The Temporal and Probabilistic Relationship between Lightning Jump Occurrence and Radar-Derived Thunderstorm Intensification

Christopher J. Schultz¹, Phillip M. Bitzer², Lawrence D. Carey², Themis Chronis³, and Sarah M. Stough²

- 1- NASA MSFC, Huntsville, AL
- 2- Department of Atmospheric Science, University of Alabama Huntsville
- 3- Earth System Science Center, University of Alabama Huntsville

The Lightning Jump

- Rapid increases in total lightning (i.e., "lightning jumps") are physically related to updraft intensification and wellcorrelated to severe weather occurrence.
 - Williams et al. 1999, Schultz et al. 2009, Gatlin and Goodman 2010, Schultz et al. 2015
- 1) Helps NWS forecasters identify rapid intensification of storms.
- 2) Increases forecaster confidence in a warning decision

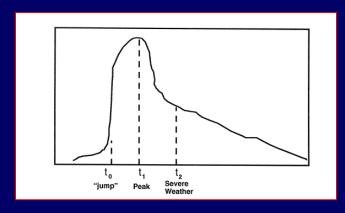


Figure credit: Williams et al. 1999, Atmos. Res.

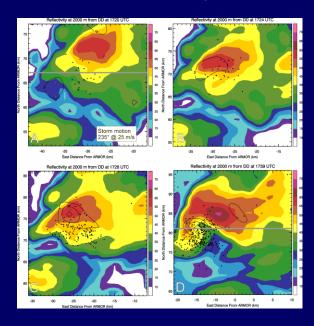


Figure credit: Schultz et al. 2015, WAF

The Lightning Jump Algorithm

- Automated detection of these rapid increases in total lightning have been a focus now for over a decade
 - Current version used is the "2σ" algorithm
 (Schultz et al. 2009, 2011)
- Recent work has focused on implementation within the NWS framework.

Motivation

- NWS wants fused decision making tools which combined observations and NWP.
 - Goal: Increase the amount of information a forecaster can use for decisions without increasing the work load.

 What is the potential impact of fusing the lightning jump in datasets and algorithms used in severe weather forecasting?

Multi-Radar MultiSensor (MRMS) and ProbSevere

- MRMS National Severe Storms Laboratory product which combines data streams from radar, satellite, lightning, models, and rain gauges to produce gridded output every 2 minutes readily available to National Weather Service offices for improved decision making.
 - Some products include:
 - Reflectivity
 - Maximum expected size of hail (MESH)
 - Azimuthal Shear (AzShear)
- ProbSevere NOAA/CIMSS product which uses a statistical model to predict the probability that a storm will first produce severe weather in the near term (next 60 minutes).
 - Uses radar, model output and satellite derived information to calculate probabilities (e.g., cloud top cooling, MESH, CAPE) of a storm becoming severe. (Cintineo et al. 2014)

Image from http://www.nssl.noaa.gov/tools/decision/

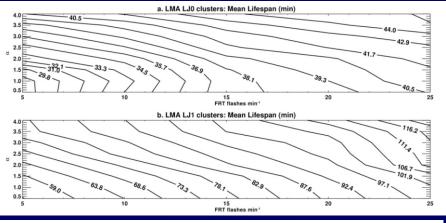
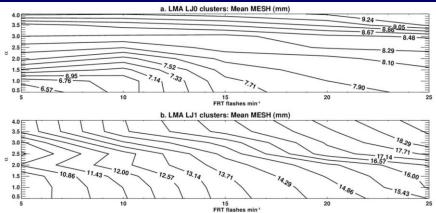
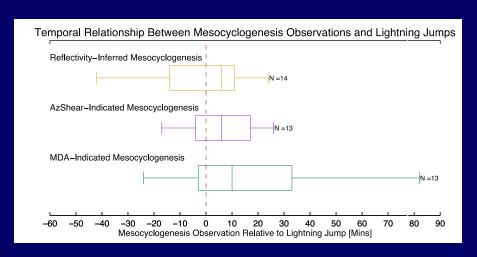




Image courtesy of the GOES-R HWT Blog


Chronis et al. (2015)

 Thunderstorms with lightning jumps had larger mean MESH values and lasted longer than storms without lightning jumps

Previous Work

Stough (2015)

