

JSC/EC5 U.S. Spacesuit Knowledge Capture (KC) Series Synopsis

All KC events will be approved for public using NASA Form 1676.

This synopsis provides information about the Knowledge Capture event below.

Topic Constellation Spacesuit PLSS Trace Contaminant Control

Date: September 8, 2010 **Time:** unknown **Location:** JSC/B5S/R3204

DAA 1676 Form #: 29692

A PDF of the presentation is also attached to the DAA 1676 and this is a link to all lecture material and video: \\js-ea-fs-01\pd01\EC\Knowledge-Capture\FY10 Knowledge Capture\20100928 M. Jennings TCC\For 1676 Review & Public Release

*A copy of the video will be provided to NASA Center for AeroSpace Information (CASI) via the Agency's Large File Transfer (LFT), or by DVD using the USPS when the DAA 1676 review is complete.

Assessment of Export Control Applicability:

This Knowledge Capture event has been reviewed by the EC5 Spacesuit Knowledge Capture Manager in collaboration with the author and is assessed to not contain any technical content that is export controlled. It is requested to be publicly released to the JSC Engineering Academy, as well as to CASI for distribution through NTRS or NA&SD (public or non-public) and with video through DVD request or YouTube viewing with download of any presentation material.

* This PDF is also attached to this 1676 and will be used for distribution.

For 1676 review use Synopsis Jennings & Waquespack Constellation Spacesuit PLSS 9-8-2010.pdf

Presenters: Mallory Jennings and Glenn Waguespack

Synopsis: This presentation summarized the results of a trade study that evaluated whether trace contaminant control within the Constellation Spacesuit PLSS could be achieved without a Trace Contaminant Control System (TCCS) by relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Mallory Jennings and Dr. Glenn Waguespack studied trace contaminant generation rates to verify that values reflected the latest designs for Constellation spacesuit system pressure garment materials and PLSS hardware. They also calculated TCCS sizing and conducted a literature survey to review the latest developments in trace contaminant technologies.

Biographies: Mallory Jennings was graduated from Wichita State University in 2010 with a bachelor of science in mechanical engineering. She joined NASA as a cooperative education student with the Mission Operations Directorate (MOD) at JSC in 2007. She transitioned to EC5 in 2008 and spent four semesters working various projects with the ventilation subsystem of the PLSS. Jennings later served as a technology development engineer, working with various PLSS subsystems at JSC.

Dr. Glenn Waguespack was graduated from Louisiana State University in 1997 with a Ph.D. in mechanical engineering and a minor in physics. Subsequently, he spent six years working for Sempra Energy

Solutions developing energy performance projects for commercial, government, and educational building environmental systems. He joined the NASA team in 2005 as an employee of GeoControl Systems, Inc., working on the Jacobs Technology ESC. In this position, he supported spacecraft and spacesuit thermal and environmental analysis and development efforts at JSC.

EC5 Spacesuit Knowledge Capture POCs:

Cinda Chullen, Manager cinda.chullen-1@nasa.gov (281) 483-8384

Vladenka Oliva, Technical Editor (ESCG) <u>vladenka.r.oliva@nasa.gov</u> (281) 461-5681

Requirements and Sizing Investigation for the Constellation Space Suit Portable Life Support System Trace Contaminant Control

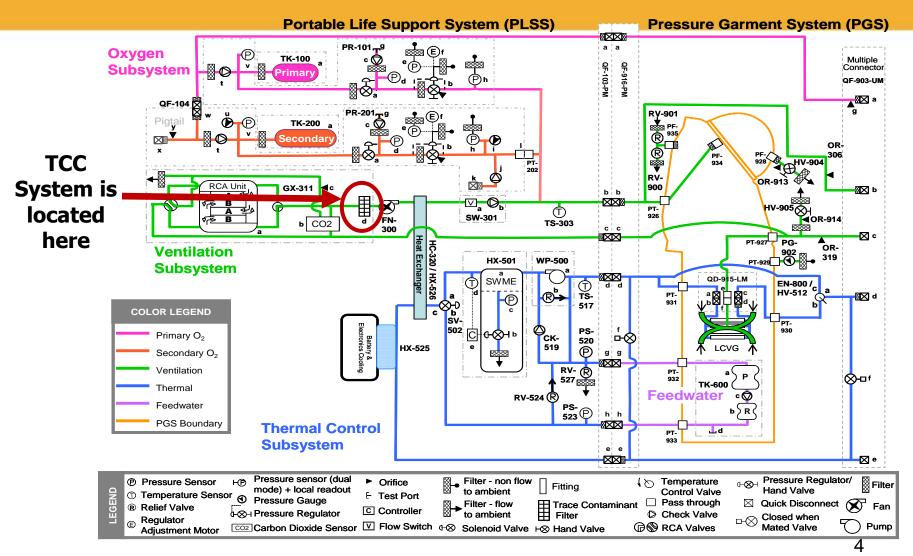
Mallory A. Jennings
Wichita State University

