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Abstract 

Increased fuel costs, heightened environmental protection requirements, and noise abatement 

continue to place drag reduction at the forefront of aerospace research priorities.  Unfortunately, 

shortfalls still exist in the fundamental understanding of boundary-layer airflow over 

aerodynamic surfaces, especially regarding drag arising from skin friction.  For example, there is 

insufficient availability of instrumentation to adequately characterize complex flows with strong 

pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, 

and transient phenomena.  One example is the acoustic liner efficacy on aircraft engine nacelle 

walls.  Active measurement of shear stress in boundary layer airflow would enable a better 

understanding of how aircraft structure and flight dynamics affect skin friction.   

Current shear stress measurement techniques suffer from reliability, complexity, and airflow 

disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress 

sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, 

heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag 

surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument 

arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher 

bandwidth probes under development. Direct measurements involve strain displacement of a 

sensor element and require no prior knowledge of the flow. Unfortunately, conventional 

“floating” recessed components for direct measurements are mm to cm in size.  Whispering 

gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of 

sensor with much smaller (m) sensor components.  Direct detection techniques are often single 

point measurements and difficult to calibrate and implement in wind tunnel experiments. In 

addition, the wiring, packaging, and installation of delicate micro-electromechanical devices 

impede the use of most direct shear sensors. Similarly, the cavity required for sensing element 

displacement is sensitive to particulate obstruction. 

This work was focused on developing a shear stress sensor for use in subsonic wind tunnel test 

facilities applicable to an array of test configurations. The non-displacement shear sensors 

described here have minimal packaging requirements resulting in minimal or no disturbance of 

boundary layer flow. Compared to previous concepts, device installation could be simple with 

reduced cost and down-time.  The novelty lies in the creation of low profile (nanoscale to 100 

µm) micropost arrays that stay within the viscous sub-layer of the airflow. Aerodynamic forces, 

which are related to the surface shear stress, cause post deflection and optical property changes.  

Ultimately, a reliable, accurate shear stress sensor that does not disrupt the airflow has the 

potential to provide high value data for flow physics researchers, aerodynamicists, and aircraft 

manufacturers leading to greater flight efficiency arising from more in-depth knowledge on how 

aircraft design impacts near surface properties.   
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The utility of high aspect ratio structures as environmental sensors has been observed in nature 

with a variety of functions including tactile sensing, motion, noise, electrical signals, etc.  

Researchers have fabricated artificial devices to emulate the efficacy and sensitivity of these 

natural systems (Ref. 1).  By natural extension, researchers have investigated the use of these 

high aspect ratio structures for the measurement of shear forces.  State-of-the-art shear stress 

measurement techniques are often encumbered by the lack of precision, environmental 

sensitivity, and implementation complexity. In some cases, these sensors require extensive 

knowledge of the airflow, as they directly interfere with the experimental results.  Naughton and 

Sheplak (Ref. 2) and Lofdahl and Gad-El Hak (Ref. 3)  have recently reviewed the state-of-the-

art for shear stress sensing in wind tunnels.  To overcome these challenges, advanced 

microelectromechanical systems (MEMS) (Ref. 4) and other promising techniques, including 

whispering gallery mode sensors (Ref. 5) and micropost array devices (Ref. 6), are currently 

being explored.  

Brücker, Große, and Schröder have extensively investigated the application of micropost arrays 

for shear stress sensing in fluid flows (Ref. 7).  In their work, microposts were fabricated via soft 

lithography from a wax mold template which was patterned using laser ablation (Ref. 8).  With 

300–500 m tall posts, they demonstrated deflection of the posts in fluid flows that were 

visualized using micro particle image velocimetry (-PIV) measurements (Ref. 7).  The 

deflection of the posts was calibrated utilizing a plate and cone rheometer where the 

experimentally determined deflection was found to correlate well with theoretical calculations.  

They also evaluated micropost frequency response and demonstrated the ability to measure both 

mean (Ref. 9) and dynamic (Ref. 10) wall shear stress measurements for water flowing through a 

circular pipe.  Very recently, their micropost arrays were utilized in a wind tunnel to measure 

shear stress and although there were issues with resonance complications at higher Reynolds 

numbers, the results indicated that micropost arrays are amenable to wind tunnel measurements 

of shear stress (Ref. 11).   

