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PRELIMINARY DESIGN CONSIDERATIONS FOR ACCESS AND 
OPERATIONS JN EARTH-MOON L 1/ L 2 ORBITS 

David C. Folta: Thomas A. Pavlakt Amanda F. Haapalat 
and Kathleen C. Howent 

Within the context of manned spaceflight activities, Earth-Moon libration point 
orbits could support lunar sutface operations and serve as staging areas for fu­
ture missions to near-Earth asteroids and Mars. This investigation examines pre-­
liminary design considerations including Earth-Moon L1/L2 libration point or­
bit selection, transfers, and stationkeeping costs associated with maintaining a 
spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in 
multi-body trajectory design, dynamical systems theory, and orbit maintenance 
are leveraged in this analysis to explore end-to-end concepts for manned missions 
to Earth-Moon libration points. 

INTRODUCTION · 

In 2010, the two ARTEMIS spacecraft became the first man-made vehicles to exploit trajecto­
ries in the vicinity of an Earth-Moon (EM) libration point, operating successfully in this dynamical 
regiq1e from August 2010 through July 2011.1•2 The EM libration points offer locations for plat­
forms for scientific observation and/or communication relays, implying that these locations .will 
likely gamer increased attention in the coming years. In 2011, libration point missions were in­
cluded as part of 'The Global Exploration Roadmap"3 released by NASA and, as recently as June 
2012, NASA has identified the collinear £ 1 and £ 2 libration points in the EM system as potential 
locations of interest for future human space operations.4 Within the context of manned spaceflight 
activities, orbits near the EM £ 1 and/or £ 2 points could support lunar surface operations and serve 
as staging areas for future missions to near-Earth asteroids and Mars. 

The dynamical environment within the EM system is complex and, as a consequence, trajectory· 
design and operations in the vicinity of the EM £ 1 and L2 points are nontrivial. In this investigation, 
some issues that are significant for preliminary design are explored, including EM £1/~ libration 
point orbit selection, transfers to and from these locations, as well as stationkeeping (SK) costs 
associated with maintaining a spacecraft in the vicinity of Lr and/or £2 over a specified duration. 
Existing tools in the areas of multi-body trajectory design, dynamical systems theory, and orbit 
maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to 
EM libration points. 

A wealth of design possibilities exist for transfers from Earth to the £1/£2 region. However, in 
the EM multi-body environment, and in constrast to robotic missions, the transfer time of flight 
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(TO F) for human missions to the vicinity of the EM ·libration points is strictly constrained by the 
life support systems aboard the spacecraft. The Orion spacecraft, for example, has an operational 
maximum round~trip duration of 21 days.5 Thus, the trajectory solutions must be both low-cost, 
in terms of required propellant, and of reasonable duration. Preliminary transfer design is con­
ducted within the context of the circular restricted three-body (CR3B) problem to utilize elements 
of dynamical systems theory including Poincare mapping and invariant manifolds when applicable. 
Other known solutions in the CR3B problem, such as three-body free return trajectories, are also 
exploited. Flexible multiple shooting algorithms are employed to blend multiple segments into con­
tinuous trajectories while constraining the location and/or magnitude of any Ll V maneuvers. Both 
direct transfers to the regions near the EM £1 and £2 points as well as transfer options incorporat­
ing a close lunar passage are investigated in terms of the CR3B as well as higher-fidelity ephemeris 
models that include the effects of lunar eccentricity and solar gravity. 

BACKGROUND 

Circular Restricted Three-Body Model 

For preliminary analysis, the CR3B model6 is assumed as the force model. The focus of this 
investigation is on solutions in the Earth-Moon (EM) system. Then, the motion of a spacecraft, 
assumed massless, is determined by the gravitational forces of the Earth and the Moon, each repre­
sented as a point mass. The orbits of the Earth and Moon are assumed to be circular relative to the 
system barycenter. A barycentric rotating frame is defined such that the rotating x-axis is directed 
from the Earth to the Moon, the z-axis is parallel to the direction of the angular velocity of the 
primary system, and the y-axis completes the right-handed, orthonormal triad. The position of the 
spacecraft relative to the EM barycenter is defined in terms of rotating coordinates as r = [x, y, z], 
where bold symbols denote vector quantities. The mass parameter is defined as p, = ___!!!L_+ , where 

m1 m2 
m1 and m2 correspond to the mass of the Earth and Moon, respectively. The first-order, nondimen-
simial, vector equation of motion is 

