

November 2015

NASA/TM–2015-218988

Overview of Risk Mitigation for Safety-Critical

Computer-Based Systems

Wilfredo Torres-Pomales

Langley Research Center, Hampton, Virginia

https://ntrs.nasa.gov/search.jsp?R=20160001630 2019-08-31T04:29:38+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42700087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NTRS Registered and its public interface, the

NASA Technical Reports Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in both

non-NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of

research that present the results of NASA

Programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counter-part of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

 TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or

co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI program,

see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at

757-864-9658

 Write to:

NASA STI Information Desk

Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

November 2015

NASA/TM–2015-218988

Overview of Risk Mitigation for Safety-Critical

Computer-Based Systems

Wilfredo Torres-Pomales

Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

Acknowledgment

I would like to express my gratitude to the reviewers and to those who have helped me

gain a better appreciation of the complexities in the design and evaluation of dependable

systems.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an

official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and

Space Administration.

iii

Abstract

This report presents a high-level overview of a general strategy to

mitigate the risks from threats to safety-critical computer-based systems.

In this context, a safety threat is a process or phenomenon that can cause

operational safety hazards in the form of computational system failures.

This report is intended to provide insight into the safety-risk mitigation

problem and the characteristics of potential solutions. The limitations of

the general risk mitigation strategy are discussed and some options to

overcome these limitations are provided. This work is part of an ongoing

effort to enable well-founded assurance of safety-related properties of

complex safety-critical computer-based aircraft systems by developing an

effective capability to model and reason about the safety implications of

system requirements and design.

iv

Table of Contents

Abbreviations .. v

1. Introduction ... 1

2. Safety-Risk Mitigation .. 2
2.1. Safety-Relevant Functional Characteristics ... 2
2.2. Safety-Relevant Quality Attributes .. 3

2.2.1. Functional Integrity ... 4
2.2.2. Functional Reliability .. 4
2.2.3. Functional Recoverability ... 4
2.2.4. Functional Availability .. 4

2.3. General Safety-Risk Mitigation Strategy ... 5
2.4. Conditioning the Fault Space ... 7

2.4.1. Prevention of Fault Introduction ... 7
2.4.2. Correction of Introduced Faults .. 8
2.4.3. Bounding the Fault Scope ... 8

2.5. Conditioning the Error Space ... 9
2.5.1. Prevention of Fault Activation .. 9
2.5.2. Local Containment of Errors ... 10
2.5.3. Bounding of Error Conditions ... 10

2.6. Architecture-Level Error Mitigation .. 11
2.6.1. Fault Hypothesis.. 11
2.6.2. Means of Architectural Mitigation .. 12
2.6.3. Error Passivation ... 12
2.6.4. Error Masking ... 14
2.6.5. Error Recovery .. 15
2.6.6. Error Mitigation for Single Receiver .. 16
2.6.7. Error Mitigation for Multiple Receivers ... 17
2.6.8. Error Mitigation for Single Source and Multiple Receivers ... 19

2.7. Management of Redundant Groups ... 23
2.7.1. Local Structure and Modes ... 24
2.7.2. Group Structure and Modes .. 25
2.7.3. Dynamic Group Membership .. 26
2.7.4. Synchrony ... 27

2.8. Safety-Risk Mitigation Limitations.. 27
2.9. Robust Resilience ... 28
2.10. Other Sources in the Literature .. 29

3. Final Remarks ... 31

References ... 32

v

Abbreviations

AA Acceptable-Item Asymmetry

AAm Failed Active Asymmetric

Am User Asymmetry

ASm Failed Active Symmetric

BIST Built-In Self-Test

C Correct

CCA Common Cause Analysis

CMA Common Mode Analysis

ConOps Concept of Operations

COTS Commercial Off The Shelf

CS Correct Symmetric

D Detectable

DIMA Distributed Integrated Modular Architecture

DMA Direct Memory Access

DPS Data Processing System

ECR Error Containment Region

ECXF Error Containment Interface Function

ESD Electrostatic Discharge

FAA Federal Aviation Administration

FCR Fault Containment Region

FPGA Field Programmable Gate Array

FSM Finite State Machine

GOI Group of Interest

IEEE Institute of Electrical and Electronics Engineers

IFR Internal Failure Recovery

IKIWISI I’ll-know-it-when-I-see-it

IMA Integrated Modular Avionics

IoP Index of Performance

IUE Initiating Unintended Event

LoF Loss of Function

LRU Line Replaceable Unit

MF Malfunction

MIL-STD Military Standard

NAS National Airspace System

NASA National Aeronautics and Space Administration

ORS Operation Requirements Satisfied

ORV Operating Requirements Violated

OS Omissive Symmetric

OSm Operational Symmetric

OTH Omissive-Transmissive Hybrid

PAm Failed Passive Asymmetric

PRA Particular Risk Analysis

PSm Failed Passive Symmetric

RAF Recoverable Active Failure

RCV Receiver

RF Radio Frequency

RPF Recoverable Passive Failure

RRS Recovery Requirements Satisfied

RRV Recovery Requirements Violated

vi

SA Acceptable-Item Symmetry

SDOA Single-Data Omissive Asymmetric

Sm User Symmetry

SOA Strictly Omissive Asymmetric

SOI System Of Interest

SRC Source

SS Sub-System

TA Transmissive Asymmetric

TRL Technology Readiness Level

TS Transmissive Symmetric

TTC Time To Criticality

TTE Time To Effect

TUE Terminal Unintended Event

U Undetectable

UAF Unrecoverable Active Failure

UPF Unrecoverable Passive Failure

V&V Validation and Verification

ZSA Zonal Safety Analysis

1

1. Introduction

An aircraft consists of a collection of systems performing a wide variety of functions with different

levels of safety-criticality. The aviation industry is continuing a decades-old trend of adopting increasingly

sophisticated computer-based technology to implement aircraft functionality. Modern aircraft are highly

complex, functionally integrated, network-centric systems of systems [1]. The design and analysis of

distributed-computation aircraft systems are inherently complex activities. Ensuring that such systems are

safe and comply with existing airworthiness regulations is costly and time-consuming as the level of rigor

in the development process, especially the validation and verification activities, is determined by

considerations of system complexity and safety criticality. A significant degree of care along with deep

insight into the operational principles of these systems are necessary to ensure adequate coverage of all

design implications relevant to system safety.

Validation and verification (V&V), as well as certification, of complex computer-based systems,

including safety-critical systems, are recognized problems of national significance [2], [3], [4]. The

challenges in assuring the design and safety of complex systems require considerable attention and financial

investment [5]. As aircraft system complexity continues to increase, V&V and certification costs, together

with related programmatic risks, can provide a basis against the development and implementation of new

capabilities [6]. Such obstacles against innovation pose a threat to national competitiveness and can hinder

the proposed operational improvements to the National Airspace System (NAS) that are intended to

increase capacity and flexibility as well as reduce costs, but would also increase the complexity of airborne

and ground aviation systems [7]. There are initiatives underway to produce methods, tools, and techniques

that enable predictable, timely, and cost-effective complex systems development [8]. NASA aims to

identify technical risks and to provide knowledge to safely manage the increasing complexity in the design

and operation of vehicles in the air transportation system. In furtherance of this goal, multidisciplinary

tools and techniques are being developed to assess and ensure safety in complex aviation systems and

enable needed improvements to the NAS.

This document is a contribution to a design and evaluation guide currently under development. The

guide is intended to (1) provide insight into the system safety domain, (2) present a general technical

foundation for designers and evaluators of safety-critical systems, and (3) serve as a reference for designers

to formulate well-reasoned safety-related claims and arguments and identify evidence that can substantiate

these claims. This evidence forms a basis for demonstrating compliance with certification regulations. The

generation of such evidence is a major objective of a system development process. This report is part of an

ongoing effort to enable justifiable assurance of safety-related properties of computer-based aircraft

systems by developing an effective capability to model and reason about the safety implications of system

requirements and design.

This document presents a general strategy to mitigate the risks from threats to safety-critical computer-

based systems. In this context, a threat is a process or phenomenon that can cause operational safety

hazards in the form of computational system failures. The safety-risk mitigation strategy is intended to

achieve a desired level of system dependability measured in terms of qualities based on essential

characteristics of failure causes and effects. The presentation is a high-level overview intended to provide

insight into the safety-risk mitigation problem and potential solutions. The limitations of the strategy are

discussed and some options to overcome these limitations are provided. The document also serves as an

introduction to the extensive body of knowledge on safety-critical computer-based systems.

2

2. Safety-Risk Mitigation

The mitigation of risks from system safety threats requires consideration of likelihood (or frequency),

severity, and uncertainty of the threats and their effects. In this report, it is assumed that the system

functional and performance requirements are safe in the sense that a compliant system service will not cause

a mishap. The risk mitigation goal is to ensure that the system is dependable in the sense that the residual

risk level of operational service failures is acceptable to the stakeholders, including users, regulatory

authorities, and developers, among others. At a high level, two relations determine risk: the relation

between likelihood and severity of system failures, and the relation between the degree of uncertainty and

the severity of system failures. There are two kinds of uncertainties: aleatoric uncertainty due to inherent

randomness or variation; and epistemic uncertainty due to modeling abstractions and lack of knowledge.

These uncertainties are about the threats, the system itself, and the environment. Generally, for safety-

critical systems, both of the risk relations are inverse relations, each with a level no higher than a given

maximum threshold for acceptable risk. In effect, as the potential severity of failure scenarios increases,

we want the failure frequency to decrease and remain below the maximum acceptable level, and we also

want to have decreasing uncertainty (i.e., increasing confidence) about the failure frequency and severity

estimates.

This section provides insight into the means to mitigate safety threats. It begins with a review of the

functional and quality attributes of a dependable system. A general safety-risk mitigation strategy is

introduced which identifies the requirements and opportunities to effect mitigation of non-operational and

operational threats. This section also describes generic architectural structures for threat mitigation during

system operation. Various aspects of the problem of group redundancy management are examined,

including options for system structures and component interaction protocols based on the types of faults

that are expected in a system. In addition, this section describes the limitations of architectural techniques

from the perspective of fault tolerance guarantees. Finally, this section provides a complementary

perspective of best-effort robustness and recovery constrained by available resources and other system

conditions.