Several techniques have been demonstrated to efficaciously fabricate high aspect ratio structures.  

Other applications for these structures, including adhesive free pressure sensitive adherent based 

on Gecko toe topographies (Ref. 12, 13) and fabrication of superhydrophobic surfaces (Ref. 14), 

have contributed to the rapid development of these fabrication techniques.  The most widely used 

method to generate micropost structures has been contact lithography followed by plasma 

etching (Ref. 15, 16) or soft lithography (Ref. 17).  Laser ablation patterning to generate 

templates for soft lithography fabrication has also been demonstrated (Ref. 6, 18).  Using this 

approach, structures with aspect ratios (length/diameter) greater than 10 have been fabricated.  

More exotic methods, such as growth of nanowire forests and unique tooling were also shown to 

be effective for generating shear sensing posted surfaces (Ref. 19, 20).  With such extensive use 

of these high aspect ratio structures, researchers recently identified requirements for rigidity and 

post spacing (Ref. 21) to resist collapse due to adhesive and capillary forces.  The buckling 

strength of microposts, derived from beam theory, has also been investigated (Ref. 6).  Based on 

the target post dimensions and post density for the surfaces fabricated here, it is not anticipated 

that buckling or collapse will be an issue. 

In this work, micropost arrays were generated via soft lithography from templates. The reusable 

templates were fabricated using either laser ablation patterning or contact lithography and 
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enabled posts with aspect ratios up to 4 to be reliably produced.  The microposts were fabricated 

from several silicones with varying mechanical properties and post deflection was characterized 

using atomic force microscopy.  Thin “caps” were generated on the tops of the microposts to be 

used as aids for deflection-sensing.  A macroscopic post array, for visualization and 

demonstration purposes, was fabricated and post-deflection in a bench top wind tunnel was 

recorded using high speed photography. 
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Several factors were considered in determining the height of the microposts, the spacing of the 

microposts in the array, and their mechanical properties.  For the development of this sensor, 

flow properties will be limited to developed subsonic turbulent flows with a Reynolds number, 

Re, greater than 5×105.  The microposts should not extend beyond 5 viscous wall units to remain 

within the viscous sublayer, or approximately 100 micrometers (m) for typical low speed wind 

tunnel laboratory flows.  Posts should be spaced at least four times the diameter of the post “cap” 

(see description of post capping below) in order to prevent interference between adjacent posts 

and a cumulative disruption of the airflow properties, for example by a wake shed from an 

upstream post that would disrupt the airflow of any downstream posts that are too close.   

It was decided to target a maximum deflection of 10 percent of the beam length such that the 

beam dynamics could be described by classic Euler-Bernoulli beam theory.  The force imparted 

on a post in a flow is distributed over the post surface and should vary non-linearly from base to 

tip due to microscopic velocity gradients in the boundary layer.  A simplifying assumption was 

made to estimate post deflection by placing the total bending load at the post tip.  Other models 

such as linear load gradients along the length of the post did not have a significant impact on the 

calculation result. The deflection at the tip of a post, y, arising from all forces including form 

drag and skin friction can be calculated according to:  

  (1) 

where L is the post length, E is the elastic modulus, P is the load, and I is the area moment of 

inertia, which in this work was approximated as a rectangle with a fixed base (I=1/3bL3).  This 

expression assumes that the total bending load is at the post tip.  Other models, including 

distribution of the load along the pillar length, did not significantly impact the calculated results.  

The load can be described as P=D, where D is the profile drag, D=1/2v2ScD, and cD is the drag 

coefficient.  Thus, Eq. 1 can be rewritten for the sensing elements described in this work by 

approximating the features as a cylinder with a rectangular face as the frontal area, S=L2r, where 

r is the pillar radius, which results in a cD of 1.  Rearranging this equation to determine the 

requisite elastic modulus of the micropost material yields: 
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Based on these considerations, calculations were performed to characterize a micropost 100 m 

in length and 10 m in radius, r, and with an elastic modulus of 0.15 MPa (the typical elastic 

modulus of silicones varies from 0.1–3.0 MPa).  Such a post would undergo deflections of 

approximately 10 percent of the post length when exposed to a profile drag of 35.5 nN (figure 1), 

which correlates to a freestream velocity of approximately 12 m/s (see Appendix A).  Given a 

resolution capability of 100 nm, which is lower than the state-of-the-art (see section 3.5), the 

minimal velocity requisite to detectably deflect such a post was approximately 0.6 m/s.   