X """ f(x), (1) 

where the vector field, f (x), is defined 

f (x) = [x,y,z,2ny + Ux, -2nx + Uy, Uz], (2) 

noting that the nondimensional mean motion of the primary system is n = 1. In Equation (2), 
U (x, y, z, n) = l-;t+~+!n2 (x2 + y2) is the pseudo-potential function, with the non-dimensional 
Earth-spacecraft and Moon-spacecraft distances written as d and r, respectively, and the quantities 
Ux, Uy, Uz represent partial derivatives of U with respect to rotating position coordinates_ In this 
analysis, Dormand-Prince 8(9) and Adams-Bashforth-Moulton numerical integration schemes are 
utilized to propagate the first-order equations of motion. The only known integral of the motion is 

the Jacobi constant, evaluated as C = 2U- v2
, where v = (x2 + y2 + z2

)
1

/
2

; this quantity is a 
constant of the motion in the rotating frame. 

Libration Point Orbits and Their Associated Invariant Manifolds 

The CR3B model admits five equilibrium points, including three collinear libration points, £ 1, 

L2, and £3, that lie along the x-axis, and two equilateral points, £4 and £5.. Several types of 
periodic and quasi -periodic orbits exist in the vicinity of the collinear points, including the periodic 

2 



Lyapunov, vertical, and halo families of orbits, as well as the quasi-periodic Lissajous and quasi­
halo orbits. Many techniques exist to compute these orbits?-11 For unstable orbits, there exist 
stable and unstable manifolds that represent flow toward and away from the orbit. To compute 
the global manifolds associated with unstable periodic orbits, an initial step off the orbit onto a 
manifold is generated and numerically propagated in the full nonlinear equations of motion (see 
Grebow (2006) 11 for details). An example of EM L 1 manifolds associated with a planar Lyapunov 
orbit at a specified value of C appears in Figure 1. 
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Figure 1. Invariant manifold associated with an EM L1 Lyapunov orbit 

Poincare Maps 

To provide a more complete picture of the libration point orbits that exist for a particular energy 
level (value of C), it is useful to employ Poincare maps. The use of a Poincare map allows an n­
dimensional continuous-time system to be reduced to a discrete-time system of ( n- 1 )-dimensions. 
By additionally constraining the Jacobi constant, C, the problem is reduced to (n- 2)-dimensions 
and the map is represented in 4-D. To generate a Poincare map, a surface-of-section, E, is defined 
such that E is transversal to the flow. Initial conditions are then integrated using Equations (1) ·and 
(2), and crossings of E are recorded and displayed. As an example, the map in Figure 2 is produced 
to resemble maps demonstrated by G6mez et al. (2001), 12 as well as Kolemen et al. (2007). 10 

Periodic and quasi-periodic orbits are computed, and crossings of the surface E = {x : z = 0} 
are recorded to generate the map. The image in Figure 2 represents a projection of the map onto 
the x - y plane. This map corresponds to a value of C = 3.080, and displays crossings of the 
planar Lyapunov orbit (green), vertical orbit (dark blue), and the northern and southern halo orbits 
(magenta), all at the given value of C. In this projection, the northern and southern halo orbits 
share the same crossings of the map. Surrounding the periodic vertical orbit are the quasi-periodic 
Lissajous orbits. The quasi-halo orbits lie in the center subspace of the central halo orbit. Examples 
of small and large northern quasi-halo orbits appear in red and orange, respectively; a large Lissajous 
orbit is represented in cyan. Similar maps exist for varying values of C, and may also be computed 
in the vicinity of~. 
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Figure 2. Poincare map depicting periodic and quasi-periodic libration point orbit 
structures in the vicinity of L 1 in the EM system for C = 3.080 

Ephemeris Model 

While the circular restricted three-body model incorporates the dominant multi-body gravitational 
forces, many collinear libration point orbits are dynamically unstable and even small perturbations 
can significantly alter their evolution. Thus, it is important to analyze Earth to £ 1/£2 transfers 
in higher-fidelity ephemeris models as well. In this analysis, selected transfer trajectories in the 
CR3B model are transitioned to an Earth-Moon-Sun point mass ephemeris model incorporating 
lunar eccentricity and solar gravity. In practice, the traditional N -body relative equations of motion 
are written in first-order form as in Equation (1) and numerically integrated. Relative position and 
velocity information for the gravitational bodies is obtained from the DE405 planetary ephemerides. 
Employing higher-fidelity ephemeris modeling, the transfers from Earth to the regions near the £ 1 
and L2_ libration points can be examined to explore the effects of lunar eccentricity, solar gravity, 
and equatorial launch inclination on Cl. V cost, time of flight, and orbit evolution. 