2.1. Safety-Relevant Functional Characteristics

A basic high-level functional safety assessment with a failure model defines three possible static

functional states: operational (i.e., not failed), failed passive, and failed active. A passive failure state is a

loss-of-function condition in which the function is not being performed. An active failure corresponds to

a malfunction in which the function is performed incorrectly. Passive and active failures are also known

as omission and commission failures, respectively.

A primary goal of worst-case functional safety assessments is the definition of bounds on the severity

of failure modes and effects. We want to determine the conditions necessary to guarantee particular

functional failure modes and effects. To this end, instead of assuming static functional states as above, we

can define the state of the system under an increasingly permissive behavioral classification hierarchy in

which a function can be in one of three possible states:

 Operational, if only proper functional service is being delivered;

 Failed passive, if the functional service is a combination of operational and passive failure; and

3

 Failed active, if the functional service is a combination of operational, passive failure, and active

failure.

An operational functional service is a subset of a failed-passive functional service, which is a subset of

a failed-active. Notice that in this model a failed-active service corresponds to an arbitrary failure with

no constraints on the behavior exhibited by the system. Intuitively, we want a safety-critical system to

either operate properly or not operate at all (i.e., stop), rather than operate in an arbitrary manner. The

determination of the system state is based on the level of behavioral constraint that can be guaranteed at a

particular point in time.

In a real-time (i.e., time-critical) system service, the correctness of the service is determined not only

by the value of the service items, but also the time of delivery [9]. For real-time functions, the severity of

a failure may depend on the duration of the failure condition. A hard real-time service must always deliver

service items within the specified time interval, as there may be highly undesirable consequences to the

users if this constraint is violated. A soft real-time service may fail to deliver service items within the

specified time constraint, but the utility of the item decreases when the constraint is violated [10]. Some

systems have firm real-time service requirements in which infrequent timing constraint violations are

tolerable but may degrade the quality of the service. Some systems may be firm real-time with respect to

the quality of the service, but hard real-time with respect to safety. For these systems, the quality of the

service degrades as the update delay increases beyond the firm timing constraint until the hard real-time

constraint is reached, at which point safety is compromised. This hard real-time delay threshold

corresponds to the time-to-criticality of a system, which is the time interval between the occurrence of a

failure and the user or environment reaching an unsafe state. For highly dynamic functions, the time to

criticality can be very short and failure recovery within that time may be unfeasible or require an automated

capability. For example, Paulitsch et al. [11] and Pimentel [12] reference a design requirement of 50 ms

maximum service outage duration for an automobile steer-by-wire system. For less dynamic functions,

automatic recovery may be possible, with even manual recovery by a human operator being adequate.

It is assumed that the system of interest (SOI) is embedded in a larger technical or socio-technical

operations system (i.e., a system consisting of people and technology) that is intended to achieve higher-

level goals. Consequently, safety in the operations system depends on the characteristics of the function

performed by the SOI. The acceptable level of risk for the dependence of the operations system on the SOI

is determined by the strength (i.e., the importance or criticality) of the relation between safety in the

operations system and the performance of the SOI. The frequency of SOI failures is determined by the

duration of continuous operation between failures and the time to restore service after experiencing a failure.

For a real-time SOI whose service correctness criteria includes timing constraints, the severity of SOI

failures is determined by the failure mode of the SOI and the duration of the failure condition. The SOI

service characteristics of time-to-failure, time-to-recover, and failure mode depend on the characteristics

of the threats and the architecture of the SOI. In general, the system architecture is designed to achieve the

desired mapping of characteristics between threats and service quality by increasing the time-to-failure,

reducing the time-to-recover, and reducing the complexity and severity of the failure modes (i.e.,

maximizing the desirable attributes and minimizing the undesirable ones).

2.2. Safety-Relevant Quality Attributes

As the required SOI function is presumed to be safe, we are interested in safety-critical qualities of the

4

SOI service. Based on the functional characteristics described in the preceding sub-section (i.e., time-to-

failure, time-to-recover, and failure mode), the dependability of the SOI is determined by the timing of

operational and failure conditions and the characteristics of the failure modes. It is important to notice that

dependability and safety are determined, not only by the SOI failure modes, but also by the timing of failures

and recovery. The desired service dependability can be specified in terms of the qualities of functional

integrity, availability, reliability, and recoverability.

2.2.1. Functional Integrity

In a general sense, integrity is related to failure modes of a system and the concepts of truthfulness and

trustworthiness. Avizienis et al. [13] defined integrity as the absence of improper system state alterations.

Paulitsch et al. [11] defined integrity as the probability of an undetected failure. Functional integrity is an

important functional quality related to the potential that the effects of an SOI failure will propagate and

corrupt the operations system (i.e., the larger system that encompasses the SOI). The SOI satisfies this

condition when it is operational or failed passive. Integrity is violated when the system is failed active.

Functional integrity can be measured as the probability that the SOI will not experience an active failure

during a specified time interval under stated conditions. These stated conditions can be physical

environmental conditions (e.g., temperature, vibration, etc.), the configuration of the SOI, the functional

input patterns, and possibly the types and number of faults experienced by the SOI.

2.2.2. Functional Reliability

Reliability refers to the uninterrupted delivery of correct service [13]. Reliability is measured as the

probability that the SOI function will remain operational for a specified time interval under stated conditions

[9]. Reliability determines the time-to-failure characteristic of the SOI.

2.2.3. Functional Recoverability

Recoverability is the ability to restore service delivery after experiencing a failure. Here we use the

term recoverability to refer to the ability of a system to restore service on the fly. This falls under the larger

context of maintainability, which includes physical replacement and repair of system components. For our

purpose, recoverability is the complement of reliability and is measured as the probability that the service

is restored within a specified time interval under stated conditions. Recoverability determines the time-to-

recover characteristic of the SOI.

2.2.4. Functional Availability

Availability refers to the fraction of time that the delivered service is correct. Availability is measured

as the probability that the SOI is operational during a specified time interval under stated conditions.

Availability is a function of reliability and recoverability, and it combines the characteristics of time-to-

failure and time-to-recover. Availability is highest when both reliability and recoverability are high, as in

this case the SOI remains operational for long time intervals and quickly recovers after experiencing a

failure.

5

2.3. General Safety-Risk Mitigation Strategy

The functional safety goal is for the SOI to be dependable in the sense that the frequency and severity

of functional failures are not higher than is acceptable. This is accomplished by applying the defense-in-

depth concept (i.e., multiple layers of protection) with non-operational and operational means to prevent

and mitigate system failures. This approach mitigates the risk of failures by reducing the likelihood of the

causes and the severity of the effects.

Figure 1 illustrates a general strategy to mitigate the risk of system-safety threats and the faults (i.e.,

defects) they can introduce in a system. The strategy is applicable to the full set of possible faults, including

physical and logical faults of non-operational and operational nature. This approach leverages the causal

chains in a threats-and-effects model. With this model, threats to the SOI cause faults that remain latent in

the system until there are favorable conditions for their activation in the form of errors. Once activated,

errors may propagate until they eventually cause service failure at the external interfaces. The major layers

of defense are:

 Conditioning the fault space,

 Conditioning the error space, and

 Architecture-level error mitigation.

Multiple layers of defense are needed to support each other because no single layer can ensure complete

containment of fault causes and their effects. In general, there is a residual uncertainty about the

effectiveness of individual layers of defense and about the relationship between the weaknesses of different

layers of defense.

The first major layer of defense is conditioning the fault space in the physical and logical layers of the

SOI. In this context, conditioning refers to creating favorable conditions in the fault space applicable to the

SOI. This is achieved by minimizing the number of faults present in the system and the scope (i.e., extent)

of each fault. The number of faults is minimized by preventing the introduction of non-operational and

operational faults and by correcting faults that are discovered. The scope of the remaining faults is

minimized by ensuring adequate independence in the introduction of primary faults and between primary

and secondary faults. This is accomplished by minimizing the strength of causal couplings between primary

faults that are directly caused by threats (i.e., minimize the likelihood that a single threat event introduces

multiple faults), and by minimizing the causal couplings between primary and secondary faults due to

cascade propagation effects.

As shown in Figure 1, the second major layer of defense is conditioning the error space in the

information layer. This can be accomplished by preventing the activation of faults, for example, by

workarounds that circumvent known existing faults. Per Figure 1, the next way to manage the error space

is to provide mechanisms in the SOI components to contain fault-induced errors by locally detecting them

and, if possible, correcting them. If faults become active and their effects cannot be contained locally, we

want to ensure that the scope of the error conditions does not overwhelm the protection mechanisms at the

architecture level.

6

Non-operational Fault Set Operational Fault Set

Fault Set

Physical Non-operational Fault Set

Logical Non-operational Fault Set Physical Operational Fault Set

Definition of Fault Space

Scope and Structure

Reduction of

Error Likelihood

Reduction of

Error Severity

Fault Risk

Mitigation

Functional Dependability

Conditioning

of Fault Space

Conditioning

of Error Space

Prevention of Fault Introduction

Correction of Introduced Faults

Bounding of Fault Scope

Prevention of Fault Activation

Bounding of Error Conditions

Local Containment of Errors

Architecture-Level

Error Mitigation Error Passivation

Error Recovery Error Masking

Functional Recoverability Functional Reliability

System

Qualities

Functional Integrity Functional Availability

Figure 1: General Strategy for Safety-Risk Mitigation

7

The third major layer of defense is the mitigation of errors by the architecture of the SOI. The

fundamental requirement is to contain the propagation of errors in the system. If containment is

accomplished, the system can mask the errors to prevent the external service from being affected in any

way, or it can recover from errors by correcting the service after a failure.