Heather L. Paul NASA Johnson Space Center

Glenn M. Waguespack Geocontrol Systems, Inc.

Overview

- This paper is proceeded by the Trace Contaminant Control (TCC) Trade Study Results (2009-01-2370)
 - Set up TCC requirements, researched past and possible future technologies, and determined the feasibility of regeneration of TCCS
- The purpose of this study
 - Revisiting generation rates
 - Feasibility of Eliminating the TCC System (TCCS) from the Space Suit
 - Sources of Ventilation Gas Loss
 - Advantages of Removal of TCCS
 - Feasibility Analysis Assumptions
 - TCCS Sizing Calculation
 - Update on Prospective Technologies



Introduction

- Portable Life Support System (PLSS) provides:
 - Ventilation loop which removes metabolically produced carbon dioxide, water, and trace contaminants as well providing makeup O₂ and thermal control
- Trace contaminants are produced by both crew metabolism and material/equipment off-gassing
 - Defined as a gaseous substance introduced into the Space Suit system
 - Can be hazardous to a crewmember's health with side effects ranging from headaches to heart damage depending on the exposure level and duration

Barnes, B., Conger, B., Leavitt, G., Autrey, D., and Wells, J., *Constellation Space Suit Element PLSS Baseline Schematics and Internal Interfaces*, Rev. B, JSC-65563, NASA, September 2009.

Introduction

- A trade study conducted in 2008 evaluated the expected Space Suit PLSS ventilation loop trace contaminants with generation rates, Spacecraft Maximum Allowable Concentrations (SMAC), and adverse effects
- CSSE EVA Requirements Document (ERD) specified that the trace contaminant concentrations are not to exceed the 24-hr SMAC
- The generation rates were derived from data used during the development of the Extravehicular Mobility Unit (EMU) and data from a NASA White Sands Test Facility amine bed off-gassing test

Contaminant Generation Rates

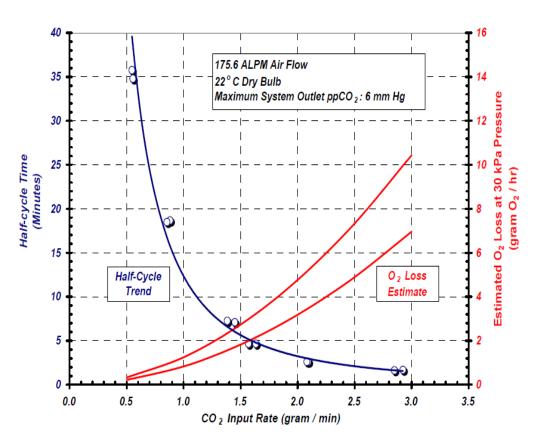
		Generation Rate	24-hr SMAC Limit			
	Formula	(mg/8-hr EVA)	(ppm)*	(mg/m ³)	Affected Organ	Effect
Acetaldehyde [†]	CH₃CHO	0.027	6	10	Mucosa	Irritation
Acetone	CH₃COCH₃	0.045	200	500	Central Nervous System Fatigue	
Ammonia	NH ₃	83	20	14	Eye	Irritation
n-Butanol	BuOH	0.17	25	80	Eye	Irritation
Carbon Monoxide [‡]	СО	11	100	114	Central Nervous System	Depression
					Cardiovascular	Arrhythmia
Ethyl Alcohol	C₂H₅OH	1.3	5000	10000	Eye	Irritation
					Mucosa	Irritation
					Skin	Flushing
Formaldehyde [†]	CH ₂ O	0.13	0.5	0.6	Mucosa	Irritation
Furan	C ₄ H ₄ O	0.1	0.36	1	Liver	Hepatotoxicity
Hydrogen	H ₂ CO	17	4100	340	-	Explosion
Methane	CH ₄	0.47	5300	3500	-	Explosion
Methyl Alcohol	CH₃OH	200	70	90	Eye	Visual Disturbance
Toluene	C ₇ H ₈	0.2	16	60	Central Nervous System	Dizziness