Stationkeeping Strategy 

Many orbits in the vicinity of EM £ 1 and £2 libration points are unstable and must be main­
tained with stationkeeping maneuvers executed at regular intervals. Thus, stationkeeping strate­
gies are an integral component of human operations near the EM libration points and should be 
considered during preliminary mission design activities along with the transfer. In this analysis, 
the long-term stationkeeping strategy previously detailed by Pavlak and HoweU13 is employed to 
compute stationkeeping costs for £1 and £2 libration point orbits of various types and sizes. Fun­
damentally, the long-term stationkeeping strategy utilizes a multi-revolution reference solution and 
a multiple . shooting algorithm to design stationkeeping Cl. V maneuver many revolutions into the 
future. Optimal maneuvers are designed using sequential quadratic programming (SQP). In an ef­
fort to simulate real-world operational stationkeeping conditions, randomly-distributed simulated 
modeling/navigation and maneuver execution errors are added to each designed stationkeeping Cl. V 
maneuver. Each stationkeeping analysis is repeated hundreds of times in Monte Carlo simulation 
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approximate average operational stationkeeping f). V costs. 

TRANSFER TRAJECTORY DESIGN 

The selection of a libration point orbit is influenced by many factors. Besides any given mission 
requirements, the propellant and TOF costs associated with transfers to these orbits are critical. 
These costs can vary significantly between £ 1 and £ 2 orbits, as well as for different values of G and 
different orbit types. 

A variety of approaches exist to locate transfers to libration point orbits near £ 1 and £ 2 .14 Two 
solution types are explored in this investigation: (1) direct two-bum transfers that insert onto the 
orbit at the negative (iJ < 0) x-axis crossing; and (2) three-bum transfers with a lunar passage and 
an "intermediate multi-body arc" that links an outbound Earth segment to a libration point orbit. 

Two-Burn Transfers 

Direct, two-bum transfers offer transfer times to librarian point orbits from LEO on the order of 
4-7 days. These transfers include one maneuver (f).Vt) to depart from LEO, and a second maneuver 
(f). V2 ) to enter the libration point orbit. Such transfers have been previously investigated by Rausch 
(2005)15 for both £ 1 and £ 2 halo orbits. Parker and Born (2007)16 extensively examine the costs 
associated with transfer to halo orbits in the vicinity of £ 1 and £ 2. To compute direct transfers from 
circular LEO in this study, a conic initial guess is located that provides direct insertion from the 
conic at apogee into a libration point orbit at a specified location. This initial guess is refined within 
the framework of the CR3BP via optimization, while enforcing that the transfer depart from 200 km 
LEO. To implement the optimization process, fmincon is employed in MATLAB using Sequential 
Quadratic Programming (SQP) as the solution algorithm, and the cost function is defined as the 
magnitude of f). V2 • To aid convergence, the initial guess is discretized into multiple segments and 
full-state continuity is enforced between subsequent segments; constraining the LEO departure to 
be tangential additionally improves the. convergence of the optimizer. 

The costs associated with direct transfers to libration point orbits vary with many parameters, 
such as orbit type, orbit energy level, the insertion location along an orbit, or whether an Lt or 
£ 2 orbit is considered. Due to the direction of flow of orbits in the vicinity of the libration points, 
orbit insertion on the negative (iJ < 0) x-axis crossings generally requires less f).V. For quasi­
periodic orbits, an infinite number of such crossings exist; however, the cost associated with direct 
transfers to each of these crossings varies. Consider direct transfers to the families of quasi-halo 
and Lissajous orbits that exist for a value of C = 3.15. For a particular orbit within this set, the f). V 
required for a direct transfer is greatly affected by the insertion location that is selected along the 
orbit. A 'large' £1 quasi-halo orbit is depicted in Figure 3(a); the orbit insertion locations considered 
are plotted in color in the figure. The magnitude of the second maneuver, f). V2, and time-of-flight, 
tb, for direct transfers to these locations appears in Figure 3(b). The colors in Figure 3 correspond· 
to the magnitude of the quantity f). Vtot = f). Vt + A ltl. Analogous plots are presented for a large 
£ 1 Lissajous orbit in Figures 3(c) and 3(d). In both cases, decreasing the z-amplitude of the x-axis 
crossing employed as the orbit insertion location provides a reduction in the f). Vtot required for the 
transfer. While no constraints on the departure inclination are applied for these transfers, enforcing 
i = 28.5° at LEO departure appears to have only a minor effect on the transfer costs in Figure 
3. Selecting a smaller quasi-halo or Lissajous orbit yields a different set of x-axis crossings and, 
thus, the required f). V will vary. Consider the entire £ 1 family of northern halo/quasi-halo orbits 
that exists for a value of C = 3.15. To determine the relative costs associated with different orbits 
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Figure 3. Costs associated with direct transfers to large L1 quasi-halo and Lissajous 
orbits for C = 3.15. 

