

Calculation of the roll (subject to primary) 
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Bucking the primary and subject theodolites provides the information necessary to calculate the Subject Azimuth (Sub 

Az) in the primary theodolite circle (see Figure 5). To calculate the subject azimuth theodolite reading in the primary 

theodolite azimuth circle, calculate the angular difference (Sub Az - Sub Az Ref) and then add the result to the direction 

that the Primary would read if it pointed in the direction of the subject theodolite when the theodolites were bucked 

(Prim Az Ref+ 180°). Therefore, the equation of the roll becomes: 

Roll= 360" - ((Sub Az- Sub Az Ref)+ Prim Az Ref+ 180") (4) 

Note that in the determination of the angular difference (Sub Az- Sub Az Ret), care must be taken when the theodolite 

is rotated through its zero mark. 
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Figure 5. Calculation of subject theodolite azimuth in primary theodolite coordinates 

Calculation of the roll with use of a relay theodolite (Subject to Secondary to Primary) 

The last geometry of concern here is the case when the subject theodolite cannot or it is not practical to be referenced 
directly to the primary theodolite. In this case another theodolite can serve as an intermediate primary. Figure 6 shows a 
basic arrangement for this case. 
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Figure 6: Typical setup for use of a relay theodolite 
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The secondary theodolite used is also termed a "relay" theodolite because it relays the reading of the subject theodolite to 

the primary theodolite. Thus, this relay theodolite must be positioned so that it can buck to both the subject and primary 

theodolite. The vector analysis of this arrangement is given in Figure 7. It shows how the measurement can be broken 

into two steps in which the "subject to primary" analysis, previously discussed, is applied to each step. First, the subject 

theodolite reading is transferred to the relay theodolite as if it were the primary theodolite. Second, the relay theodolite 

reading corresponding to the reading of the subject theodolite is transferred to the primary theodolite. The process is 

captured by the equations below: 

Sec Az = (Sub Az - Sub Az Ref) +Sec Az Ref 1 + 180° 

Prim Az = (Sec Az - Sec Az Ref 2) + Prim Az + 180° 

Roll = 360° - Prim Az 

Combining the results into the equation for roll leads to the equation below: 

(5) 

Roll= 360°-{([(Sub Az-Sub Az Ref)+(Sec Az Ref 1 + 180°)]-Sec Az Ref2)+(Prim Az Ref+ 180°)} (6) 
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Figure 7: Vector analysis of relay theodolite geometry 
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4. DATA ANALYSIS 

4.1 Direction cosines 

It is convenient to analyze angular data obtained from theodolite autocollimation measurements using vector analysis. 

The pointing direction of any reflective surface can be represented as a unit vector with components that are direction 

cosines. Direction cosines are the projections of a unit vector along each coordinate axis. That is, for any unit vector M: 

M = (Mx, My, Mz) = (l·cosa, l·cosP, I·cosy). 

X axis 
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• , zaxis 
', t , 
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Figure 8 shows that for any vector M: 

Mx = M·cos(zenith), Mv = M"sin(zenith)·sin(2n- roll), and Mz = M·sin(zenith)·cos(2n- roll). 

cosa = Mx/M= cos(zenith); cos~= Mv/M= - sin(zenith)·sin(roll); cosy = Mz/M= sin(zenith)"cos(roll) (7) 
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Y axis (360o-ro~ 

Figure 8. Relationship between the components of a vector and its roll and zenith 

Any normalized vector can be represented as a set of direction cosines (co sa, cos~, cosy) and the vector direction of any 

reflective surface can be calculated from the roll and zenith of its normal. 



4.2 Angular Projections in the Plane 

If the direction cosines Mx, Mv, and Mz are known, the angular projections in the planes, roll (YZ plane), pitch (ZX 

plane), and yaw (XY plane), can be calculated using the definitions previously defined in Figure 1. For example, the 

pitch is defined as the counterclockwise rotation about the +Y axis relative to the +X axis (see Figure 9 below). 

