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The Constrained Vapor Bubble Experiment –
Interfacial Flow Region

• A bubble constrained by the walls of a solid.

• A transparent wickless heat pipe flown in the ISS 

• 3mm x 3mm ~ 20 - 40 mm long (inside dimensions), size developed to have low 

Bond number.

• Study the fluid physics and determine the liquid and vapor distribution.

• Completely modular design.

Introduction

• The internal heat transfer coefficient of the CVB can be correlated to the

presence of the Interfacial flow region.

• The competition between capillary and Marangoni flows causes ‘Flooding’

near the heater and not a ‘Dry-out’ region.

• The growth of the interfacial flow region growth is arrested at higher power

inputs.

• 1D heat model confirms the presence of ‘Interfacial flow region’ and its

growth.

• Visual observations are essential to understanding the heat pipe’s

performance.
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Experimental set-up

• Heat pipes are predicted to dry-out as power is increased. [1-2]

• Opposite behavior of dry-out i.e. flooding observed at heater end from 0.7W

onwards in microgravity [3].

• Formation of a thick layer of liquid near heater starts from 0.7 W – 3 W called

Interfacial flow region

• Beyond 2.2 W, the interfacial region reaches a constant length, arresting further

penetration of liquid down the axis of the heat pipe.
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• LED lamps, Desktops, laptops.

• Hubble Space Telescope, Mars Rovers.

• Very important for space applications.

• Maximum internal heat transfer coefficient at

0.7 W

• Interfacial flow starts from 0.7 W, results in

increased resistance to heat transfer and thus,

decrease in internal heat transfer coefficient.

• A constant internal heat transfer coefficient from

2.2 – 3W is consistent with the arresting of

interfacial flow region.

• Bending curve near the heater end - a signature

of ‘Interfacial flow region’.

• The Marangoni signature coincides well with the

location of central drop at high power inputs.

• Beyond 2.2 W heat input, the temperature

gradient at 10-12 mm of heat pipe is not

sufficient to offset the capillary flow and

movement of the junction vortex down the axis

is arrested.

• Increased heat input is dissipated to the

surroundings as outside radiation.

• A balance between an increased evaporation

rate due to thick liquid film and outside radiation

results in a constant heat transfer coefficient.

Interfacial flow region

• The Marangoni stress forces liquid

from the heater end to the cooler end.

• Capillary pumping forces liquid from

the cooler end to the heater end.

• The flow combination leads to a pinch

point and a central drop that collects

the excess liquid.

• Increase in vapor space at 3 W hints

at a new operation regime.
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• Understand the role of cooler temperature on the growth of the interfacial 

flow region and the magnitude of the interfacial forces

• Develop higher dimension model to predict the interface temperature

gradient and the velocity profile in the interfacial flow region.

• Improve theoretical models [1,2] to predict the flooding behavior observed

in CVB experiments.

Final goal is to cool critical space craft components to enable long-term

manned missions.

• Extra heat input is compensated by back flow and then evaporation of liquid in 

the vapor region.
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