within this family, three orbits are selected for comparison: the periodic halo orbit, a 'medium' sized 
quasi-halo orbit, and the same 'large' quasi-halo orbit that appears in Figure 3(a). Direct transfers 
to the these orbits appear in Figure 4; the libration point orbits are plotted in Figures 4(b), 4(d), 
and 4(f) with the insertion locations indicated by red dots. Increasing the orbit size serves to reduce 
the lowest z-amplitude that is achieved for the x-axis crossings, thus reducing the required ~ V for 
direct transfer. 

By varying the energy level associated with a particular libration point orbit, the cost of direct 
transfer can change drastically, To examine this effect, the costs to transfer to Lyapunov, halo, 
quasi-halo, vertical and Lissajous orbits are computed for a variety of values of the Jacobi constant, 
C. The transfer time, tb, and magnitude of the maneuver ~ V2 corresponding to direct transfers 
to subsets of the Lt families of halo, quasi-halo, vertical, and Lissajous orbits are represented by 
the colored dots in Figure 5(a), where the color of each point indicates the Jacobi constant value 
associated with the corresponding libration point orbit. Transfers to the planar Lyapunov orbits 
lie along the dashed black curve. Similarly, transfer costs associated with the L 2 families of halo 
and quasi-halo orbits appear in Figure 5(b); vertical and Lissajous orbits are not considered due to 
line-of-sight violations caused by the Moon, although such Violations also occur for many of the L 2 
quasi-halo orbits. Because nearly planar revolutions are selected for insertion into the quasi-periodic 
orbits, the curves representing the costs associated with transfers to the quasi-halo and Lissajous 
orbits converge near the Lyapunov orbit family curve. The costs associated with direct transfer 
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Figure 4. Direct transfers to L 1 fibration point orbits for C = 3.15. 

to smaller quasi-halo/Lissajous orbits lie on the surface between the halo/vertical and large quasi­
halo/Lissajous curves. Sample orbits from the L 1 families are plotted in Figure 6 to demonstrate 
the relative orbit sizes; red dots indicate the selected orbit insertion locations. It should be noted 
that the costs associated with direct transfers to the vertical orbits are the same if the southern-most 
location is selected for orbit insertion. 

Three-Burn Transfers with Lunar Passage 

In addition to direct transfers; the Earth-to-L1/L2 design space can also be augmented with lunar 
assisted transfers that leverage "close" lunar passage to insert into the desired libration point orbit. 
This analysis incorporates a segment of a lunar free return trajectory to take the spacecraft from 
circular LEO to the vicinity of the Moon as part of an initial guess for a differential corrector. Free 
return trajectories are utilized in this investigation for two reasons: ( 1) if desired, the free return 
can be explicitly preserved in the converged solution to ensure that, if the spacecraft malfunctions 
and the libration point orbit phase of the mission is aborted, no maneuvers are required to return 
the crew safely to Earth and (2) from a mission design prospective, free return trajectories are 
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Figure 6. Halo (magenta), quasi-halo (green), vertical (dark blue), and Lissajous 
(cyan) orbits in the vicinity of L1 for various values of C. 

well-understood and provide an abundance of transfer design options. Families of cislunar and 
circumlunar free return trajectories are depicted in Figure 7. The cislunar trajectories (in gray) cross 
the x - z plane between the Earth and the Moon while the circumlunar trajectories (in black) travel 
around the far side of the Moon before returning to Earth. 
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Figure 7. Family of circumlunar free return trajectories 

Three-bum transfers with close lunar passage are capable of transitioning a spacecraft· from the 
vicinity of Earth to either EM £1 or £2, however, transfers to the former are considered first in 
this investigation. In Figure 8, it is first interesting to note that, in general, circumlunar free return 
trajectories and the stable manifolds associated with EM £ 1 Iibration point orbits intersect on the 
lunar far side but in opposite directions. Thus, insertion from the free return trajectory onto the stable 

-0.6 - 0.4 ~.2 0 0.2 0.4 
x (x 106 km) 