^{*} Evaluated at 25°C and 1 atm.

Constellation Program Extravehicular (EVA) Systems Project Office (ESPO) Space Suit Element Requirements Document, Rev.C.3, CxP 72208, NASA, September 22, 2009.

Spacecraft Maximum Allowable Concentrations for Airborne Contaminants, JSC-20584, NASA, November 2008.

[†] Carcinogen


[‡] Carboxyhemoglobin target

Sources of Ventilation Gas Loss

- Where we lose ventilation loop gas and trace contaminants...
 - Carbon Dioxide Sensor Losses
 - Approximated at 0.01 kg O₂ per 8-hr EVA
 - Suit Leakage
 - Approximated at 82.8 sccm from the Apollo data
 - RCA ullage

Advantages of Removal of TCCS

- Direct Mass Reduction
 - Approximately 0.24 kg (0.53 lbm)
- Secondary Mass Reduction
 - Eliminates a source of pressure drop
 - Reduction of ventilation fan power
 - Reduction of the required battery mass
- Direct Volume Reduction
- Secondary Volume Reduction
- Reduction in maintenance overhead
- Increase in system reliability
- Decrease in PLSS development and fabrication costs

Feasibility Analysis Assumptions

- The assumptions made during the trace contaminant post-EVA concentration analysis:
 - RCA cycle time is held constant
 - Oxygen loss from RCA venting ≈ 6 g/h
 - O_2 venting through the CO_2 sensor ≈ 0.01 kg per 8 hours
 - Pressure Garment System (PGS) leak rate = 82.8 sccm (Apollo pre-flight average)
 - The initial trace contaminant mass and the initial concentration = 0
 - The suit free volume is 2 ft³
 - The ratio of contaminant mass to O₂ mass is identical at all leakage and ventilation locations
 - Each contaminant mass generation rate is constant throughout the EVA duration
 - TCCS removal efficiency of each contaminant is constant

Trace Contaminant (TC) Concentration Analysis

Mass Conservation

$$\frac{dm_c}{dt} = \dot{m}_{cgen} - \frac{m_c}{m_o} \sum_i \dot{m}_{Li}$$

where

$$\sum_{i} \dot{m}_{Li} = \dot{m}_{PGSo} + \dot{m}_{RCAo} + \dot{m}_{CO2} + \eta_c \dot{m}_o$$

$$C_c \equiv \frac{m_c}{V} = \frac{\dot{m}_{cgen}\tau}{V} \left(1 - e^{-\frac{t}{\tau}}\right) + C_{ci}e^{-\frac{t}{\tau}}$$

where

$$\tau = \frac{m_o}{\sum_i \dot{m}_{Li}}$$

 C_{ci} Initial TC concentration (= 0) M_c Total TC mass in suit

 m_o Total O₂ mass in suit

 \dot{m}_{CO2} O₂ leakage rate through CO₂ sensor

 \dot{m}_{cgen} TC mass generation rate

O₂ mass flowrate through TCCS

 \dot{m}_{PGSo} O₂ suit leakage

 \dot{m}_{RCAo} RCA ${\rm O_2}$ ullage

TCCS capture efficiency (= 0)