Although smaller posts would create fewer disturbances in the flow being measured, fabricating 

posts with radii less than 10 micrometers was beyond the capabilities of the available facilities.  

In addition, optical resolution needed for detection of post displacement is limited; therefore, 
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smaller posts would suffer from reduced sensitivity.  Thus, micropost geometries were 

determined to be of greatest applicability with L ≤ 100 m, aspect ratios (L/2r) ≥ 5, post spacing 

of four times the post “cap,” and were to be comprised of elastomeric materials with an elastic 

modulus of ≤ 3 MPa.  Other forces can play a role in post deflection including pressure drag, lift 

forces normal to the flow vector, inertial forces, and normal pressure forces (Ref. 22).  It is 

expected that these sensors will have to be calibrated in a known flow field.  Additionally, the 

mechanical properties of a silicone material, like most materials, are temperature sensitive.  The 

relationship between mechanical properties and temperature is well characterized for these 

materials and can be accounted for using concurrent temperature measurement.(Ref. 23)  Creep 

and thermal aging may also change the response of the posts but has not been considered and are 

likely to be negligible considering the expected lifetime of a sensor, approximately 1 year.   

 

 

Figure 1. Calculated drag-displacement curve for a hypothetical post 100 m in length 

and 10 m in radius.  The hypothetical post had an elastic modulus of 0.15 
MPa. 
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 Laser Ablation Patterning 

 Material Choice 

Based on the researchers’ experience with laser ablation (Ref. 24, 25), it was determined that a 

polymeric material would be best for use as the master template.  A common and readily 

available two-part epoxy was investigated as an ablation medium comprised of D.E.R. 331 

(Dow) and Ethacure 100 (Albemarle Corporation).   

Controlling the thickness and planarity of the epoxy is significant to control the ultimate post 

heights.  Several techniques were employed to address the issue of the epoxy “de-wetting” the 

silica surface after it was spin-cast.  Surface oxidation and utilization of adhesion-promoting 

surface chemical modifiers were investigated with moderate success.  A molding technique that 

has successfully demonstrated control over bondline thickness in adhesion bonding experiments 

was utilized with significant improvements in surface wetting and epoxy thickness.  For this, a 

glass plate was prepared by solvent cleaning and a small aliquot of the uncured epoxy mixture 

was placed in the middle of the plate.  This was surrounded by aluminum alloy shim stock (76.2 

m thick) and the entire surface was covered with a sheet of polytetrafluoroethylene and another 

glass plate.  This assembly was placed in a vacuum bag to spread the epoxy.  The vacuum was 

then removed and weights were placed on the assembly to maintain flatness and keep the epoxy 

level over a 24-h period at ambient temperature.  Next, the assembly and weights were placed in 

a convection oven and stage heated over the course of 72 h to an ultimate cure temperature of 

175 °C.   This was performed to enable partial curing of the epoxy at low temperatures resulting 

in controlled increase in viscosity.  Through this process, epoxy-coated glass plates have been 

prepared that are more planar and have a uniform and consistent thickness of approximately 75 

m.   

Another approach to overcome issues with de-wetting of the epoxy on the substrate would be to 

use an epoxy that cures more rapidly.  Along those lines, a 30 minute cure epoxy (Great Plains 

30 Minute Pro Epoxy) was utilized to make a series of glass-coated samples.  These samples 

were prepared by placing a small volume (approximately 3 mL) of the mixed two-part epoxy 

onto the center of a glass disk that was placed on the spin coater.  Several samples were prepared 

at different spin speeds with a constant duration (60 s) to develop a spin thickness curve (figure 

2).   
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Figure 2.  Spin curve developed for the 30 minute cure epoxy deposited on glass slides.  
The square dots are the data points and the solid line is an exponential fit.  The 
correlation coefficient for this fit was > 0.99. 

Using the spin curve in figure 2, 120 m thick epoxy-coated glass disks were generated using 

both a single deposition step and two deposition steps.  For the two step deposition process, an 

initial layer of the epoxy was spin-coated onto the glass disk and placed in a warming oven (70 

°C) for 1 hour.  This process was repeated to deposit a second epoxy layer on top of the first one.  

Using the two step process, epoxy thickness variability was reduced from sample to sample 

relative to the single deposition step process.    