The layers of defense in this strategy combine to mitigate the overall risk posed by the threats. The

conditioning of the fault and error spaces is intended to reduce the likelihood of error conditions in the SOI,

especially complex error conditions that could overwhelm the fault handling capabilities of the architecture.

The architecture-level error mitigation is intended to reduce the severity of error conditions by constraining

the system failure modes and minimizing their duration. The combined architecture-level mitigations of

passivation (i.e., to make passive), masking, and recovery deliver the desired functional qualities of integrity

and availability, and together result in a dependable system with an acceptable risk of failure. As stated

previously, there is always uncertainty about the effectiveness of the employed means of risk mitigation.

Any assessment of a risk mitigation approach against system failures must consider the three risk

components of likelihood, severity, and uncertainty, which are dependent on random variation and

knowledge of the threats, the system, and the environment.

The following sections provide insight into this risk mitigation strategy, including implications and

limitations.

2.4. Conditioning the Fault Space

The motivation for conditioning the fault space is to have favorable conditions for dependable system

operation. The goal is to minimize the number and scope of faults present in the SOI. These faults can be

non-operational or operational in origin and can be in the physical or logical layers of the system. This is

accomplished by preventing the introduction of faults, correcting discovered faults, and maximizing the

independence of introduced faults.

2.4.1. Prevention of Fault Introduction

This layer of defense targets the introduction of physical and logical faults in all phases of the system

life cycle. Non-operational faults can be introduced during development, production, manufacturing,

refinement, and maintenance of the system. Guidelines, standards, policies, and regulations for

development and other phases of the system life cycle have been created to ensure a minimum adequate

level of rigor and quality. These life cycle measures aim to achieve a higher level of quality for the most

critical components relative to the desired system properties. Some of the system development standards

in the aviation industry include SAE International Aerospace Recommended Practice ARP-4754A

Guidelines for Development of Civil Aircraft and Systems [14], RTCA DO-254 Design Assurance

Guidance for Airborne Electronic Hardware [15], and RTCA DO-178 Software Considerations in Airborne

Systems and Equipment Certification [16]. There are many other sources of information on recommended

and standard practice for system life cycle quality assurance. In general, the level of effort and rigor to

ensure the quality of a system is determined by its complexity and criticality. Operational faults can be

prevented by the selection of electrical (e.g., diodes and integrated circuits) and mechanical (e.g.,

enclosures) system components with an adequate level of quality, and by ensuring that the system is able

to tolerate the stresses in the expected physical environment, such as specified in the standard RTCA DO-

160 Environmental Conditions and Test Procedures for Airborne Equipment [17]. Equally important is

8

ensuring that the system is not exposed to harsher environmental conditions than that for which it is

qualified.

In spite of these measures, it generally cannot be guaranteed that faults are not introduced into a system.

The best that can be expected is a minimization of the likelihood of introducing non-operational and

operational faults.

2.4.2. Correction of Introduced Faults

The next layer of defense is to correct faults after they are introduced. This is applicable to non-

operational and operational faults in the physical and logical layers of the system. V&V activities examine

the system to determine whether the requirements are correct and complete according to the intended system

purpose, and also to determine whether the implementation complies with the requirements. The types of

V&V activities include tests, analyses, and reviews of the system and its life cycle data. In addition to non-

operational V&V activities, faults may also be discovered during operation if the system or its components

fail to perform their intended function. In that case, offline verification and analysis could be used to

diagnose the failure and identify the causal defect(s). This applies to system development and refinement

faults as well as faults introduced during manufacturing, production, and maintenance processes.

2.4.3. Bounding the Fault Scope

If we cannot prevent the introduction of faults or correct them all, then we need to ensure that the faults

present in the system are causally unrelated or minimally related. The prime motivator for this strategy is

the presumed correlation between shared causality of faults and similarity of manifestations in value and

time. Another way of stating this heuristic principle is that things that are different and unrelated fail

differently and at different times. The minimization of causal relations must address the introduction of

multiple primary faults with common causal threats and multiple secondary faults with common causal

primary faults. This minimization of causal relations effectively bounds the scope of introduced faults.

Common Cause Analysis (CCA) as described in SAE International Aerospace Recommended Practice

ARP-4761 Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne

Systems and Equipment [18] is intended to ensure that faults in the system are independent or that the risk

associated with dependence is acceptable. CCA is divided into three types of analyses: Zonal Safety,

Particular Risk, and Common Mode.

Zonal Safety Analysis (ZSA) is a qualitative analysis to verify independence claims for component

failures. ZSA examines the effects of component failures on other components in physical proximity and

the implications of errors during maintenance actions. ZSA is performed for each zone of a vehicle during

development and modifications to the vehicle.

Particular Risk Analysis (PRA) examines particular events or conditions external to the system that have

the potential to cause violation of independence claims. Examples of these threats include fire, fluids,

lightning, high intensity radiated electromagnetic fields, and break-up and explosion of mechanical systems.

The PRA aims to identify direct and cascade effects of these threats in order to eliminate or mitigate the

safety risk.

Common Mode Analysis (CMA) is a qualitative analysis to verify independence claims related to

design, manufacturing, and maintenance errors. The analysis is intended to provide the technical basis to

9

eliminate or minimize common design, manufacturing, and maintenance conditions that could violate

independence claims. This analysis covers aspects such as hardware faults, software faults, production and

repair flaws, environmental factors, requirement errors, cascading effects, and external sources of faults. A

CMA examines the system for commonalities for each of the lifecycle stages and operational conditions

such as concept and design (e.g., architecture, technology, and specifications), manufacturing (e.g.,

manufacturer and procedures), installation (e.g., location and routing), operation (e.g., staff and

procedures), and environment (e.g., temperature, vibration, humidity, particle radiation, and

electromagnetic radiation).

An approach to bound the scope of faults is to define and enforce confinement boundaries that prevent

the indiscriminate propagation (i.e., a cascade) of faults throughout a system and the generation of

secondary faults. A fault containment region (FCR) is carefully crafted with fault isolation mechanisms

and common-cause analyses, as described above, to ensure containment of propagation into and out of each

FCR. An FCR is effectively a discrete unit of failure in a system. Ideally, faults introduced in different

FCRs are different and unrelated. However, some threats (e.g., lightning and design errors) may be able to

influence multiple FCRs, thus compromising failure independence. The goal is then to achieve an adequate

level of containment in order to bound the influence of introduced faults to their respective FCRs. Because

different threats may have different scopes of influence in the introduction of faults, it may be possible and

advantageous to structure a system with a hierarchy of FCRs that provide multiple layers of containment,

and that promote containment within a region no larger than the scope of direct influence of threats relative

to the introduction of primary faults (i.e., to prevent fault propagation and generation of secondary faults in

multiple FCRs).

None of the layers and existing techniques for conditioning the fault space offers a guarantee of

effectiveness. Furthermore, the effectiveness of the composition of layers of protection is not guaranteed

either. The available approaches are mostly heuristic and qualitative and their effectiveness is assessed

based on engineering judgment and compliance with best practices. Additional layers of protection may

be needed to reduce the risk to an acceptable level.

2.5. Conditioning the Error Space

The next major layer of defense is conditioning errors in the SOI information layer that may be generated

by faults present in the system. The approaches and techniques for error conditioning must account for

non-operational and operational faults in the physical and logical layers of the SOI. The overall goal is to

minimize the number and scope of error conditions that must be handled by architecture-level fault-

tolerance mechanisms in the system.

2.5.1. Prevention of Fault Activation

If there are known faults present in the system, it may be possible to manage the external and internal

operation of the SOI to prevent the generation of errors. For example, if certain input patterns to a

component cause it to generate errors, there may exist an alternative input sequence (in effect, a work-

around) with a different but equivalent input pattern that allows the component to compute a correct output

without the activation of internal faults. This could be achieved by a re-expression or a decomposition and

reordering of the input sequence [19]. Another approach to prevent the activation of known faults in a

particular component is to switch to an alternate component that provides an identical or equivalent

10

function. Also, a component or the whole system may have reversionary (i.e., alternate) modes of operation

that reconfigure the internal data flow to deliver alternate and possibly simpler but effective functionality.

The flight control systems in Airbus airplanes [20] [21] [22] and the Boeing 777 airplane [23] are good

example of systems with reversionary modes. Notice that fault activation prevention is a general approach

that can be applied to manage both physical and logical faults.

2.5.2. Local Containment of Errors

This layer of defense exploits the bounded scope of faults, the hierarchical structure of FCRs within

system components, and redundancy within a component for self-checking its internal operation. A

component may perform both offline and online checks to detect internal faults and locally contain the

propagation of errors. Some of the possible kinds of checks include timing checks (e.g., processing delays),

coding checks (e.g., checksums), reasonableness of computation results based on known semantic

properties, and checks based on properties of data structures [19]. Hardware circuits may have built-in self-

test (BIST) and self-checking logic [24]. Periodic background scrubbing of data protected by error control

codes in memory and programmable logic circuits is another technique to prevent the propagation of local

errors [25]. All these techniques are effective and may have very high coverage for certain types of errors.

For some applications, these local error checks may be adequate to achieve an acceptable level of error

containment. However, in general, this sort of self-checking cannot guarantee complete coverage for all

possible or relevant faults and error manifestations.

2.5.3. Bounding of Error Conditions

At this point, the goal is to do whatever is reasonable to minimize the size and complexity of error

conditions that must be handled by the system architecture. Ideally, the system components fail

independently and with easy-to-handle failure modes. Simpler failure modes can be mitigated with fewer

resources, thus allowing the architecture to remain relatively simple and focused primarily on optimal

implementation of the system function. Component failure independence is intended to ensure that the

failures are scattered spatially and temporally, allowing the architecture to deal with them locally and one

at a time. This means that the time between error arrivals is larger than the time to recover from them. We

also want to minimize the likelihood of coincident component failures, even if they are relatively simple.