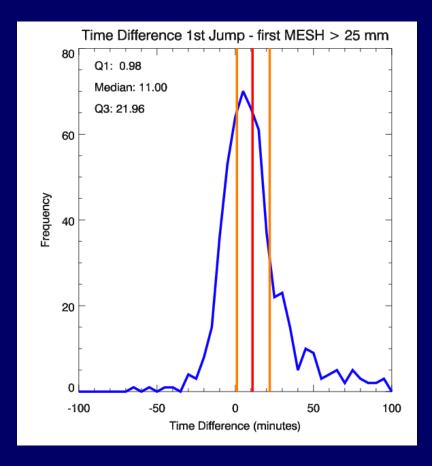
 Over half of the time, mesocyclogenesis occurs
 6-8.5 minutes after the 1st lightning jump occurrence.

Data and Tools

- 1501 tracked thunderstorms from Schultz (2015) with storm based radar, lightning and severe weather characteristics.
 - Total lightning data from 4 lightning mapping arrays.
 - The Thunderstorm Identification Tracking, Analysis, and Nowcasting (TITAN; Dixon and Wiener 1993) was the tracking algorithm.
 - Warning Decision Support System-Integrated
 Information (WDSS-II) produced gridded reflectivity,
 MESH and AzShear.
 - Severe weather reports were taken directly from the National Climatic Data Center severe report database.

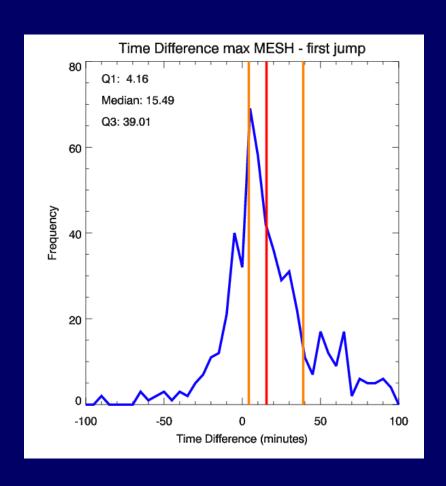
Question 1: The conditional probability that a storm has MESH ≥ 25.4 mm and at least 1 lightning jump?

- 1105 of 1501 storms had MESH ≥ 25.4 mm (74%).
 - 396 storms do not have MESH exceed 25.4 mm.


- 630 of the 1501 storms had at least 1 lightning jump (42%).
 - 871 storms do not contain at least 1 lightning jump.

 583 of 1501 have at least 1 lightning jump and MESH≥ 25.4 mm (39%).

Question 2: What is the timing of the first MESH ≥ 25.4 mm and the first lightning jump?


 537 of the 583 storms with MESH and 1 jump were tracked prior to the flash rate reaching 15 fpm.

- 25th percentile 1 minute
- Median 11 minutes
- 75th percentile 22 minutes

Question 3: What is the difference in timing of the maximum MESH and the first lightning jump?

- When does the maximum in MESH (i.e., intensity) occur relative to the 1st jump?
- 25th percentile 4 minutes
- Median 16 minutes
- 75th percentile 39 minutes

Question 4 – What is the verification of these parameters using severe weather reports?

- If MESH ≥ 25.4 mm was observed what is the probability the storm was severe:
 - POD 428/453 = 94%
 - FAR 677/1105 = 61%
- If a lightning jump was observed, what is the probability the storm was severe:
 - POD 342/453 = 76%
 - FAR 288/630 = 46%
- If MESH ≥ 25.4 mm and a lightning jump were observed what is the probability the storm was severe:
 - POD 334/453 = 74%
 - FAR 249/583 = 43%

Question 5 – What if objective metrics for severe weather were used?

- If MESH ≥ 25.4 mm was considered "severe" and lightning jump used to objectively warn:
 - POD 583/1105 = 53%
 - -FAR 47/630 = 7%
- If a lightning jump was considered "severe" and MESH ≥ 25.4 mm was used to objectively warn:
 - -POD 583/630 = 93%
 - -FAR 583/1105 = 47%

Summary

- The inclusion of the lightning jump has the potential to reduce FAR in a fused algorithm like ProbSevere.
- Relative to future fusion of algorithms and forecasting using multiple parameters the general conceptual model for timing of events should be:
 - 1. First MESH ≥ 25.4 mm
 - 2. Lightning jump
 - 3. Maximum MESH/Severe weather