 Laser Technique 

Initially, the laser ablation process involved tracing a small circular area (25.4 m) on the ablated 

material.  Since the beam diameter is approximately 20 m, this resulted in features that were 

30–40 m.  In an effort to further reduce the feature diameter, a “drill” technique was evaluated.  

In this technique, instead of having the laser beam translated along a region, the position of the 

laser beam was fixed and a discrete number of pulses was delivered to the surface.  Using this 

laser drilling approach, the diameters were reduced to approximately 20–30 m. 

Ablation of the epoxy worked well; the middle portion of the ablation profile had fairly uniform 

thickness with nearly vertical side walls, i.e., the ablation profile was nearly perpendicular to the 

epoxy surface.  Two improvements were developed to control the profile further.   

First, a material with a greater ablation threshold than the epoxy was utilized to act as a hard stop 

to limit the ablation depth and ultimate post length (figure 3.A).  Both silicon wafers and glass 

disks were evaluated; the glass disks exhibited better performance as a hard stop.   

Second, sacrificial materials were introduced to absorb the portion of the ablation profile closest 

to the epoxy surface, which was much wider than the remainder of the ablated region (figure 

3.B). A thick electrical tape (250 m, 10 mils) was added to the ablation sample lay-up to absorb 

this energy. Wafer dicing tape (Semiconductor Equipment Corporation, medium tack) between 

the epoxy and the electrical tape assisted in removal upon pattern transcription. The final 

configuration for the laser ablation sample layup is shown in figure 3.C.  A top-down view of an 

epoxy sample that was subjected to laser ablation patterning is shown in figure 3.D. 
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Figure 3.  Development of fabrication scheme for laser ablation patterning of epoxy 
matrix masters. 

 Template Generation via Contact Lithography 

Another method explored to generate a mask template was to use contact lithography (figure 4).  

Silicon wafers were prepared for this process by first removing any surface contaminants or 

residual organic materials by exposing them to a Radio Frequency (RF) oxygen plasma for 10 

minutes.  A dehydration-bake step was rapidly followed by an adhesion promotion surface 

chemical modification step.  Various surface modification techniques were explored including 

application of molecular surface modifying agents that would chemically bond to the surface and 

vapor deposited copper.  Next, a photoresist (SU-8 2050) was applied to the prepared silicon 

wafer using a syringe.  This approach was utilized to prevent introduction of air bubbles into the 

photoresist which would cause catastrophic surface defects in the final sample.  Once applied, 

the photoresist was spread using a spin coater with an initial spread cycle (500 rpm for 10–15 s) 

followed by a spin cycle (2500 rpm for 45 s).  This ensured that, except for an edge bead which 

is a typical artifact of this deposition process, the photoresist coated the entire surface in a 

uniform layer that was approximately 50 m thick.   The post-application bake was performed 

on a hot plate ramped from room temperature to 95 °C for 10 min followed by a 30-min hold.  

During the exposure process, direct contact between the photoresist and the photomask was 

extremely important for consistent pattern transcription. Early experiments were unsuccessful 

due to foreign particles and surface non-uniformities that prevented contact (figure 4.A).  Careful 

handling of substrates in a clean environment and increased contact force applied using a 

vacuum chuck improved pattern transcription. Ultra-violet (UV) exposure was carried out with a 

broad band source through a long pass filter with a 350 nm cut-off.  The exposure dose was 

estimated to be 200 mJ/cm2 based on the total output of the illumination source and the area of 

the sample.  The post-exposure bake was staged by alternating between two hotplates.  The 

substrates were first baked at 65 °C for one minute, then 7 min at 95 °C, and then returned to 65 
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°C for one additional minute before cooling to room temperature (approximately 15 min).  After 

cooling, substrates were immersed in propylene glycol monomethyl ether acetate (PGMEA) 

developer. The resultant master template consisted of a silicon wafer with approximately 50 m 

of crosslinked SU-8 photoresist patterned with vias (figure 4.B).  Molds were successfully 

prepared with via diameters down to 10 micrometers. 