One concern for time-coincident (i.e., concurrent or simultaneous) component failures is the possibility of

coupling or correlation of the failure modes such that the components effectively collude to create

conditions that are much more difficult to mitigate.

This is the last layer of defense before architecture-level error mitigation. We would like the error space

at this point to be characterized by an inverse relation between the likelihood and severity of error

conditions. This means that the architecture would most often have to handle relatively simple failure

modes, while still having the means to protect against uncommon complex error conditions. Because of

the importance of achieving this error risk relation, there should also be an inverse relation between the

degree of uncertainty about the error conditions and their level of severity. The characteristics of the error

space achieved at this point in the safety-risk mitigation strategy will be a primary factor in the definition

of the system fault hypothesis (i.e., fault assumptions), which is the design basis for architecture-level error

mitigation.

11

2.6. Architecture-Level Error Mitigation

Error mitigation at the architecture level is the third layer of defense in the proposed safety-risk

mitigation strategy. Architecture-level mitigation provides resources and mechanisms to achieve an

acceptable level of risk due to errors originating within the SOI.

The SOI is required to have a certain level of functional quality for a specified mission duration and

stated operational conditions. The principal quality of interest for the systems considered in this report is

dependability. As described previously, dependability is the maximum acceptable risk for the SOI function

and it is specified in terms of the attributes of functional integrity and availability (including reliability and

recoverability). The exposure of a particular function during a mission (i.e., the amount of time that there

is a need and demand for the function) can range from minutes up to full mission duration, depending on

the kind of function and mission phases. The operational conditions include the specification of the threats

that the SOI may face during a mission.

The architecture of the SOI provides the link between the assumptions (i.e., the stated operational

conditions) and the required system properties (i.e., the system guarantees). These assumptions and

guarantees cover both function and quality aspects of the system, including dependability. The architecture

of the SOI specifies the composition of the system in terms of components (i.e., sensing, computation, and

actuation nodes), their communication interconnections, and the interaction protocols. Each of these

architectural elements has its own assumptions and guarantees for function and quality. The dependability

of the system is a function of the dependability of the architectural elements.

2.6.1. Fault Hypothesis

The fault hypothesis (or assumption) is the effective threat risk the SOI architecture must mitigate to

achieve the required functional dependability during a mission. These are the relevant fault and error

conditions in the physical, logical, and information layers of the internal components, interconnections, and

interaction protocols. These fault and error conditions are the result of the combined effect of the threats

to the SOI and the mitigation provided by the layers of defense of fault space and error space conditioning.

Henceforth, the fault hypothesis of the SOI will be referred as the architecture-level threat (AT)

hypothesis.

In general, the SOI must contend with two major types of faults and errors: exogenous and endogenous.

Exogenous faults and errors are not relevant to the dependability of the SOI itself. In this report, it is

assumed that the SOI as a whole forms a fault-containment region in the sense that faults external to the

SOI do not cause secondary faults within the SOI, and faults originating within the SOI do not propagate

outside its boundary. In addition, external errors are not considered in the dependability of the SOI. Only

faults internal to the SOI and their effects are relevant to the dependability of the SOI. In effect, in

determining the dependability of the SOI, it is assumed that the environment has perfect dependability (i.e.,

no failures). Note that in a context of a larger system containing the SOI, errors at the inputs to the SOI

may propagate and influence the observed dependability at the outputs of the SOI. Such a scenario would

be relevant to the dependability of the containing system.

The AT hypothesis consists of two major parts: fault containment regions (FCRs) and dependabilities

of architectural elements (i.e., components, interconnections, and interaction protocols). The FCRs are

subsets of architectural elements assumed to experience physical and logical defects with a high degree of

probabilistic independence from other subsets [26] [27] [28] [29] [30] [31]. This is achieved by minimizing

12

the causal couplings among primary faults and between primary and secondary faults (see preceding section

on Conditioning the Fault Space). The dependabilities of architectural elements describe their failure

frequencies and modes relative to their own faults. The failure frequencies of architectural elements are

related to their time-to-failure and time-to-recover characteristics. The dependabilities of architectural

elements can be specified in terms of their own functional integrity and availability (including reliability

and recoverability).

The AT hypothesis can be stated in probabilistic or deterministic terms. A probabilistic AT hypothesis

would include the probability of coincident FCR failures and the functional integrity and availability stated

in terms of failure occurrence rates (e.g., 10-6 per hour) or probabilities for a given mission duration. A

deterministic AT hypothesis describes the scenarios that the system may encounter, such as number of

sequential or simultaneous internal failures, the failure modes, and failure durations.

2.6.2. Means of Architectural Mitigation

A safety-critical computer-based system has two major aspects: function and safety. The safety aspect

complements the function in order to achieve the required level of system dependability. The system safety

features are necessary for performing the required system function only because of the risk due to non-

operational and operational faults. These safety features are introduced for handling error conditions at the

boundary and within the system, including failures of the safety features themselves. The system

architecture defines the error mitigation strategy, including the extent of the safety features and the level of

integration between the function and safety features. Taken together, the system can be viewed as a set of

integrated functional and safety resources and mechanisms with a management policy designed to realize

the system function with the required dependability.

As indicated in the general safety-risk mitigation strategy (see Figure 1), system functional dependability

can be specified in terms of functional integrity and functional availability. Functional availability can be

decomposed into functional reliability and functional recoverability. An architecture-level error mitigation

strategy achieves system dependability by enforcing constrained system-level failure modes and by

enabling the system to either remain operational or fail and recover quickly after internal failures. The

means of architectural mitigation are error passivation, masking, and recovery. As shown in Figure 1,

functional integrity and functional reliability depend on error passivation and masking. Error passivation

and recovery are needed for functional recoverability.

The architecture-level error mitigation capabilities of passivation, masking, and recovery are realized

by local and global error handling mechanisms. A fundamental principle of an error mitigation strategy is

the granularization of failure by defining and enforcing error containment regions (ECRs). ECRs

complement FCRs in the physical and logical layers to define independent units of failure. ECRs can be

structured hierarchically to provide multiple layers of containment between the points of origin of internal

failures and SOI outputs. Local ECR boundary (i.e., interface) enforcement is achieved by leveraging good

operating resources to detect and correct errors from failed resources thus achieving the desired ECR

functional dependability. Local ECR dependability is complemented with error-mitigating global

interaction protocols that ensure desired system properties in the presence of a bounded number of failed

participating ECRs.

2.6.3. Error Passivation

As asserted earlier, from a safety perspective, a function has three possible states: operational (i.e., not

13

failed), failed passive (i.e., failure constrained to a loss of function), and failed active (i.e., unconstrained

malfunction). This classification is relative to the worst-case guarantee that can be offered at a point time,

which may not be the same as the actual state of the function. Therefore, a failed passive function may be

operational or failed passive, and a failed active function is essentially arbitrary. In general, unconstrained

active failures and their associated effects are inherently unsafe and undesirable conditions because the

consequences are unknown and possibly unbounded, including the possibility of cascade (i.e., uncontained)

secondary failures that violate failure independence assumptions.

Error passivation is the ability to constrain and contain active failure effects. The goal in error

passivation is to prevent active failure effects from propagating onto a good FCR and corrupting its state,

effectively rendering it failed and potentially becoming a secondary source of active failure effects. At a

conceptual level, error passivation has two basic elements: self-checking and self-protection [32]. These

are illustrated in Figure 2 and Figure 3, respectively. In these figures, SRC and RCV denote source and

receiver, respectively. In self-checking error passivation, the output of a source-function FCR is checked

by an independent source-safety FCR before being sent out to a receiver FCR. In this configuration, the

source-function FCR and source-safety FCR form an ECR. In self-protection error passivation, the input

from a source FCR is checked by an independent receiver-safety FCR before forwarding it to the receiver

FCR. Here the receiver-safety FCR and receiver FCR form an ECR. In the self-checking and self-

protection configurations, the safety FCRs are solely responsible for error passivation. The effectiveness

of these configurations is limited by the error coverage of the inline safety checks. For some applications,

inline syntactic and semantic error checks may be adequate to achieve the required level of error

passivation. However, Meyer and Sundstrom have shown that the probability of fault detection for a

component can be made equal to unity only if the detector is as complex, in terms of number of states, as

the component being monitored [33]. Thus, the only way to achieve the extremely high probability of error

passivation required for critical applications is to use independent redundant copies of FCRs. This is

illustrated in Figure 4 and Figure 5, where there are now two source FCRs and the safety check is a

comparison of delivered services performed at the source ECR or at the receiver ECR, respectively. The

optimal error passivation configuration for a particular application may be a combination of source-side

and receiver-side checks with or without redundancy.

FCR

SRC

ECR SRC

FCR

RCV

FCR

Safety

FCR

SRC

ECR RCV

FCR

RCV
FCR

Safety

Figure 2: Self-Checking (Source-based) Error Passivation Concept

Figure 3: Self-Protection (Receiver-based) Error Passivation Concept

14

2.6.4. Error Masking

Error masking is the ability to preserve the operational state of a function. The threat assumed here is

a passive FCR failure, and the goal is to ensure that the delivered function effectively remains in the

operational state after the failure of the performing FCR. This is an error handling capability in which

functional failure effects are contained and corrected without disrupting the delivered service. Self-

checking and self-protection ECR structures as illustrated in Figure 6 and Figure 7 can be applied to realize

this capability. The selection function in the FCR Safety Select block outputs the first valid input (i.e., an

input that is not detectably incorrect). Both configurations use independent redundant source FCRs to

ensure that at least one is operational and the safety FCR can forward the output of an operational source

FCR without interruption.

