NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD

Michael J. Schuh and Joseph A. Garcia NASA Ames Research Center

Melissa B. Carter and Karen A. Deere NASA Langley Research Center

Daniel M. Tompkins Boeing Research & Technology

Paul M. Stremel Science and Technology Corporation

AIAA SciTech 2016, Jan 4-8 2016, San Diego, CA

BOEING

Outline

- Motivation
- Geometry
- Overview of simulations
- Four CFD codes
- Simulation results for five different configurations
- Summary & Conclusions

Why were we running CFD?

- Support pretest configuration changes and wind tunnel model design
- Quantify installation effects
- Guide post test data corrections
- Extrapolate from wind tunnel to free flight

Why multiple codes?

- Increased confidence in CFD predictions especially before the availability of wind tunnel data
- Different people running different CFD codes often results in better and higher confidence results
- Opportunity for CFD modelers to learn from each other

HWB Test Model – Cruise Configuration

Baseline and Acoustic Krueger

Baseline and Acoustic Krueger

Top View of Krueger Brackets

Bottom View of Krueger Brackets

CFD Configurations

Cruise

• Free Air

Baseline Krueger no brackets

- Free Air
- 14'x22' Wind Tunnel

Acoustic Krueger w/brackets

- Free Air
- 40'x80' Wind Tunnel

All results are for Freestream Mach = 0.2

• USM3D

- Used by NASA LaRC, NASA LaRC developed
- Tetrahedral cell meshes
- CFD++
 - Used by Boeing, COTS code
 - Triangular prisms, tetrahedrals, and pyramids meshes
- STAR-CCM+
 - Used by NASA ARC, COTS code
 - Polyhedral volume mesh with prism layer on surface
- OVERFLOW 🔶
 - Used by NASA ARC, NASA LaRC developed with ARC origin
 - Overset structured meshes
- All Codes ran with y+ < 1. All but STAR-CCM+ used SA turbulence model, STAR-CCM+ was run with SST turbulence model.

CFD Configurations

Baseline Krueger no brackets

- Free Air
- 14'x22' Wind Tunnel
- Acoustic Krueger w/brackets
- Free Air
- 40'x80' Wind Tunnel

BOEING NA

BOEING N

Cruise Lift

14

Good comparison up to stall

CFD Configurations

Cruise

• Free Air

Baseline Krueger no brackets

- Free Air
- 14'x22' Wind Tunnel
- Acoustic Krueger w/brackets
- Free Air
- 40'x80' Wind Tunnel

CFD Configurations

Cruise

• Free Air

Baseline Krueger no brackets

- Free Air
- 14'x22' Wind Tunnel
 Acoustic Krueger w/brackets
- Free Air
- 40'x80' Wind Tunnel

HWB in LaRC 14'x22'

CFD Configuration used for 14'x22' in STAR-CCM+

OVERFLOW meshing layout used for LaRC 14'x22'

82 Grids

Tunnel, Wake Box, and Sting Box, α =25°

Baseline Kreuger in 14'x22' Pitching Moment

BDEING

CFD Configurations

Cruise

• Free Air

Baseline Krueger no brackets

- Free Air
- 14'x22' Wind Tunnel

Acoustic Krueger w/brackets

- Free Air
- 40'x80' Wind Tunnel

CFD Configurations

Cruise

• Free Air

Baseline Krueger no brackets

- Free Air
- 14'x22' Wind Tunnel

Acoustic Krueger w/brackets

- Free Air
- 40'x80' Wind Tunnel

HWB in NASA Ames 40'x80'

CFD HWB in ARC 40'x80'

Mach Number Pitching Moment Coefficient Krueger brackets modeled in CFD CFD with 40x80 Walls Uncorrected 40x80 Data In 40x80, STAR-CCM+, Acoustic 45-3x2 In 40x80, OVERFLOW, Acoustic 45-3x2 40x80, Uncorrected values, Acoustic 45-3x2, r23 40x80, Uncorrected values, Acoustic 45-3x2, R02 -X-

Acoustic Krueger in 40'x80' Pitching Moment

Angle of Attack

BDEING

Acoustic Krueger in 40'x80' Lift w/Free Air CFD

Angle of Attack

_ift Coefficient

38

Acoustic Krueger in 40'x80' Drag w/Free Air CFD

Acoustic Krueger in 40'x80' Pitching Moment w/Free Air CFD

Arbitrary shift offset in Pitching Moment

All data is for Freestream Mach = 0.2

	14'x22' LaRC	40'x80' ARC	USM3D LaRC	CFD++ Boeing	STAR-CCM+ ARC	OVERFLOW ARC
Cruise in Free Air			14'x22' Sting	40'x80' Sting	40'x80' Sting	14'x22' Sting
Cruise in Tunnel	X	X				
Baseline Krueger 45°-2x2 in Free Air			14'x22' Sting		14'x22' Sting	14'x22' Sting
Baseline Krueger 45°-2x2 in Tunnel	X				14'x22' Tunnel	14'x22' Tunnel
Acoustic Krueger 45-3x2 in Free Air				40'x80' Sting	40'x80' Sting	40'x80' Sting
Acoustic Krueger 45-3x2 in Tunnel	X	X			40'x80' Tunnel	40'x80' Tunnel

- CFD simulations were performed before and after testing
- Used 4 different CFD codes
- 5.75% HWB scale model tested in the NASA LaRC 14'x22' and NASA ARC 40'x80' wind tunnels
- Good agreement with the measured results up to the stall
- Less agreement after the onset of stall
- Accurately modeled the vehicle in free air and with the wind tunnel walls