Interfacial stresses caused the cross-linked photoresist to delaminate from the surface of the 

wafer.  To mitigate this, a new photomask was designed to generate a regular array of lines in the 

developed photoresist (figure 4.C).  The trenches allowed the resist to strain slightly, thereby 

reducing the tensile stress generated in the photoresist during the post-exposure bake, resulting in 

a more stable film.  Each of the nine large regions in figure 4.C contains a different feature size 

and pitch correlating with an ultimate difference in post diameter and spacing.  Various line 

widths and pitches were also used to reduce stress in the films because the optimum trench 

design was not known.  figure 4.D shows a higher magnification view of the region outlined in 

figure 4.C.  Within each 2 mm square is an array of circular features that are approximately 10 

m in diameter separated by 60 m.    

 

 

Figure 4. Refinement of contact lithographic approach for master generation is SU-8 
photoresist.   
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 Micropost Fabrication 

 Silicone Evaluation 

Once the master templates were generated using either laser ablation patterning or contact 

lithography, the next step was to fabricate the micropost arrays using soft lithography.  Several 

silicone-based materials were evaluated for micropost array generation.  Each of the two-part 

silicones was mixed according to the manufacturers’ instructions.  A majority of the samples 

were generated using Silastic® T2 (Dow-Corning).  This flexible, chemically inert, durable 

silicone is used for a myriad of applications and has excellent environmental durability 

properties.  Additionally, as it is a two-part silicone, the ratio of the two components (typically 

10 : 1 base : hardener) can be varied resulting in changes in the mechanical properties of the 

resultant material.  Likewise, Sylgard® 184 (Dow-Corning) has also been used extensively and 

was evaluated in this work as a low elastic modulus alternative to Silastic® T2.  To generate the 

micropost arrays from the master templates, the two part silicone was mixed and spread over the 

patterned region.  This was placed in a vacuum chamber and held under reduced pressure for an 

hour to enable wetting of the topographical features and removal of trapped air pockets.  The 

silicone was cured at 70 °C for approximately 4 hours and allowed to cool to room temperature 

before removal from the template.  Using the initial epoxy templates with very deep holes, 

approximately 40 percent of the silicone microposts fractured upon removal from the template.  

Microposts closer to the desired length were usually readily separated from the template.  

Excellent silicone microposts were generated from templates prepared using either laser ablation 

(figure 5.A and B) or contact lithography (figure 5.C and D) when the templates had 

appropriately sized features in them.   
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Figure 5. Images of Silastic T2 microposts. 

Several other silicone materials were evaluated (table 1).  With the variation in modulus for these 

materials, from 0.06 MPa to 1.84 MPa, micropost arrays made from these materials would likely 

be applicable to a variety of wind speeds and flow conditions.  For most of the materials 

evaluated, the microposts were readily removed from the templates and resulted in uniform 

arrays.  However, the Sylgard 184 and Solaris A-15 both exhibited a propensity to tearing which 

made removal difficult.  It is possible that changing the ratio of the silicone to hardener for these 

materials would alleviate these issues, but that was not investigated in this work. 
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Table 1.  Mechanical properties and post fabrication results for the silicone materials 
evaluated in this work. 

Silicone Modulus, MPa 

Tensile 

Strength, MPa 

Micropost 

Fabrication 

Sylgard 184a 1.84 7.07 
c 

Silastic T2a 1.50 5.52  

Moldstar 30b 0.66 2.90  

Solaris A-15b 0.17 1.24 xc 

EcoFlex 0050b 0.08 2.14  

EcoFlex 0010b 0.06 0.83  
aDow Corning 
bSmooth-On, Inc. 
cThese silicones were brittle and difficult to work with for this application. 

 

 Capping of Posts 

Our micropost design involves a “cap” on top of each post.  This cap will enable greater 

deflection resolution by increasing the optical detection area and is anticipated to improve the 

sensitivity of the posts.  Micropost caps were prepared by wetting the post tip with uncured 

silicone followed by cap shaping and silicone curing on a clean surface (figure 6).   

 

 

 

Figure 6. Schematic for fabricating caps on the post tips.  In this process, a micropost 
array is placed in contact with a glass substrate coated with a spin-coated 
uncured silicone layer (A).  The micropost array is removed from this surface 
leaving microdroplets of uncured silicone on the post tips (B) and is brought 
into contact with a clean glass substrate (C).  The uncured silicone partially 
wets the micropost and partially wets the substrate resulting in formation of 
circular structures (D) that, once cured, can be removed from the substrate 
remaining bound to the micropost tips (E). 