FCR

SRC

ECR src

FCR

RCV

FCR

Safety

Compare
FCR

SRC

FCR

SRC

ECR RCV

FCR

Safety

Compare

FCR

RCV

FCR

SRC

Figure 4: Self-Checking Error Passivation with Source-side Redundancy Comparison Check

Figure 5: Self-Protection Error Passivation with Receiver-side Redundancy Comparison Check

FCR

SRC

ECR SRC

FCR

Safety

Select

FCR

RCV
FCR

SRC

Figure 6: Self-Checking (Source-based) Error Masking

15

2.6.5. Error Recovery

Error recovery is the ability to restore a function to operational state. The assumed threat is a passive

FCR failure. This capability ensures that service will be restored if required resources are available, but

uninterrupted service is not guaranteed. Self-checking and self-protection configurations are possible to

realize an error recovery capability, as illustrated in Figure 8 and Figure 9. The source FCR performs the

function of interest, and the safety FCR is responsible for signaling a failure condition, which triggers a

recovery action such as restarting the source FCR or enabling an alternate source FCR to re-establish

operational functional state as illustrated in Figure 10. The safety FCR can be contained in a source ECR

or a receiver ECR.

FCR

SRC

ECR RCV

FCR

Safety

Select

FCR

RCV
FCR

SRC

Figure 7: Self-Protection (Receiver-based) Error Masking

FCR

SRC

ECR SRC

FCR

RCV

FCR

Safety

Failure

FCR

SRC

ECR RCV

FCR

RCV

FCR

Safety

Failure

Figure 8: Self-Checking (Source-based) Error Recovery

Figure 9: Self-Protection (Receiver-based) Error Recovery

16

2.6.6. Error Mitigation for Single Receiver

The preceding mitigation capabilities can be combined to achieve the desired degree of error mitigation

at a receiver for a given failure mode of the source. This configuration is illustrated in Figure 11, where

there are up to n sources and the receiver has an error containment interface function (ECXF) to manage

the inputs. Table 1 shows the required minimum number of sources n assuming the number of failed

sources is at most F. The Table also lists the ECXF function for a given worst-case source failure mode as

well as the desired effect at the output of the ECXF. These configuration parameters are determined by

assuming that the outputs of operational sources agree (i.e., they have either exact or approximate equality).

The vote interface function can be a majority, mid-value, or mid-point select, depending on the context. Of

note is the general approach of using good operational sources to mitigate the effects of failed sources.

Also, note that the desired effect of this approach is to propagate to the receiver the agreed-upon output of

operational sources, or to fail in a passive way. An operational worst-case effect supports both functional

availability and integrity requirements at the system level, and the passive worst-case effect supports the

functional integrity requirement.

ECR SRC

FCR

SRC
FCR

RCV

FCR

Safety

Enable on

Failure

FCR

Alt-SRC

Figure 10: Self-Checking Error Recovery with Alternate Source

SRC

FCR 1

RCV

SRC

FCR n

ECXF

RCV ECR/FCR

Figure 11: Error Mitigation Configuration for Single Receiver

17

Table 1: Error Mitigation Parameters for Single Receiver

Worst-Case

Source

Failure Mode

Desired

Worst-Case

Failure Effect

Number of

Sources

Required

(n)

Error

Containment

Interface

Function

Failed Passive Operational F + 1 Select

Failed Active Failed Passive 2F Vote

Failed Active Operational 2F + 1 Vote

2.6.7. Error Mitigation for Multiple Receivers

Figure 12 illustrates a configuration for redundant sources sending to multiple receivers. The failure

modes for the sources now add the dimension of symmetry as perceived by the receivers. The resulting

failure modes are listed in Table 2. Note that these are worst-case failure constraints and that the implication

concept applies (e.g., active failure constraint implies that the failure can actually be passive, and

asymmetric failure can actually be symmetric). The desired worst-case effects now include consideration

of agreement (i.e., symmetry) among the receivers. Error mitigation in this configuration is a combination

of line failure-mode mitigation (i.e., relative to the passive-versus-active failure mode dimension) and

asymmetry mitigation (i.e., relative to the symmetric-versus-asymmetric failure mode dimension). The

error mitigation parameters for various combinations of worst-case source failure mode and desired worst-

case effects at the receivers are listed in Table 3. These configuration parameters are determined assuming

that at most F sources are failed and that the outputs of operational sources agree (i.e., they have either

exact or approximate equality). Note that, in general, disagreement among the receivers is not desirable.

An interesting property of these configurations with multiple receivers is that, because of the desired

symmetric worst-case effects, the line failure-mode mitigation must be targeted to achieve the least severe

possible state. The two cases where this property is relevant are indicated with * and ** in Table 3. For

Passive Asymmetric failure mode and Passive Symmetric worst-case effect (indicated by *), it is possible

for one receiver to have only Operational inputs, and therefore, the line failure-mode mitigation must be

targeted as a worst-case Operational result at all the receivers with a Select ECXF. The same situation

exists for Active Asymmetric failure mode and Passive Symmetric worst-case effect (indicated by **),

where the ECXF is a vote. Table 4 shows the configuration parameters when the failure modes of the

sources are a combination of passive and active failures. In this table, FPS, FPA, FAS, and FAA denote the

maximum number of passive symmetric, passive asymmetric, active symmetric, and active asymmetric

failed sources, respectively. A failure-mode model with two or more failure-mode types is called a hybrid

model. Note that passive failures can be mitigated with a simple selection function and that active failure

are mitigated with a vote (or comparison) function. When there is a combination of passive and active

failure modes, the mitigation function is a hybrid vote in which detected passive-failure inputs are excluded

from (i.e., not selected as input to) the vote.

18

Table 2: Source Functional Failure Modes for Multiple Receiver Configuration

 Symmetry Failure Mode

Failed Symmetric (Sm) Failed Asymmetric (Am)

Worst-Case Line

Failure Mode

Failed Passive (P) Failed Passive Symmetric (PSm) Failed Passive Asymmetric (PAm)

Failed Active (A) Failed Active Symmetric (ASm) Failed Active Asymmetric (AAm)

Table 3: Error Mitigation Parameters for Multiple Receivers and a Single Worst-Case Failure Mode for the Sources

Worst-Case Source

Failure Mode

Desired Worst-Case

Failure Effect

Number of

Sources, n

Error Containment

Interface Function

Passive Symmetric Operational Symmetric F + 1 Select

Passive Asymmetric Passive Symmetric* F + 1 Select

Passive Asymmetric Operational Symmetric F + 1 Select

Active Symmetric Passive Symmetric 2F Vote

Active Symmetric Operational Symmetric 2F + 1 Vote

Active Asymmetric Passive Symmetric** 2F + 1 Vote

Active Asymmetric Operational Symmetric 2F + 1 Vote

Table 4: Error Mitigation Parameters for Multiple Receivers and Multiple Failure Modes of the Sources

Passive Failures

(FPS, FPA)

Active Failures

(FAS, FAA)

Desired Worst-Case

Failure Effect

Minimum

Number of

Sources, n

Error

Containment

Interface

Function

Passive Symmetric,

Passive Asymmetric

None Operational Symmetric FPS + FPA + 1 Select

None Active Symmetric,

Active Asymmetric

Operational Symmetric 2(FAS + FAA) + 1 Vote

Passive Symmetric,

Passive Asymmetric

Active Symmetric,

Active Asymmetric

Operational Symmetric 2(FAS + FAA) +

(FPS + FPA) + 1

Hybrid Vote

SRC

FCR 1

RCV

RCV ECR/FCR m

ECXF
SRC

FCR n

RCV

RCV ECR/FCR 1

ECXF

Figure 12: Error Mitigation Configuration for Multiple Receivers

19

2.6.8. Error Mitigation for Single Source and Multiple Receivers

Figure 13 illustrates a configuration with one source and m multiple receivers. We consider two possible

failure scenarios. In the first scenario, only the source is failed. In the second scenario, the source and one

of the receivers are failed. The receivers must execute a data exchange protocol to mitigate source and

receiver failures. The exchange protocol must guarantee that all the non-failed receivers agree on the result

and that if the source is not faulty, the result of the exchange is equal to the data from the source. In this

configuration, the number of receivers is assumed to be larger than or equal to 2 (i.e., m 2)

Table 5 lists the required configurations for a single-source failure scenario with various worst-case

failure modes and desired worst-case results at the receivers. A single receiver-exchange protocol is used

here in which the receivers relay to each other the data they received from the source. Notice that the

exchange protocol can ensure agreement (i.e., symmetry) in the result, but it cannot mitigate the worst-case

line failure mode because there are no alternate sources of data. Also, note that an exchange protocol does

not mitigate the worst-case result for passive symmetric and active symmetric source failures. The failure

categories in the table are based on worst-case failure constraints, and the actual source failures and results

may be less severe than listed in the table. For example, a passive asymmetric source failure would be

mitigated to an operational symmetric result if the source were operational rather than failed. Finally, note

that the hybrid vote, as introduced in Table 4, in effect encompasses both select and vote functions and its

application returns the same results as in Table 5. From this point on in this report, only the hybrid vote

function will be used.

SRC

FCR

RCV

RCV ECR/FCR 1

ECXF

RCV

RCV ECR/FCR 2

ECXF RCV

RCV ECR/FCR m

ECXF

Figure 13: Error Mitigation Configuration for Single Source and Multiple Receivers

20

Table 5: Single-Source, Multiple-Receivers Configuration Parameters for Source-Only Failure Scenario

Worst-Case Source

Failure Mode

Desired Worst-Case

Result

Minimum

Number of

Receivers, m

Error Containment

Interface Function

Passive Symmetric Passive Symmetric 2 Select

Passive Asymmetric Passive Symmetric 2 Select

Active Symmetric Active Symmetric 2 Select

Active Asymmetric Active Symmetric 3 Vote

The second failure scenario involves one failed source and at most one failed receiver. To simplify the

description, we only consider the case of m = 4 receivers, one of which may be failed. The exchange

protocol must guarantee agreement on the result among the non-failed receivers, and the result must equal

the data sent by the source if it is not failed. The following protocol is used.

Exchange Protocol:

1. The source node sends its data to all the receivers. If a receiver perceives the source as failed

passive, it tags the received data as ERROR1.

Notes:

 The source is referred as the step-1 source. This source has no additional participation in the

protocol.