Figure 8. Stable L 1 Lyapunov manifolds 

manifold would require prohibitively large b. V maneuvers to completely reverse the spacecraft's 
direction of travel. Instead, a multi-body ''intermediate arc" can be incorporated within the context 
of a three-bum transfer scheme to link the free return transfer segment with the desired libration 
point orbit. A sample initial guess strategy for a transfer from circular LEO to an EM southern £ 1 
halo orbit appears in Figure 9. Employing this initial guess strategy, three burn Earth-£1 transfer 
trajectories are constructed for a range of trajectories in the EM Lt southern halo family with z­
amplitudes that vary from 5000 km (Orbit 1) to 77,000 km (Orbit 1 0). Since the first maneuver, b. v;, 
is dependent on the low Earth parking orbit being used, only the sum of the second two maneuvers, 
/),. V2 + b. Va is reported in this analysis. Note, however, that if it is assumed that the spacecraft 
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Figure 9. Three-bum EM L 1 transfer initial guess strategy 

is departing a 200-km altitude circular Earth parking orbit, ~Vi costs are typically slightly over 
3.1 krn/s. In each case, once an initial transfer is converged, a differential corrections continuation 
procedure is implemented to reduce the combined ~ V2 + ~ Va cost. To enSure a fair comparison 
amongst the CR3B EM-£1 and EM-L:z in this study, the perilune altitude of each trajectory is fixed 
at 200 km. The first converged three-bum EM-£1 transfer trajectory to a final EM £ 1 southern 
halo orbit that possesses a maximum z-amplitude of approximately 5000 km is depicted in Figure 
10. This initial EM-£1 transfer trajectory has an intermediate ~V cost of ~V2 + ~Va = 516 rnls 
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Figure 10. Example three-bum Earth-L1 transfer 

and a time of flight of 4.87 days. Utilizing this converged solution as an initial guess, a differential 
corrector used to compute a transfer to the second EM £1 southern halo orbit under consideration. 
This process is repeated for each halo orbit of interest in the family and the results of all of the 
transfers are summarized in Table 1. The most notable result is that, as the algorithm steps through 
the EM Lt southern halo family, the intermediate ~ V cost decreases at the cost of increased time 
of flight. 

Once a desired Earth-£1 transfer trajectory is computed, a complete end-to-end Earth-£1-Earth 
design is achieved by connecting the EM £ 1 libration point orbit with an Earth-bound leg of a 
cislunar free return trajectory as demonstrated in Figure 11. This round trip trajectory is comprised 
of a three-bum transfer that inserts into a 5000-km z-amplitude EM £1 southern halo orbit for 
approximately one day before a fourth maneuver is executed to place the spacecraft on a Earth-
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Thble 1. EM-L1 transfer A V costs 

Orbit No. Dt.\12 (m/s) !:l.\12 (rnls) !:l.\12 + !:l. V3 ( mls) TOF (days) 

1 268.87 . 247.14 516.01 4 .87 
2 271.80 240.63 512.43 5.09 
3 271.58 188.10 459.68 5.42 
4 266.90 130.17 397.07 5.80 
5 263.66 96.61 360.27 6.40 
6 254.10 82.90 337.00 7.50 
7 245.13 80.22 325.35 7.67 
8 235.08 79.12 314.20 7.81 
9 228.41 80.17 308.58 7.61 
lO 231.46 80.35 311.81 7.27 
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Figure 11. Example Earth-L1 -Earth transfer 

bound return path. The total !:l. V cost - not including the Earth parking orbit departure maneuver -
is approximately 1.07 km/s and the total time of flight is 15.8 days which is well within the stipulated 
21-day limit f~r a human libration point orbit mission design. 

This investigation next demonstrates the computation of three-bum Earth-£2 transfer incorporat­
ing close lunar passage using a method very similar to the one discussed previously for Earth-£ 1 
trajectories. The only difference between the two design strategies is that, to reach L 2, a cislunar 
free return trajectory is employed as part of the initial guess so that the spacecraft will pass close to 
the near side of the Moon as it travels towards EM £ 2 . The modified initial guess scheme is demon­
strated in Figure 12 Three-bum Earth-£2 transfer trajectories are computed for select members of 
the EM £2 southern halo family whose z-amplitudes range from 5000 km (Orbit 1) to 76,000 km 
(Orbit 8). Like the Earth-£1 transfers, the perilune altitude is constrained to 200 km for' purposes 
of comparison. The three-bum transfer to the initial EM £2 southern halo orbit of interest appears 
in Figure 13. Employing a differential corrector and continuation procedure, the intermediate !:l. V 
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Figure 12. Three-bum EM L 2 transfer initial guess strategy 
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Figure 13. Example three-bum Earth-L2 transfer 