Suit internal gas volume

Feasibility Analysis Results

 Results at end of 8 hr EVA, no contaminants at the beginning

				8-hr Concentration* (mg/m ³)	
Chemical Name	Total Generation Rate (mg/8-hr EVA)	SMAC (mg/m ³)	w/o Suit Leak	w/ Suit Leak	
Acetaldehyde	0.0267	10	0.181	0.104	
Acetone	0.0445	500	0.301	0.173	
Ammonia	83.3	14	564	324	
n-Butanol	0.167	80	1.13	0.649	
Carbon Monoxide	11.0	114	74.4	42.8	
Ethyl alcohol	1.34	10,000	9.03	5.20	
Formaldehyde	0.133	0.6	0.902	0.519	
Furan	0.100	1	0.676	0.389	
Hydrogen	16.7	340	113	64.9	
Methyl alcohol	0.467	90	3.16	1.82	
Methane	200	3,500	1,352	778	
Toluene	0.201	60	1.36	0.781	

^{*} Highlighted values exceed SMAC concentrations.

TCCS Sizing Calculations

- The extra O₂ required to meet the NH₃ concentration requirements without a TCCS is 2.2 kg (5.14 lbm) over the O₂ normally lost due to ullage and leakage
- Initial TCCS size estimate was calculated for the bed mass of a TCCS design for Constellation EVA conditions & requirements

TCCS Sizing Assumptions

- 10%-phosphoric-acid-impregnated Granular Activated Carbon (GAC) bed
- Sized for ammonia only
- Used ISS TCCS adsorption capacity (4.4 milligram ammonia/gram carbon)
- Ammonia capture efficiency equals 100% when residence time ≥ 0.25 s and varies linearly with residence time otherwise
- Residence time is determined by the unused bed volume and breathing gas volume flow rate

TCCS Sizing Analysis

$$\eta_c pprox egin{cases} rac{t_R}{t_{Ro}} & ext{if} & t_R < t_{Ro} \ 1 & ext{if} & t_R \ge t_{Ro} \end{cases}$$

$$t_R = \frac{V_{B,eff}}{\dot{V_o}}$$

Unused Bed Volume:
$$V_{B,eff} = \frac{1}{\rho_{B}} \left(m_{B} - \frac{m_{cads}}{\zeta} \right)$$

If
$$t \gg 7$$

If
$$t >> \tau = \frac{m_o}{\dot{m}_{PGSo} + \dot{m}_{RCAo} + \dot{m}_{CO2} + \eta_c \dot{m}_o} = \frac{m_o}{\sum_{i=1} \dot{m}_{Lj} + \eta_c \dot{m}_o}$$
 then:

TC Concentration:

$$C_{c}pproxrac{\dot{m}_{cgen} au}{V}$$

Total Adsorbed TC: $m_{cads} \approx \eta_c V_o C_c t$

$$m_{cads} \approx \eta_c \dot{V_o} C_c t$$

Setting $C_{cs} = C_{SMAC}$ and solving for m_B yields:

$$m_{B} pprox rac{1}{\zeta} \left[\dot{m}_{cgen} - C_{SMAC} V \left(rac{\sum_{j=1} \dot{m}_{Lj}}{m_{o}}
ight) \right] \left(t + rac{\zeta \rho_{B} t_{Ro}}{C_{SMAC}}
ight)$$

TC concentration

TC maximum concentration limit

TCC bed mass

Total adsorbed TC mass

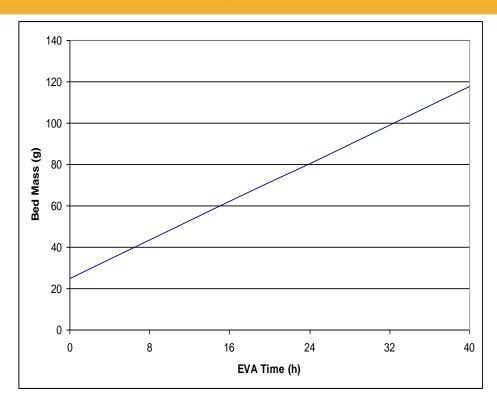
TC mass generation rate

TCC bed density

TC bed adsorption capacity (TC mass/bed mass)