 There are four step-1 receivers.

 For steps 2, 3, and 4 the goal is to reach agreement on the data received by each step-1 receiver.

2. Each step-1 receiver (now called a step-2 source) relays to the other receivers (now called step-2

receivers) the data it received directly from the step-1 source. If a step-2 receiver perceives a step-

1 source as failed passive, it tags the received data as ERROR2.

Notes:

 Each of the four receivers has data from three step-2 sources.

3. For each step-2 source, each step-2 receiver (now called a step-3 source) relays to the other two

step-2 receivers (now called step-3 receivers) the data received from the step-2 source.

Notes:

 For each step-2 source, each step-2 receiver has a set of three data items: the data received

directly from the step-2 source and the data relayed by each of the other two step-2 receivers.

4. For each step-2 source, all the step-2 receivers perform a hybrid vote on the data they have received.

A vote result of ERROR2 or no-majority means that the step-2 source was failed, and in either case

the result is labelled ERROR2.

21

Note:

 At the end of this step, each step-1 receiver has four data items from the step-1 source: the data

received directly from the source, and the three hybrid-vote results on the data relayed by the

other step-1 receivers.

5. Each receiver performs a hybrid vote on the data from the step-1 source. ERROR2 data is excluded

from the hybrid vote. The vote result is the protocol result. A vote result of ERROR1 or no-majority

means that the step-1 source was failed.

The protocol data flow is illustrated in Figure 14, which shows the data flow from the source followed

by the data flow from receiver RCV1. Note that the section of the data flow beginning with RCV1 is the

same as in the first scenario described above. Table 6 shows the protocol mitigation results for various

combinations of source and single receiver failure modes. The protocol guarantees a symmetric result, but

it cannot mitigate the line failure mode of the source (i.e., if the source is operational, passive, or active, the

worst-case result is operational, passive, or active, respectively).

Table 6: Mitigation Results for Single Source, Multiple Receivers Configuration with Combinations of One Source Failure and

One Receiver Failure

Worst-Case Source

Failure Mode

Worst-Case Receiver

Failure Mode

Worst-Case Result

Operational Symmetric Passive Asymmetric Operational Symmetric

Active Asymmetric Operational Symmetric

Passive Symmetric Passive Asymmetric Passive Symmetric

Active Asymmetric Passive Symmetric

Active Symmetric Passive Asymmetric Active Symmetric

Active Asymmetric Active Symmetric

Passive Asymmetric Passive Symmetric Passive Symmetric

Active Symmetric Passive Symmetric

Passive Asymmetric Passive Symmetric

Active Asymmetric Passive Symmetric

Active Asymmetric Passive Symmetric Active Symmetric

Active Symmetric Active Symmetric

Passive Asymmetric Active Symmetric

Active Asymmetric Active Symmetric

SRC

 RCV1

 RCV2

 RCV3

 RCV4

 RCV2

 RCV3

 RCV4

 RCV2

 RCV3

 RCV4

Figure 14: Partial Data Flow of Exchange Protocol for Single Failed Source and Single Failed Receiver

22

To gain insight into the properties of the protocol, we consider the properties of the relay function and

of the exchange protocol with a hybrid vote. Table 7 shows the effective line failure mode of a relay.

Notice that the relay function outputs ERROR when the input data is perceived as failed passive. Also,

notice that the line failure mode of the source flows through the relay only when the relay is in the

operational function state. Of course, the effective symmetry state of the relay is determined exclusively

by the functional failure mode of the relay itself.

Table 7: Effective Failure Mode for Data Relay

Source State Relay State RCVi Data

Operational Operational Operational

Passive Passive

Active Active

Passive Operational ERROR

Passive Passive

Active Active

Active Operational Active

Passive Passive

Active Active

Figure 15 illustrates the two-stage exchange-protocol data flow for the single-source, multiple-receivers

configuration. We are interested in the symmetry properties of the exchange protocol. We consider cases

in which at most one node is failed, which can be the source or a relay. Table 8 breaks down all the cases.

In order to achieve agreement, Stage 2 must satisfy at least one of the two following properties:

 The operational relays agree on the data they send out;

 All the relays are symmetric.

The first property guarantees that all the receivers in Stage 2 have the same input majority. The second

property guarantees that all the receivers in Stage 2 have the same set of inputs. A symmetric source

SRC

 Relay

 RCVi

Stage 1 Stage 2

 RCV1

 RCV2

 RCV3

 RCV2

 RCV3

 RCV4

 RCV4

Source Relay Hybrid Vote

Figure 15: Data Flow for Exchange Protocol of Single-Source, Multiple-Receivers Configuration

23

guarantees the first property. A worst-case failed symmetric relay guarantees the second property. This

exchange protocol fails to achieve a symmetric result only when the source and a failed relay are

simultaneously asymmetric. To overcome this possibility, the previous configuration shown in Figure 14

has m = 4 receivers and the receivers take turns relaying the data received from the source using the

exchange protocol described here. This guarantees a symmetric result for each of these source-relaying

actions and the same input set to the final vote that decides the result.

Table 8: Symmetry Characteristics of Exchange Protocol for Single-Source, Multiple-Receivers Configuration with Single-Node-

Failure Hypothesis

Source

Symmetry

Mode

Relay

Symmetry

Mode

Data at

Operational

Symmetric

Relays

Applicable Stage

Property

Data at Operational

Voting Receivers

Worst-

Case

Symmetry

Result

Symmetric All

Symmetric

Agreement/

Symmetric

Propagation of

Agreement/Symmetry;

Propagation by

Symmetrics

Majority Agreement;

Input Agreement

Symmetric

At most one

Asymmetric

Agreement/

Symmetric

Propagation of

Agreement/Symmetry

Majority Agreement Symmetric

Asymmetric All

Symmetric

Disgreement/

Asymmetric

Propagation by

Symmetrics

Input Agreement Symmetric

At most one

Asymmetric

Disagreement/

Asymmetric

None Disagreement Asymmetric

The following section is an overview of the problem of managing groups of redundant nodes.

2.7. Management of Redundant Groups

A function may be realized as a redundant group of nodes in order to achieve a required level of

dependability. As shown in the previous section, the mitigation of source errors in line and symmetry

failure modes requires source redundancy, failure independence, and agreement among operational sources.

Additionally, a function implemented on a data processing system has a set of modes and transitions that

must be managed consistently for the members of a redundant group.

Figure 16 illustrates a redundant group of interest (RGOI) that interacts with an input group (IG) and an

output group (OG). Mitigation for input and output interactions have been discussed in the preceding

sections. The number of nodes in the RGOI depends on the failure modes and dependability requirements

of the group.

24

2.7.1. Local Structure and Modes

A node is essentially a state machine with input, output, and state data and a data processing function.

The general structure is illustrated in Figure 17. Figure 18 illustrates a generic mode transition graph for a

local processing node. There are four major modes: Off, Operation, Failed Passive, and Failed Active.

The Operation major mode consists of three minor modes: Idle, Recovery, and Operation. When there is

a demand for the node, it transitions to the Operation major mode, where it idles until the requirements for

successful recovery are satisfied. The node transitions to Operation minor mode when the required

conditions are satisfied. The node transitions back to Recovery mode if the requirements for Operation

minor mode are violated, and then back to Idle if the Recovery requirements are violated. There are four

types of failure: Recoverable Passive, Unrecoverable Passive, Recoverable Active, and Unrecoverable

Active. Unrecoverable failures are permanent and require external manual maintenance action to repair the

node. Recoverable failure can be automatically repaired, for example, by an internal reset action.

 P1

 P2

 Pn

RGOI

 O1

 O2

Om

OG

 I1

 I2

 Iq

IG

Figure 16: Conceptual View of Redundant Group of Interest Interacting with Input and Output Groups

Processing

g

 Input

 Output

 State

Processing Node

Figure 17: Internal Structure of a Processing Node

25

RRS Recovery Requirements Satisfied RPF Recoverable Passive Failure

RRV Recovery Requirements Violated UPF Unrecoverable Passive Failure

ORS Operation Requirements Satisfied RAF Recoverable Active Failure

ORV Operation Requirements Violated UAF Unrecoverable Active Failure

 IFR Internal Failure Recovery

2.7.2. Group Structure and Modes

A redundant group consists of a set of nodes and a communication network. The general structure is

illustrated in Figure 19. The nodes operate as a consistent group by executing failure mitigating agreement

protocols on one or more of the input, state, and output data sets. The decision of which data sets to execute

an agreement protocol upon considers the dependability of the input data, the group dependability

requirement, and the architecture-level threat (AT) hypothesis for the group. In concept, the mode graph

for the group is the same as for the nodes (see Figure 18). The difference is only in the definition of the

modes and transitions as, for example, a group failure occurs when there are certain combinations of failed

nodes in the system. In general, a redundant group is failed when good nodes are in disagreement on some

or all of their internal data sets (i.e., input, state, and output).

 Recovery

Recoverable

Passive

Recoverable

Active

Operation Failed Passive

 Off

Failed Active

 Idle

RRS RRV

Unrecoverable

Passive

Unrecoverable

Active

RPF

IFR

RAF

IFR

UPF UAF

 Operation

ORS ORV

Figure 18: Local Mode Graph

26

2.7.3. Dynamic Group Membership

The group management strategy may introduce a dynamic membership capability if the number of nodes

in a group is large and the mission duration is long. In this case, the probability of experiencing many node

failures, including high severity failures (e.g., failed active asymmetric), is a significant factor in the

dependability of the group. Insightful presentations of dynamic group membership can be found in the

work by Walter et al. [34], Torres-Pomales et al. [35], and Kopetz [9]. In general, the dynamic membership

capability uses local and collective error detection and diagnosis to ascertain the trustworthiness of each

node and of the group as a whole. A trusted node is allowed to actively participate with other nodes in the

group function. Every node keeps a dynamic list of the nodes it trusts and whose data it uses in local

processing. The entries on this membership list are based on local and collective decision about the

trustworthiness of nodes. Figure 20 shows a simple two-state concept for the membership status graph. A

node is Isolated if it is not trusted, and it is Integrated if it is trusted. The diagnosis policy is normally

biased to ensure that a trustworthy node is not distrusted, because that could lead to the logical exhaustion

of nodes even if physically good nodes are available. A clique is set of mutually trusting nodes. Ideally, a

group has at most one operating clique that includes all the good nodes.