5 

cost is reduced to a value of D. V2 + D. 113 = 202 m/s corresponding to a time of flight of 14.70 days. 
This Earth-L2 transfer approach sharply contrasts the two-burn direct Earth-L2 transfers presented 
in the previous section in that this transfer possesses. a significantly lower .6. V ·as well as a much 
longer TOF. The trajectory in Figure 13 is used as an initial guess to compute a transfer to a second 
EM L2 southern halo orbit and the process is repeated for the remaining orbits of interest. The cost 
of associated with each of the three-bum EM-L2 transfer trajectories are presented in Table 2. It 

Table 2. EM-L2 transfer A V costs 

Orbit No. ..6. v2 (m/s) ..6.V2 (rnls) ..6. V2 +D. v3 (m/s) TOF(days) 

1 190.50 11.95 202.45 14.70 
2 192.64 28.04 220.68 14.14 
3 187.71 51.74 239.45 13.83 
4 183.78 69.94 253.72 13.90 
5 179.93 87.35 267.28 13.97 
6 177.27 120.28 297.55 14.23 
7 175.20 138.42 313.62 14.36 
8 173.18 130.58 303.76 14.76 
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is significant to note that, unlike the Earth-£1 transfers, the intermediate /:::,. V costs increases as the 
algorithm to compute Earth-£2 steps through the EM £ 2 southern halo family. The approximately 
two-week time of flight fluctuates by less than one day for this class of Earth-~ transfers, however. 

Despite the relatively long times of flight associated with these Earth-~ trajectories, it is still 
possible to compute round trip Earth-£2-Earth transfers that do not violate the 21-day maximum 
human trip duration constraint. As an example, a 14.3-day Earth-£2 transfer is connected to an 
Earth-bound return leg using a circumlunar free return trajectory segment as an initial guess. A 
21-day time of flight constraint is imposed to produce the resulting round trip transfer trajectory 
depicted in Figure 14. The total /:::,. V cost- not including /:::,. V1 -is /:::,. V2 + /:::,. V3 + /:::,. V4 = 1468 m/s 
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Figure 14. Example Earth-L:r·Earth transfer. 

with a large portion of the cost attributed to a 965 m/s bum required to depart the EM £ 2 southern 
halo orbit to return to Earth. 

TRANSFER RESULTS IN AN EPHEMERIS MODEL 

While the transfers in the previous section are computed in the CR3B problem, these solutions 
may be transitioned into a higher-fidelity ephemeris model via differential corrections procedures. 
The CR3B model solutions are sampled at a selected time interval, and the resulting discretized 
solution is integrated within the ephemeris model. A multiple-shooting algorithm is employed to 
enforce full-state continuity along the transfer arcs and along the libration point orbit, although 
a velocity discontinuity between the transfer arc and the orbit is permitted. The transition to the 
ephemeris model can influences the characteristics of both the transfer and the libration point orbit. 
The effect of varying the inclination at LEO is also explored. 

As a preliminary demonstration of the impact of lunar eccentricity, solar gravity, and Earth de­
parture inclination on Earth-£1/£2 transfer trajectories, a direct, two-bum Earth-£2 transfer is tran­
sitioned from the CR3B model and reconverged in a higher-fidelity ephemeris model as depicted 
in Figure 15. In this example, the /:::,. V cost for the ephemeris trajectories is fixed to be equal to 
the associated CR3B trajectory - 950 m/s. Recall that, in the CR3B model, the outbound legs of 
the transfer trajectories presented in this investigation are generally nearly planar. The trajectory in 
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Figure 15. Example two bum Earth-L2 ephemeris transfer 

Figure 15 is computed with an epoch in mid-December 2017 when the lunar orbital plane is inclined 
approximately 20 degrees with respect to Earth's equatorial plane. Thus, to transition the CR3B tra­
jectories to higher-fidelity transfers with an Earth departure inclination of 28.5 degrees (consistent 
with a launch from Kennedy Space Center), the trajectories in this analysis are first reconverged 
with a departure inclination of 20 degrees and a continuation procedure is implemented to increase 
the inclination to the desired angle. 

An identical procedure is used compute three-bum Earth-L1 transfers in a higher-fidelity Earth­
Moon-Sun ephemeris model as well. A continuation procedure is again incorporated to raise the 
Earth departure inclination from 20 degrees to 28.5 degrees. To demonstrate the effects of Earth 
departure inclination on this particular collection of three-bum transfer trajectories, the 6. V costs 
for each trajectory in the continuation process are summarized in Table 3. To isolate, the effect of 
inclination, the time of flight and perilune altitude are fixed at 5 days and 400 km for each trajectory. 
The cost, .6. V1 associated with departing Earth from a 200-km altitude parking orbit is also included 