Time

Minimum residence time for 100% capture

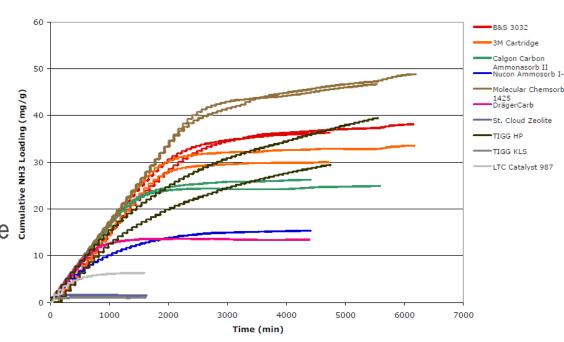

Suit internal volume

O₂ volume flow rate through TCCS

TCCS Sizing Analysis Results

- Resulting bed mass estimates
 - 43.6 g for a single 8-hr
 EVA
 - 117.6 g for five 8-hr EVAs

Refer to Perry, J. L., Elements of Spacecraft Cabin Air Quality Control Design,
 Marshall Space Flight Center, AL, NASA/TP-19980207978, 1998 for an alternate,
 well-tested approach to TCCS bed sizing that includes accommodations for
 multiple contaminant species.



Tech Development and Continued Research

- NASA Marshall Space Flight Center
 - Microlith-based absorbers
- NASA Ames Research Center
 - nter
 Carbon or Zeolite to remove ammonia
 Research is specific for vehicle
 - applications

Ames Research Center Ammonia Scrubbing Test Results

Conclusions and Recommendations

- Generation rates for trace contaminants revealed no change from previously published data
- Ammonia found to greatly exceed the 24-hr SMAC limits
- TCCS is required for the suit
- The bed mass is 43.6 grams for 8 hr EVA
- The sizing evaluation will need to be expanded and updated for the RCA cycle time
- Research continues at several NASA centers and should be followed as it progresses

Questions?

Backup Slides

TC Concentration Analysis Derivation 1

Mass Continuity

$$\frac{dm_c}{dt} = \dot{m}_{cgen} - \frac{m_c}{m_o} \sum_j \dot{m}_{Lj}$$

where

$$\sum_{j} \dot{m}_{Lj} = \dot{m}_{PGSo} + \dot{m}_{RCAo} + \dot{m}_{CO_2} + \eta_c \dot{m}_o$$

All variables are assumed constant except m_c

Separating variables and formulating integral:

$$\int_{m_{ci}}^{m_c} \frac{dm_c}{\dot{m}_{cgen} - \frac{m_c}{m_o} \sum_{i} \dot{m}_{Lj}} = \int_{0}^{t} dt$$

TC Concentration Analysis Derivation 2

$$u = \dot{m}_{cgen} - \frac{m_c}{m_o} \sum_{i} \dot{m}_{Lj}$$

Substituting variables:
$$u = \dot{m}_{cgen} - \frac{m_c}{m_o} \sum_j \dot{m}_{Lj}$$
 $du = -\frac{dm_c}{m_o} \sum_j \dot{m}_{Lj}$

$$-\frac{m_{o}}{\sum_{j}\dot{m}_{Lj}}\int_{m_{cgen}-\frac{m_{c}}{m_{o}}\sum_{j}\dot{m}_{Lj}}^{\dot{m}_{cgen}-\frac{m_{c}}{m_{o}}\sum_{j}\dot{m}_{Lj}}\frac{du}{u}=\int_{0}^{t}dt$$

Integration yields:

$$-\frac{m_o}{\sum_{j} \dot{m}_{Lj}} \ln \left(\frac{\dot{m}_{cgen} - \frac{m_c}{m_o} \sum_{j} \dot{m}_{Lj}}{\dot{m}_{cgen} - \frac{m_{ci}}{m_o} \sum_{j} \dot{m}_{Lj}} \right) = t$$

TC Concentration Analysis Derivation 3

Simplifying the solution yields:

$$m_c = \dot{m}_{cgen} \tau \left(1 - e^{-\frac{t}{\tau}}\right) + m_{ci} e^{-\frac{t}{\tau}}$$
 where $\tau = \frac{m_o}{\sum_i \dot{m}_{Lj}}$

or, in terms of concentrations:

$$C_c \equiv \frac{m_c}{V} = \frac{\dot{m}_{cgen}\tau}{V} \left(1 - e^{-\frac{t}{\tau}}\right) + C_{ci}e^{-\frac{t}{\tau}}$$
 where $C_{ci} = \frac{m_{ci}}{V}$