Dynamic membership has several weaknesses that could threaten the dependability of a group. All of

these weaknesses listed here are due to imperfect coverage in error detection and diagnosis. First, it is

impossible to guarantee accurate diagnosis of asymmetric node failures [36]. This means that a clique may

fail due to accumulation of failed nodes. Second, if a group develops multiple cliques, the group may not

be able to merge back the cliques and it would thus fail as a group because of inconsistency in the outputs.

A multiple-clique condition may be self-sustaining because of mutual distrust among the cliques. The

fundamental problem with multiple-clique conditions is that unexpected behavior of a source node observed

at a receiver can have multiple causes, including source node faults and unexpected internal state at the

source node. Because it may not be possible for receivers to distinguish between these causes by monitoring

received data flows, observing receivers may not be able to distinguish between a faulty node and a good

node with incorrect state. Either way, the source node is not trustworthy to join normal operation with the

observing receiver. Third, an isolated node attempting to recover and join a clique may not be able to

develop a membership list consistent with that of nodes in the clique. This could result in an inconsistent

internal state in the recovering node that is not detected by the clique, thus leading to the node being judged

trustworthy and allowed into the clique. The key issue here is that a node with inconsistent state can be as

much a threat to a clique as a failed node, and trusting nodes with inconsistent state can cause the failure of

the clique. The potential benefits and weaknesses of dynamic membership must be carefully considered to

ensure that the overall risk level is acceptable and the dependability of the group is not compromised.

Node 1 Node i Node N

Interconnection Network

Figure 19: General Structure of a Redundant Group

27

2.7.4. Synchrony

A redundant group that performs real-time functions and agreement protocols requires bounded delay

uncertainty in data processing and communication, as well as bounded uncertainty in the relative timing of

events at different nodes of the group (i.e., bounded relative timing skew). The bound on relative timing

uncertainty in effect defines equality in the time dimension for redundant data flows in the group. Hence,

correctness in a real-time redundant group is determined by accuracy (i.e., bound on absolute timing

uncertainty) and precision (i.e., bound on relative timing uncertainty) requirements that must be guaranteed

by the group. Because of the interdependencies among the nodes, these group-level timing requirements

translate to node and network timing accuracy and precision requirements.

Actions in a group are triggered by events originating from sources internal or external to the group.

The timing of these events may be time-independent or time-referenced. Events can be distributed to all

the group nodes with a certain level of accuracy and precision. Time-independent sourced events can be

the result of internal processing condition (e.g., error exceptions) or they can be derived from external

events (e.g., the arrival of input data). Time-referenced (i.e., time-triggered) events can be derived from

logical-time clocks that keep track of the passage of real time as indicated by clock oscillators [37].

Synchronized periodic clocks are re-synchronized periodically using event agreement protocols to ensure

a certain logical time precision which is normally much smaller than the period. Unsynchronized periodic

clocks are allowed to run independently without an agreement protocol, and their precision is approximately

equal to their period.

Event timing synchrony and value agreement are critical aspects of a real-time redundant group and

serve as a basis for inline and cross-lane error detection in input, state, and output data flows.

2.8. Safety-Risk Mitigation Limitations

The effectiveness and confidence in the proposed general safety-risk mitigation strategy is limited by

uncertainties in the accuracy of models of the threats and the system implementation, and by uncertainties

in the correctness of analyses of models (i.e., differences between models and reality). These uncertainties

may be due to simplifying abstractions in the models to enable analysis tractability, or due to lack of

knowledge about the threats, the system, or the environment. The degree of uncertainty is related to the

complexity of the threats, the system, and the environment. Though in principle the system properties are

based on assume-guarantee relations, in reality for highly complex systems it may not be possible to ensure

that these properties and relations are valid for all possible, or even all assumed, conditions experienced by

the system. The coverages (i.e., probability of being true) of the fault hypothesis and the error mitigation

Integrated

Trusted

 Isolated

Distrusted

Figure 20: Clique-Relative Membership Status of a Node

28

mechanisms may be less than perfect. This coverage uncertainty is a critical factor in the design of safety-

critical systems because dependability is determined by these coverages. Coverage uncertainties can be

mitigated by a defense-in-depth strategy that adds robustness to the fault hypothesis and the error mitigation

capabilities. The resulting system may be dependable but sub-optimal (i.e., over-designed) relative to the

amount of resources and overall complexity. Without more precise information to reduce uncertainties

(i.e., increase confidence) about the properties of the system and the operating conditions, the only other

option to ensure dependability is to make the system properties more robust to uncertainties (i.e., less

sensitive, more tolerant).

2.9. Robust Resilience

Siewiorek et al. [38] define robustness as the ability of a system to identify and handle errors (at the

functional inputs or internal to the system) of varying severity in a consistent and predictable manner.

Kopetz in [9] states that a system is robust if the severity of the consequences of a fault is inversely

proportional to the probability of fault occurrence (i.e., frequent faults have less severe effects on service

quality than infrequent faults). Bishop et al. [39] considers a system to be robust if it resists a wide range

of attacks (i.e., faults) and adverse operational conditions without significant service degradation, but may

not have the ability to restore lost functionality (i.e., service quality). The main aspect of interest regarding

system robustness is the assessment of service quality over a wide range of operational conditions

(including number and severity of internal faults). Under these conditions, a service is robust if it satisfies

Kopetz’s criterion for robustness (i.e., severity of effects is inversely proportional to the frequency of the

fault). In general, robustness does not imply ability to recover the service, but recovery may be essential

for safety-critical real-time systems in order to satisfy Kopetz’s criterion.

A resilient system may experience degraded operation due to faults, but will eventually recover. In [40],

Laprie defines resilience as “the persistence of service delivery that can justifiably be trusted, when facing

changes.” Trivedi et al. [41] states that “resilience deals with conditions that are outside the design

envelope” and, in general, refers to the ability of a system to resist and recover from shock or strain. In

[42], Leveson states that resilience is often defined as “the ability to continue operations or recover stable

state after a major mishap or event”. Bishop et al. [39] states that “a resilient system is effectively a

survivable system that is capable of restoring not only its performance level back to desirable levels, but

also the capacity of the system itself to recover, maintaining its ability to sustain future attacks or failures.”

From our perspective, resilience describes the ability of a system to mitigate the effects of component-level

service degradations. A system is resilient to faults if its service quality is hard to degrade and quality is

restored after the fault condition has subsided. For safety-critical real-time systems, availability (in terms

of reliability and recoverability) and integrity are the most significant measures of service quality.

Therefore, for safety-critical real-time systems, we define resilience as the ability to preserve and restore

service availability and integrity under stated conditions.

Robust resilience is a defense-in-depth concept to mitigate the risk (i.e., causes and effects) of faults in

a system. The fault hypothesis divides the fault space into normal and rare fault subsets based on assumed

FCR failure rates [9]. The normal fault subset may also be referred as expected or credible, and the rare

fault subset may be referred as unexpected or non-credible. A primary system design goal is to achieve

fault-handling coverage as close as possible to 100% for normal faults. To mitigate the risk of a fault

assumption violation, the system fault-handling design should also cover a significant percentage of the

most likely fault scenarios in the rare-fault region. According to Kopetz [26], in a properly designed system,

29

a likely scenario for a fault-hypothesis violation is a transient correlated failure of multiple FCRs. For such

scenarios, a robust safety-critical real-time system should recover to an operational state with high

probability.

A system should be designed to meet the functional and service quality requirements while handling the

fault space defined by the fault hypothesis. The operational fault-handling effectiveness of a system

depends on two basic factors: the fault-assumption coverage (i.e., the probability that actually occurring

faults are within the assumed fault space) and the fault-handling coverage (i.e., the probability that

assumed faults are properly handled by the system) [13] [43]. System development is an iterative risk

optimization process involving refinements to the fault hypothesis and the fault handling strategy and

mechanisms. Usually, the fault modes and fault rates of non-redundant, primitive system components are

fixed as determined by the implementation technology. The component fault rate is a determining factor

in the amount of redundancy needed to satisfy the system service availability requirement, and the fault

modes (i.e., failure semantics) influence the amount and organization of redundancy to satisfy the integrity

requirement [44] [45] [27] [43]. In general, to satisfy particular availability and integrity requirements,

higher fault rates necessitate increased redundancy, while less constrained fault modes demand increased

redundancy and more complex organization. However, using redundancy in hardware, software, time

and/or information domains [46], it is possible to define higher-level structural components with less severe

(i.e., safer) failure modes and failure rate profiles [47]. This approach increases the complexity of these

higher-level components in exchange for easier-to-handle component failure modes and failure rates, which

enables a simpler high-level system design. Examples of this include Honeywell’s SAFEbus with self-

checking-pair components [48], Airbus’ Command-Monitor (COM-MON) computers [49] [19] [21], and

the Boeing 777 primary flight computers with triple internal redundancy in a command-monitor-standby

configuration [50] [51] [52] [53]. The design of the Boeing 777 flight computers shows that it is possible

to constrain the failure-mode rates of high-level components while preserving availability.

2.10. Other Sources in the Literature

There any many other sources of knowledge and insight into safety-risk mitigation and fault tolerance.