Table 3. Three-bum EM-L1 ephemeris transfer a V costs 

Inclination (de g) 6.V1 (m/s) 6.V2 (m/s) 6.V3 (m/s) .6. V2 + 6. v3 (m/s) 

20 3151.40 235.63 364.37 600.00 
22 3151.80 235.03 367.97 603.00 
24 3151.13 239.02 367.48 606.50 
26 3151.39 247.34 364.66 612.00 

28.5 3151.96 259.26 358.74 618.00 

in the table to illustrate that, in this instance, changing the inclination does not significantly alter 
the Earth departure maneuver. The final converged three-bum Earth-Lt ephemeris transfer at an 
inclination of 28.5 degrees appears in Figure 16. The intermediate 6. V cost of .6. Vi + 6. V2 = 618 
m/s represents only a 3% increase in cost compared to the initial transfer with an Earth departure 
inclination of 20 degrees and illustrates the inclination does not appear to have a significant effect 
on libration point orbit transfer cost for the cases examined in this investigation. 

STATIONKEEPING RESULTS 

Given the unstable nature of many EM Lt and L2 libration point orbits relevant to human space 
exploration, the stationkeeping method associated with maintaining these orbits can be as critical 
to the mission design process as the construction of the transfer trajectories themselves. Using the 
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Figure 16. Example two bum Earth-L1 ephemeris transfer 

long-term stationkeeping strategy outlined previously, this investigation incorporates 16-revolution 
reference libration point orbits to maintain the desired orbit for 12 revolutions. The four unused 
revolutions effectively act as an "anchor" to ensure that the spacecraft maintains the same general 
behavior as the original reference solution. In this analysis, stationkeeping maneuvers are exe­
cuted twice per orbit - approximately once per week, in general - at crossings of the x-z plane. 
Randomly-distributed navigation/modeling 1-CT errors of 1 km and 1 cmls as well as 1% 1-CT ma­
neuver execution errors are included to simulate the uncertainty associated with real-world station­
keeping operations. Monte Carlo simulation is implemented to make a preliminary assessment of 
the impact of libration point orbit type, size, and periodicity on stationkeeping cost. 

Stationkeeping Costs Across Families of Periodic L 1/L2 Orbits 

Stationkeeping costs are first explored for several periodic EM L 1 and L2 libration point orbits of 
potential relevance to human exploration activities. Each trajectory is maintained for 12 revolutions 
which is approximately 3.5 to 7.5 months for the trajectories considered here, but stationkeeping 
costs can reasonably be extrapolated for longer durations. Stationkeeping costs are estimated using 
500-trial Monte Carlo simulations for each orbit of interest and the 12-revolution average Ll Vtot 
is extrapolated to produce an approximate annual stationkeeping cost. The costs associated with 
maintaining various EM L1 and ~ southern halo orbits are presented first in Figure 17. The highest 
average total stationkeeping cost of over 35 mls is associated with the smallest EM L 1 southern 
halo orbit examined in Figure l7(a) with an orbital period of approximately 12 days. Conversely, 
maintaining the largest halo orbit tested required the lowest Ll V of approximately 3 mls. Like the 
EM L2 southern halo family, the larger the amplitude of the EM L2 southern halo orbits, the lower 
the average total A V. However, it is important to observe in Figure 17(b) that the L2 orbits are 
generally less costly to maintain than their L1 counterparts with average total Ll V costs ranging 
from 2.6 to 18.5 m/s for the selected EM L 2 southern halo orbits. 

Annual stationkeeping costs for selected members of the EM L 1 Lyapunov and vertical families 
appear in Figure 18. Similar trends are observed in both the Lyapunov and vertical orbits in that 
the largest amplitude trajectory requires the lowest average total Ll V. The smallest y-amplitude 
Lyapunov orbit requires the largest annual maintenance !::J.. V of any of trajectory in this investigation 
at over 39 m/s. Note that &.\1 ~ vertical orbits are not considered in this analysis because the 
trajectories' line of sight to the Earth is regularly blocked by the Moon which can be undesirable 
from a communications standpoint. 
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Figure 17. SK costs for the EM L1/L2 southern halo families 
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25:§: 
8 
'-" 

Additional insight into the orbit maintenanc~ costs depicted in Figures 17 and 18 is gained by 
exploring the correlation between the orbit stability index, v, and annual stationkeeping ~ V costs. 
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The orbit stability index is computed as 