Thickness of the uncured silicone film was controlled by spin casting after calibration to prepare 

a spin curve.  Figure 7.A shows a representative spin curve generated for Sylgard 184, which 

was chosen due to its reduced viscosity relative to Silastic T2.  Using this information, proper 

surface preparation techniques could be performed to generate a Sylgard 184 coated surface with 

an appropriate thickness (5–15 m).  A supported silicone micropost array was carefully brought 
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into contact with the coated surface resulting in transfer of uncured Sylgard 184 material to the 

tips of the silicone microposts.  The wetted microposts were next placed in contact with a clean 

surface resulting in spreading of the uncured silicone and formation of the micropost cap.  While 

in contact with the clean surface, the capped microposts were placed in a 70 °C oven to cure the 

cap material.  The resultant posts are shown below (figure 7.B).   

 Fluorescent Caps 

To demonstrate the feasibility to filter the signals detected from the cap movement relative to 

reflection from the substrate, Silastic T2 was doped with rhodamine B, a fluorescent laser dye.  

Upon illumination with a UV light source, the fluorescent emission from the doped silicone was 

readily visible on our macroscopic post sample (figure 7.C).  This approach will be used to 

improve signal to noise ratios in actual sensor systems and is amenable to using excitation 

sources commonly available in wind tunnels (i.e., Nd:YAG lasers, = 532 nm).  

 

 

Figure 7. Generation of “capped” microposts. 

 Mechanical Characterization of Micropost Deflection 

Once micropost arrays were repeatedly fabricated, experiments were conducted to characterize 

the mechanical properties of the microposts using atomic force microscopy (AFM).  Based on 

existing literature, three techniques were investigated for this non-traditional use of AFM 

equipment.  One technique involving contact mode scanning of a post-decorated surface was 

quickly excluded as the target heights of the post were too great for this approach to be viable 

(Ref. 26).  The other two techniques collect force/displacement curves on the posts as they are 

bent by the AFM cantilever.  Although somewhat similar, one technique involved bending the 

cantilever down by placing the post on top of the cantilever (Ref. 27), and the other technique 

involved bending the post down by moving the cantilever in that direction (Ref. 28).  Ultimately, 

the last technique was chosen due to the instrumentation available.  For these measurements, a 

Veeco Digital Instruments Multimode Scanning Probe Microscope with a Nanoscope V 

Controller was used. The probes used were MicroMasch cantilevers, CSC12 Tip E with an 

aluminum coated detector side. The manufacturer data indicated that the average spring constant 

was k = 0.03 N/m.   For this technique, cantilevers acquired previously were first calibrated to 

determine an accurate spring constant.  This was achieved by determining fundamental 

vibrational frequencies for three vibrational modes (bending, lateral, and torsional) using an 
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oscilloscope (Ref. 29).  Next, the cantilever was placed in contact with the post at a determined 

distance from the base (figure 8.A, points 1, 2 and 3) and translated down to deflect the post.  

The deflection of the cantilever was used to calculate the requisite force for post deflection using 

Hooke’s Law.  Figure 8 shows an example of a post that was interrogated using this technique.  

Figure 8.B–D show the orientation of the cantilever at three different positions on the post prior 

to post bending.   

 

 

Figure 8. Micropost deflection using AFM. 

Figure 9.A reports an example of the data collected on the post shown in figure 8.  As the 

cantilever was translated downward, it first contacted the micropost.   Further movement of the 

cantilever, resulting in post bending, required additional force.  This additional force was 

recorded as the deflection force in figure 9.A.  The deflection force was greater as the cantilever 

was brought closer to the post base, as would be anticipated.  Initially, the load measured at all 

three test locations was collinear which was attributed to the embedding of the cantilever tip into 

the silicone post.  This can be avoided by using tipless cantilevers.  Although not pursued in the 

efforts described here, a model describing the required force to embed the AFM tip into an 

elastomeric post is available and the experimentally measured deflection force can be corrected 

accordingly (Ref. 30).  Deflection of the AFM cantilever arising from post deflection likely 

initiated where the three traces separate according to the cantilever position, which occurs at 

approximately 0.6 m.     
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Figure 9. AFM micropost deflection results and a schematic of airflow interactions with 
a micropost. 