+Y axis out 

Pitch 

tan(2n: -Pitch) = Mz I Mx 

+Z axis 

Figure 9. Calculation of the pitch using its definition from section 3. 1 

The geometry shows that tan(2x -Pitch)= Mz/Mx, therefore Pitch = - tan"1(Mz/Mx). In similar fashion, equations of the 

Yaw md Roll can also be found as given below: 

Pitch= - tan"1(Mz/Mx) 

Yaw=- tan-1(Mx1Mv) 

Roll= -tan"1(Mv/Mz) 

From Figure 8, the zenith can be calculated as follows: 

Mx = cos( zenith); therefore zenith= cos-1(Mx) 

Also, tan(zenith) = (M/ + Mi)1rz/ Mx; therefore zenith= tan-1((M/+ Mz2i rzl Mx) 

4.3 Roll and zenith from pitch and yaw 

The Roll and zenith can also be calculated if the Pitch and Yaw are known. Following Redman1
, recall that 

Roll= -tan-1(Mv/Mz). Therefore: 

Roll = -tan-1((Mv/Mz).( Mx/Mx)) 

= -tan-1((My/Mx).(Mx/Mz)) 

= -tan-1((My/Mx).(Mx/Mz)) 

= -tan-1[(1/tan(-Yaw)).{l/tan( -Pitch))] 

= -tan"1[1/(tan(-Yaw).tan( -Pitch))] 

Also, zenith= -tan-1 ((M/ + Mi)1rz/Mx) 

= -tan·• [(M/ + Mi)!Mx 2] trz 

(8) 

(9) 

(10) 

(11) 



=- tan·• [1/tan 2(-Yaw) +tan 2(-Pitch)] 112 (12) 

4.4 Coordinate transformations 

The goal of an optical alignment set of measurements includes placement (the physical positioning of a component in 

angle and/or coordinates to a specified orientation), knowledge (determination of the position and/or orientation of a 

component), or stability (maintenance of a predetermined and bounded position and/or orientation of a component). Any 

one of these goals is accomplished more easily if the vectors and angles are represented in a coordinate system tied to the 

component, such as an alignment cube mounted on the component. Therefore, it is desirable to transform the raw data of 

a theodolite measurement system, initially represented in the coordinate system of the primary theodolite, to a coordinate 

system tied to the component, such as an alignment cube. 

A coordinate system is described by a set of three basis vectors. Once the basis vectors of one coordinate system, 0 ·, are 

found in another coordinate system 0, transformations between the two systems are possible. The components of the 

"primed" coordinate axes ofO' expressed in terms of direction cosines in the 0 coordinate system form the rows of the 

rotation matrix that can transform any vector expressed in the 0 coordinate system into a corresponding vector in the 0' 

coordinate system. The transformation described above requires that the axes ofO' be mutually orthogonae, therefore, 

the rows of the transformation matrix must represent vectors that are mutually orthogonal. 

In general, the faces of an alignment cube will not be orthogonal. The following procedure3 can be used to construct the 

set of mutually orthogonal axes that form 0 ·, Using the normal vectors of any two non-parallel surfaces calculated in 

system 0, choose one to be the "primary" axis vector and one to be the "secondary" axis vector. The primary will be one 

of the axes (x', y' or z ') in the new system 0', while, in general, the secondary will only determine the plane of one of 

the other axis directions. Construct the axes ofO ' as follows : 

1. Let the primary and secondary axes be represented by unit vectors p and sin 0. If we takes p to be the x axis of 

the new coordinate system 0 ' (for convenience of explanation), and let s lie in XY plane (s may point in a Y
like direction for the convenience of this explanation). 

2. Find the cross product of the primary and secondary to calculate the tertiary vector-another axis direction in 
o·. In this case, z' = a(p x s), is called the tertiary vector, in which "a" is the constant that makes z ' a unit 
vector. 

3. Take the cross product of the tertiary and the primary to obtain the third axis vector, 
y' =z' x p 

In summary, the rows of the transformation matrix are: 

x'=p 

y' =z' x p 

z' =a (p x s) where a= lllp x sl 

(13) 

Thus, the basis vectors of the new coordinate system 0' are determined in the 0 coordinate system, and the resulting 

transtbrmation matrix can be used to transform any vector in 0 to a corresponding vector in 0'. It is important to note 

that the matrix inverse of the resulting transformation matrix can be used to transform vectors from the 0' coordinate 

system into vectors in the 0 system. 