(3) 

where Amax represents the largest eigenvalue of the monodromy matrix associated with a particular 
periodic orbit.11 Fundamentally, a larger stability index indicates greater instability in a periodic 
orbit while a stable periodic orbit corresponds to v = 1. The stability index is plotted against the 
annual stationkeeping costs for each of the four periodic families explored previously in Figure 19, 
First, note that for each family, the stability index decreases as the family goes larger which means 
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Figure 19. Effect of stability index, v, on stationkeeping costs 

that the orbits become less unstable. Orbit maintenance cost and stability index are clearly corre­
lated and it is apparent that, as periodic orbits within the family become less unstable, their required 
stationkeeping !::. V goes decreases. Lastly, combining the stationkeeping results with the transfer 
results earlier, it can be said that, for the EM £ 1 southern halo orbits, both transfer and station­
keeping costs decrease as the family grows. Conversely, stepping through the EM lrJ southern halo 
family _results in higher transfer costs, but lower stationkeeping !::. V .requirements. 

Quasi-periodic Orbit Stationkeeping Costs 

In addition to the analyzing the costs required to maintain various periodic orbits in the EM 
system, it is also beneficial to explore stationkeeping costs for associated quasi-periodic behavior 
because (1), mission requirements may only require a spacecraft to remain in the general vicinity 
of a libration point, as opposed to having to rigidly adhere to a periodic orbit and (2), in full-fidelity 
models, libration point orbits will inherently be quasi-periodic due to perturbations such as lunar 
eccentricity and solar gravity. Figures 20(a) and 20(b) illustrate the stationkeeping costs associated 
with maintaining EM L 1 and L2 southern quasi-halo trajectories, respectively. For the each of the 
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Figure 20. SK costs for the EM L1/ L 2 southern quasi-halo families 
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quasi-periodic trajectories simulated, the observed stationkeeping costs are very similar to the costs 
required to maintain the associated periodic orbits. This is not a completely unexpected result, but, 
nevertheless, it is important to confirm that periodic orbit maintenance costs can provide reasonable 
predictions for the !:J. V required to maintain nearby quasi-periodic trajectories. 

CONCLUSIONS 

This research represents a preliminary investigation into transfer trajectory design options be­
tween the Earth and Earth-Moon £ 1 and £ 2 libration point orbits that may be relevant to future 
human space exploration activities. Both direct transfers and those incorporating close lunar pas­
sage are examined. Direct transfers provide relatively fast transport to orbits in the vicinity of £ 1 
and £ 2, however, total !:J. V costs vary greatly with orbit type. Generally, cost to transfer may be 
decreased by inserting onto nearly a planar revolution along 'large' quasi-periodic (quasi-halo and 
Lissajous) orbits. Increasing the energy level (decreasing C) additionally decreases the required 
!:J. V to transfer. To further decrease !:J. V costs for cases where time-of-flight is less important, it is 
useful to incorporate stable manifolds as a segment of the transfer. 

Three-bum, lunar assisted transfers are developed to both EM £ 1 and £ 2 that leverage existing 
lunar free return trajectories solutions as part of an initial guess architecture. For the classes of three­
burn transfer trajectories considered in this investigation, EM £1 is reached more quickly than EM 
£2, but at a higher l:J. V cost. Examples of round trip Earth-Lt/£2-Earth trajectories are presented 
to demonstrate that either EM L 1 or £ 2 can be accessed within the 21-day total time of flight limit. 
Both Earth-Lt and Earth-£2 transfers are reconverged in a higher-fidelity model to demonstrate 
that these orbit architectures are valid in real-world mission applications and that Earth departure 
inclination appears to have minimal effect on transfer !:J. V costs. 

Optimal periodic and quasi-periodic orbit stationkeeping costs are assessed using a previously 
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established long-term stationk.eeping strategy and it is observed, for the families investigated, that 
lower amplitude trajectory generally require more A V to maintain. A summary of transfer and 
stationkeeping A V costs for EM £ 1 and £ 2 southern halo orbits are presented in Table 4. The 
transfer AV values do not include the initial Earth departure maneuver, AV1. It is clear from the 

Table 4. Summrary of EM L 1/L2 transfer and SK A V costs 

EM£1 Direct EM£2 Direct EM £1 Lunar-Assisted EM £ 2 Lunar-Assisted 

z-amp (km) 5000 5000 5000 5000 
TOF (days) 3.99 6.41 4.87 14.70 
!:lV (mls) 609.07 957.24 515.83 202.45 
Perilune alt. (km) N/A N/A 200 200 
SK AV (rnls/yr) 35.18 18.25 35.18 18.25 

analysis presented herein that the choice between the two venues, Earth-Moon £1 and ~. can be 
made on the basis of scientific and/or exploration goals without being limited, in most cases, by 
dynamical constraints of the Earth-Moon system. 
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