 Measurement Capability 

Deflection of the micropost shear stress sensor components might be visualized using existing 

wind tunnel technologies involved with particle image velocimetry (PIV), specifically -PIV 

systems (Ref. 31).  Using state-of-the-art -PIV systems, imaging at micrometer per pixel levels 

and lower is achievable.  Thus, a 100 m post with a deflection of 10 m should have a change 

in position of at least 10 pixels in a single direction.  A 20 m diameter post with a 50 m “cap” 

would occupy 2032 pixels.  With the large “caps” resolutions, much better than 0.01 pixels 

should be achievable corresponding to a maximum number of data points approaching 1000 or 

more.  

To calculate shear sensitivity, deflection forces measured using the AFM technique were equated 

to drag forces experienced by a micropost in a fluid flow using the Oseen approximation (Ref. 

32, 33). See 1.1.1.Appendix A for a description of this calculation.  Based on the AFM 

experiments, a 3 m deflection (the maximum travel range of the instrument) was approximately 

a 1.2 percent deflection relative to the post length (175 µm), equating to a shear stress of 

approximately 820 mPa (table 2).  An extrapolation of the post deflection to 10 percent would 

develop a force of 0.58 µN (Appendix A).  Using the relationship between drag force and shear 

stress described in Appendix A, the shear stress created by the flow would be approximately 3 Pa 

(see eq. (A.3)) assuming that the change in velocity is equal to twice the average velocity as 

would be the case for no-slip boundary conditions (Figure A.3).  Thus, these microposts, 

fabricated from commercially available materials, would potentially enable the determination of 

shear stresses present in subsonic turbulent flows.   
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Table 2. Post deflection and force as determined from AFM measurements with the 
equivalent shear stress necessary to cause such deflection calculated 
according to 1.1.1.Appendix A. 

Post Deflection (m) Force (nN)  (mPa) 

2.9 100 823 

1.6 50 517 

0.4 10 176 

0.2 5 112 
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In this work, elastic micropillars were designed to meet anticipated limitations within a wind 

tunnel environment to minimize disruption of the airflow.  A model was used to calculate the 

profile drag force necessary to deflect a cantilever beam defined by Euler-Bernoulli beam 

theory.  From this result, both photolithography and laser ablation patterning were evaluated as 

approaches to generate templates.  Soft lithography was used to replicate silicone substrates with 

sensing elements from these templates.  The efficacy of capping the pillar tips was evaluated 

using a straightforward tip wetting approach.  In a maco-scale demonstration, fluorescent dye  

improved pillar tip contrast relative to the substrate surface for enhanced detection.  AFM was 

used to quantitatively determine deflection forces which were correlated with drag forces 

experienced by a micropost in a fluid flow.   
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The current TRL of this micropost sensor technology is estimated to be 2–3 (Ref. 34).  Before 

implementing these micropost arrays as sensors in a wind tunnel experiment, the repeatability of 

micropost fabrication needs to be verified, post deflection in a known shear field environment 

needs to be performed and post deflection needs to be related to the AFM results.  Beyond this, 

the sensor bandwidth, frequency response, noise floor, multipost-airflow interactions, etc. will 

determine their utility as sensors.  The micropost frequency response range and fundamental 

frequencies can be determined using simple cantilever deflection calculations and verified using 

deflection experiments and high speed imaging.  Deformation of the post caps and changes in 

response to shear stress as a result of deflection of the capped post could be addressed in 

programming platforms such as COMSOL.  
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Appendix A. Approximation of Shear Stress on a Surface Based on 
AFM Derived Forces of a PDMS Micropost 

An approximate relationship between the force imparted on a pillar surface in a flow and the 

shear stress induced by the same flow is presented here. The model equates the drag forces 

induced on a pillar with experimental load/displacement data from the mechanical testing of a 

single pillar. This derivation is intended to show that a typical boundary layer flow can 

reasonably be expected to cause deflection of the micropost tips using an approximate analysis.  

A full fluid dynamic and material elastic model of flow interaction with a micropost is beyond 

the scope of this effort. The free stream properties are calculated from the drag force using 

experimental data obtained from Stokes flow around an infinite cyclinder. The data provided by 

Weizenbron and Mazur (ref. 33) relate the drag coefficient (CD) to the Reynolds number (Re) for 

low values of Re.  The method described results in approximate values to help guide the 

selection of pillar geometries and materials that will result in deflection.  