4.5 Theodolite measurements using a relay mirror 

The use of a relay mirror may be indicated when the line-of-sight to a required cube face or reflective surface is blocked 
by structure, another component, etc. (see Figure 10 below). The relay mirror rotates the apparent direction of the subject 
mirrc·r, as shown in Figure 11. The required measurements for its use are the pointing direction of the relay mirror itself 
and 6.e direction of the resulting rotated vector (called the "through shot"). 
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Figure 1 0. Example scenario of a blocked line-of-sight 
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Figure 11. Use of a relay mirror in the scenario of a blocked line-of-sight 

Mea5urements of the through shot V
1 

and the normal of the relay mirror N, where N = (L, M, N) are used to obtain the 

vector of interest V through application of Smith's Rotation Matrix4
: 

1 
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v;x] [1-2£2 

v;Y = -2ML 

v;z -2NL 

-2LM 

1-2M2 

-2NM 

(14) 

The effect of this matrix multiplication is to correct the measured direction cosines ofV into the direction cosines ofV 
l 1 

by transfonning or rotating V into V 
1 1· 

5. THE ALIGNMENT SEQUENCE 

The spacecraft optical alignment sequence generally begins with the establishment of a mechanical reference frame 

(MRF) and its measurement with respect to an optical reference cube, the master reference cube (MRC). A common 

practice at GSFC is to have reference points or surfaces that can be easily measured designed into the structure so that 

spacecraft coordinate axes can be located with respect to the MRC. The coordinate system constructed using two 

adjacent faces of the MRC is tenned the MRC Frame or MRCF. If the coordinate axes of the MRF and two adjacent 

faces of the MRC are measured with respect to a common reference frame, usually the primary theodolite frame, then 

transformation matrices between the MRCF and MRF can be calculated. Thus, any pointing direction that is known in 

the ~1RCF can be transfonned into the MRF. 

The basic sequence for aligning a component in the MRF if its optic or science axis direction is known with respect to its 

alignment cube (that is, direction cosines of the science axis are known with respect to a cube mounted to its structure) is 

as follows: 

l . Measure the pointing directions of two adjacent faces of the component's optical reference cube and two 

adjacent faces of the MRC using theodolites. 

2. Calculate measured directions in the primary theodolite frame. 

3. Transform all measured directions in the primary theodolite frame to the MRCF. 

4. Calculate the matrix transformation between the component's cube frame and the MRCF. 

5. Transform the component's science axis direction to a vector in the MRCF. 

6. Use the matrix transformation between the MRCF and MRF to transform the component's science axis 

direction to a vector in the MRF. 

7. Adjust the orientation of the component as required for aligning its science axis in the MRF. 

8. Repeat the measurement of the two adjacent faces of the component's optical reference cube. 

9. Repeat the calculations described in steps 2 through 6 to verify the success of the alignment. 

10. Repeat steps 7 through 9 until satisfied with the alignment. 

6. ALTERNATIVE MEmOD 

The background necessary to complete the steps of the "Alignment Sequence" has been established. The discussion that 

follows is specifically relevant to the alignment of the GPM star trackers. Consider the use of a relay mirror discussed 

earlier. The basic set up is shown in the schematic below (Figure 12). 
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Figure 12. Use of a Relay Mirror 

Consider the addition of the unit vectors -V1 and V2 as shown below in Figure 13, where -V1 represents the reflected 
light from the theodolite and V 2 represents the light returning to the theodolite (definition of autocollimation). 

Figure 13. Graphical Addition of- V and V 1 
1 

The law of Reflection guarantees that vectors Vt. V2, and N all exist in the same plane. Analysis of Figure 13 then leads 

to the following results: 

R = N 1 + V2 (vector addition); 

N = RJR (By symmetry Rand N point in the same direction); then R = RN where R is the magnitude of the vector R 

and from the vector diagram: 

R = 2 V1cose = 2 V2cose = 2cose = 2N"V2 (V1 and V2 both have unit magnitude.) 