The force to bend a micropost such that the free end is displaced by 3 µm was measured by 

AFM, as described in this report.  The force required to deflect the free end to 10 percent of the 

post height is extrapolated using elastic beam theory to obtain the maximum allowable load on a 

micropost for shear stress measurement as described in section 2.  The extrapolated point force 

applied by the AFM is approximately equal to a flow induced drag force acting on a post of the 

same dimensions. An order of magnitude approximation can be made by assuming the post 

behaves as an infinitely long cylinder and is in a uniform Stokes flow (figure a.1). The velocity 

of the flow field far from the cylinder can be calculated from the drag equation which accounts 

for skin friction and form drag. Using this velocity, the average velocity in a flow field near a 

surface can be estimated from the definition of Newtonian shear stress. 

                                                   

Figure A.1. Schematic of velocity vectors acting on an infinite cylinder in a Stokes flow. 

Elastic beam theory can be used to accurately model tip deflection up to 10% of the beam length.  

Using 10% of the pillar height as the tip deflection limit, the load of 583 nN was used in the drag 

equation (eq. (A.1)) as the drag force.   

Table A.1 shows the experimental values used from the micropost bending experiment and the 

extrapolated values at 10% tip deflection.   
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Table A.1. Comparison of experimental data and the extrapolated values for tip 
deflection equal to 10% of the post height. 

Parameter Experimental Data Extrapolation Value 

Post Length (µm) 175 175 

Tip Deflection (µm) 3 17.5 

Tip Defection as % of Height 1.7 10 

Load (nN) 105 613 

 

The drag force given by equation (A.1) is related to the free stream fluid velocity (v) 

   (A.1) 

where the density (), the drag coefficient (CD),  and the frontal area of a post (A) are constants 

that are known for a given flow and bluff body geometry.  The drag coefficient for an infinite, 

circular cylinder in Stokes flow is Re dependent and is shown in Figure A.2 as the solid black 

curve. The solid line from fig. A.2 was digitized and fit with a power law function given by 

equation (A.2).   

 𝐶𝐷 = 7.61𝑅𝑒−0.48  (A.2) 

where Re is the Reynolds number of the flow around the micropost.  The Re is determined from 

v and known constants: , the diameter of a micropost (d = 20 m), and the viscosity of air ( = 

18.2 Pa s). The power law fit to the digitized data was quite good with an R2 value of 0.98.  

Expressing the Re in terms of v  and substituting equation (A.2) into equation (A.1), the 

relationship between v and FD is give by equation (A.3).  

 𝑣 = 0.415 (
𝐹𝐷

𝜌𝐴
)
0.658

(
𝜇

𝜌𝑑
)
−0.316

  (A.3) 
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Figure A.2. Coefficient of drag for an infinite cylinder in Stokes flow.  The solid line 
represents experimental data.  Other curves are generated for analytical 
approximations. Copied from reference 33. 

The shear stress imparted on a surface by a flowing Newtonian fluid is defined as 

 
z

v




   (A.4) 

where  is the shear stress,  is the dynamic viscosity, and z is the distance from the surface.  For 

this approximation, the velocity of a uniform flow field past an infinite cylinder (v), as calculated 

from equation A.4, is assumed to equal the average velocity of the gradient flow field in the 

boundary layer above a surface (vavg).  Figure A.3 below represents this graphically. 

 

Figure A.3. Schematic of the change in the velocity profile from the free stream, left, to 
that in the boundary layer with a no-slip condition, right. 

Using this assumption and knowledge that velocity of the flow varies linearly within the viscous 

sublayer, the resulting shear stress on a flat surface can be determined from equation (A.5): 

v vavg 

v = vavg 
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 (A.5) 

where the change in velocity (v) is twice the vavg and the change in height (z) is the length of 

the post, l.  Therefore, the shear stress can be determined by combining equations (A.4) and 

(A.5) to yield): 

 𝜏 = 0.93
𝜇

𝑙
(
𝐹𝐷

𝜌𝐴
)
0.658

(
𝜇

𝜌𝑑
)
−0.316

 (A.6) 

Equation (A.6) is an approximate calibration function for relating the force to deflect the tip of a 

micropost to shear stress on a smooth surface.  Using the relationship between FD and tip 

deflection presented in table (A.1), a calibration curve can be drawn between shear stress and 

percent tip deflection as shown in Figure (A.4). 

 

Figure A.4. An approximate calibration curve relating shear stress on a smooth surface to the 

percentage of tip displacement (relative to micropost length). 
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