Thus R = -V1 + V1 = (2N·V2)N; therefore V1 = V2 - (2N"V2)N, and ifN = (L, M, N), then in component form: 

(15) 



where N'V2 = LV2,. + MV2y+ NV2z. 

Writing the result as a matrix equation yields the following: 

[

Ji';x] [1-2L
2 

- 2LM 
li';y = - 2ML 1-2M2 

V: -2NL -2NM 
lz 

-2LN][V
2x] 

-2MN ~>' 

1-2N 2 ~z 

The result is equation (14), that is Vt and V2 are related through a rotation described by Smith's Rotation Matrix. 

Consider the set up shown in Figure 14, which is similar to Figure 12, except that the subject mirror has been replaced by 

a theodolite and the relay mirror has been replaced by the subject mirror. In this case V1 is the collimated light from 

Theodolite 2 and V 2 is the collimated light from Theodolite 1. 

Theodolite 1 

Figure 14. Graphical Addition of Vectors V1 and V1 

The analysis of Figure 14 yields: 

R=V1 +V1 

Where V1 = (V .,., V 1y, V 1J and V1 = (V 1:x, V 2y, V2J are the arrays of direction cosines resulting from the measurements 

from theodolite 1 and theodolite 2, respectively. Therefore, the resultant is given: 

R = (V Ix + V 2x• V ty + V 2y. VIz + V ~ and 

N=RIR (16) 

where R is the magnitude of the vector R. Thus, the mirror normal N is just the normalized vector sum ofV1 and V 1• 

From this rather straight-forward analysis, it can be concluded that an alternative method for measuring a mirror normal 

is to buck one theodolite to another using the subject mirror as if it were a relay mirror. This alternative method of 

measurement, which we call the "Bounce Shot," was used to effect the measurement of critical GPM star tracker 

alignment cube faces in which the line-of-sight to the cube face normals were not available for direct theodolite 

autocollimation measurements (See Figure 15). The "bounce shot" relies on the symmetry of the Law of Reflection. In 

practice, one of the theodolites is designated the source theodolite and must be maintained in a set orientation during the 



measurements. One important advantage of the "bounce shot'' over a measurement employing a relay mirror is the 

concern for the stability of the relay mirror. The calculation of the mirror normal requires only the direction cosines from 

the re;.dings of each theodolite in a common reference frame and results in half the probable uncertainty of a relay set of 

measurements. Using this method, the theodolite operator can measure around obstacles that prevent direct line-of-sight 

measurement of a mirror surface normal, which can be especially useful when it is not possible or practical to use a relay 

mirror. 

Figure 15. Measuring the GPM Star Tracker Cubes Using the Alternative Method 

7. DATAANALYSISPROGRAM 

GSFC theodolite autocollimation data analysis was generally performed using Microsoft Excel spreadsheets powered by 

a data analysis package written in Excel macro language. It was developed in house~ and given the name "OAFDAMs" 

(Optical Alignment Facility Data Analysis Macros) more than twenty years ago. Recently, "OAFDAMs" was re-written 

in Visual Basic to be compatible with recent versions of Microsoft Excel. It was also expanded to include a vast number 

of related functions and two and three dimensional geometrical fitting. 

"OAFDAMs" is used in the form of a spreadsheet template with a standard order of the basic data analysis as discussed 

here. For example, to determine the direction cosines of a measured cube face in the primary theodolite coordinate 

systen, the data is inserted in a specified order: Cube name, direction, subject azimuth, subject elevation, subject 

azimuth reference, primary azimuth reference, subject theodolite number, and primary theodolite number. The 

spreadsheet instantly calculates in the order of calibrated elevation, zenith, roll, and direction cosines. 

8. CONCLUSIONS 

We have described an innovative technique in theodolite metrology that was used in the alignment of the GPM star 

trackers. This method can be used to measure around obstacles that prevent direct line-of-sight autocollimation 

measurements of a mirror surface normal, which is especially useful when it is not possible or practical to use the relay 

mirr<ir technique. In order to provide a clear understanding of the spacecraft component alignment sequence as well as to 



provide a preface to this technique, we have presented a detailed account of the theory of theodolite autocollimation 
measurements and data analysis as practiced at GSFC. 
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