Heimerdinger and Weinstock have proposed a conceptual framework for system fault tolerance covering

requirements, fault tolerance concepts, and mechanisms [54]. Butler has written an excellent primer on

architecture-level fault tolerance [55]. Hussey and Atchison have published an overview of architecture-

level design principles for safety-critical systems [56]. Johnson has presented a review of fault management

techniques for safety-critical avionics systems [57]. Hammett published a very insightful paper into fault-

tolerance avionics requirements and common architectures based on component failure modes [58]. Hasson

and Crotty described Boeing’s safety assessments processes for commercial airplanes [59], and Yeh has

authored a number of papers on the flight control computers for the Boeing 777 transport aircraft [51] [50]

[52] [53]. Bleeg presents a very interesting list and description of avionics architecture considerations for

commercial transport aircraft [60]. Rushby has published a survey and taxonomy of critical system

properties from different system design perspectives and traditions, including dependability, safety

engineering, security, and real-time operation [61]. Hatton considers the problem and trade-off in designing

one good software version versus multiple redundant versions (i.e., reduction of error likelihood versus

reduction of error consequences) [62]. It is not clear within the safety-critical avionics community,

including certification authorities, that relying entirely on software development assurance for a single

software version will adequately mitigate software safety risks [63] [2]. NASA has published an extensive

software safety guidebook [64]. The problem of how to objectively justify and ensure failure independence

30

among redundant functions, systems, and components remains open, especially for safety-critical systems,

despite the extensive research and guidance material on the subject [65] [66] [67] [68] [69] [70]. Suri,

Walter, and Hugue have published a compendium of select papers on ultra-dependable systems, including

several papers on classical designs for ultra-dependable systems [71]. Hall and Driscoll have published an

insightful overview of considerations for safety-critical distributed systems [72]. This is but a sample of

the numerous treatises concerning fault tolerance and safety risk mitigation.

31

3. Final Remarks

This report is intended to be part of a design guide for safety-critical computer-based systems. It

describes a general strategy to mitigate the risks of threats and achieve the desired level of dependability in

safety-critical computer-based systems. The limitations of the strategy were discussed and options to

overcome these limitations were presented. The next document in this series will collect all the

contributions generated to date on various aspects of the system design problem.

32

References

[1] S. C. Beland, "Assuring a Complex Safety-Critical Systems of Systems," AeroTech Congress & Exhibition,

SAE Technical Paper 2007-01-3872, September 2007.

[2] D. Jackson, M. Thomas and L. I. Millett, Eds., Software for Dependable Systems: Sufficient Evidence?,

Committee on Certifiably Dependable Software Systems; National Research Council, 2007.

[3] National Research Council, Steering Committee for the Decadal Survey of Civil Aeronautics, Decadal Survey

of Civil Aeronautics: Foundation for the Future, 2006.

[4] National Aeronautics Research and Development Plan, Office of Science & Technology Policy, 2010.

[5] D. C. Winter, Statement before a hearing on Networking and Information Technology Research and

Development (NITRD) Program, Committee on Science and Technology, U.S. House of Representatives,

2008.

[6] A. Mozdzanowska and R. J. Hansman, System Transition: Dynamics of Change in the US Air Transportation

System, International Center for Air Transportation, Massachusetts Institute of Technology, Report Number

ICAT-2008-3, 2008.

[7] Joint Planning and Development Office (JPDO), NextGen Integrated Development Plan, Version 1.0, 2008.

[8] Aerospace Vehicle Systems Institute (AVSI), AFE #58 Summary Final Report, System Architecture Virtual

Integration (SAVI) Program, Document SAVI-58-00-01, version 1, 2009.

[9] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications, 2nd ed., Springer

Science + Business Media, 2011.

[10] N. Suri, C. J. Walter and M. M. Hugue, "Introduction," in Advances in Ultra-Dependable Distributed Systems,

IEEE Computer Society Press, 1995, pp. 3 - 15.

[11] M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico and P. Koopman, "Coverage and the use of cyclic

redundancy codes in ultra-dependable systems," in Proceedings of the International Conference on

Dependable Systems and Networks (DSN 2005), 2005.

[12] J. R. Pimentel, An Architecture for a Safety-Critical Steer-by-Wire System, 2004.

[13] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, "Basic Concepts and Taxonomy of Dependable and

Secure Computing," IEEE Transactions on Dependable and Secure Computing, Vols. 1, No. 1, pp. 11 - 33,

January - March 2004.

[14] SAE International, Aerospace Recommended Practice: Guidelines for the Development of Civil Aircraft and

Systems (ARP4754), Revision A, 2010.

[15] RTCA, Inc., Design Assurance Guidance for Airborne Electronic Hardware (RTCA/DO-254), 2000.

[16] RTCA, Inc., Software Considerations in Airborne Systems and Equipment Certification (RTCA/DO-178C),

2012.

[17] RTCA, Inc., Environmental Conditions and Test Procedures for Airborne Equipment (RTCA DO-160G),

2010.

[18] SAE International, Aerospace Recommended Practice: Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment (ARP4761), 1996.

[19] W. Torres-Pomales, "Software Fault Tolerance: A Tutorial," NASA Langley Research Center, Technical

Report NASA/TM-2000-210616, 2000.

[20] C. Favre, "Fly-by-wire for commercial aircraft: the Airbus experience," International Journal of Control, vol.

59, no. 1, pp. 139 - 157, 1994.

[21] P. Traverse, I. Lacaze and J. Souyris, "Airbus Fly-By-Wire: A Total Approach to Dependability," in Building

the Information Society: IFIP 18th World Computer Congress, Toulouse, France, 2004.

33

[22] D. Briere and P. Traverse, "AIRBUS A320/A330/A340 Electrical Flight Controls - A family of fault-tolerant

systems," in The Twenty-Third International Symposium on Fault-Tolerant Compuiting (FTCS-23), Digest of

Paper, Toulouse, France, 1993.

[23] G. F. Bartley, "Boeing B-777: Fly-By-Wire Flight Controls," in The Avionics Handbook, C. R. Spitzer, Ed.,

2001.

[24] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and Testable Design, IEEE, 1990.

[25] A. M. Saleh, J. J. Serrano and J. H. Patel, "Reliability of Scrubbing Recovery-Techniques for Memory

Systems," IEEE Transactions on Reliability, vol. 39, no. 1, pp. 114 - 122, April 1990.

[26] H. Kopetz, "On the Fault Hypothesis for a Safety-Critical Real-Time System," in Lecture Notes in Computer

Science - Automotive Software – Connected Services in Mobile Networks, 2006.

[27] J. H. Lala and R. E. Harper, "Architectural Principles for Safety-Critical Real-Time Applications,"

Proceedings of the IEEE, vol. 82, no. 1, pp. 25 - 40, January 1994.

[28] J. H. Lala, R. E. Harper and L. S. Alger, "A Design Approach for Ultra-Reliable Real-Time Systems,"

Computer - Special Issue on Real-Time Systems, vol. 24, no. 5, pp. 12 - 22, May 1991.

[29] R. Obermaisser, "Fault and Error Containment of Gateways in Distributed Real-Time Systems," Journal of

Software, vol. 4, no. 7, pp. 686 - 695, 2009.

[30] R. Obermaisser and P. Peti, "A Fault Hypothesis for Integrated Architectures," in 20006 International

Workshop on Intelligent Solutions in Embedded Systems, 2006.

[31] R. Obermaisser and P. Peti, The Fault Assumptions in Distributed Integrated Architectures, 2007.

[32] R. J. Abbott, "Resourceful Systems for Fault Tolerance, Reliability, and Safety," ACM Computing Survey, vol.

22, no. 1, pp. 35 - 68, March 1990.

[33] J. F. Meyer and R. J. Sundstrom, "On-Line Diagnosis on Unrestricted Faults," IEEE Transactions on

Computers, Vols. C-24, no. 5, pp. 468 - 475, May 1975.

[34] C. J. Walter, P. Lincoln and N. Suri, "Formally Verified On-Line Diagnosis," IEEE Transactions o Software

Engineering, vol. 23, no. 11, pp. 684 - 721, November 1997.

[35] W. Torres-Pomales, M. R. Malekpour and P. S. Miner, "ROBUS-2: A Fault-Tolerant Broadcast

Communication System," NASA Langley Research Center, Techical Report NASA/TM-2005-213540 , 2005.

[36] K. Shin and P. Ramanathan, "Diagnosis of processors with Byzantine faults in a distributed computing

system," in 17th Fault Tolerant Computing Symposium (FTCS 17), 197.

[37] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System," Communications of the

ACM, vol. 21, no. 7, pp. 558 - 565, 1978.

[38] D. P. Siewiorek, J. J. Hudak, S. Byung-Hoon and Z. Segal, "Development of a Benchmark to Measure System

Robustness," in The Twenty-Third International Symposium on Fault-Tolerant Computing (FTCS-23), Digest

of Papers , 1993.

[39] M. Bishop, M. Carvalho, R. Ford and L. M. Mayron, "Resilience is More than Availability," in Proceedings of

the 2011 Workshop on Network Security Paradigms (NSPW '11), 2011.

[40] J. C. Laprie, "From Dependability to Resilience," in 30th IEEE/IFIP International Conference on Dependable

Systems and Networks, Anchorage, Alaska, 2008.

[41] K. S. Triverdi, D. S. Kim and R. Ghosh, "Resilience in Computer Systems and Networks," in Proceedings of

the 2009 International Conference on Computer-Aided Design (ICCAD '09), 2009.

[42] N. Leveson, N. Dulac, D. Zipkin, J. Cutcher-gershenfeld, J. Carroll and B. Barrett, "Engineering Resilience

into Safety-Critical Systems," in Resilience Engineering: Concepts and Precepts, E. Hollnagel, D. D. Woods

and N. Leveson, Eds., Ashgate Publishing, 2006, pp. 95 - 124.

[43] D. Powell, "Failure Mode Assumptions and Assumption Coverage," in Twenty-Second International

Symposium on Fault-Tolerant Computing (FTCS-22), Boston, MA, 1992.

[44] M. H. Azadmanesh and R. M. Kieckhafer, "New Hybrid Fault Models for Asynchronous Approximate

Agreement," IEEE Transaction on Computers, vol. 45, no. 4, pp. 439 - 449, April 1996.

34

[45] M. H. Azadmanesh and R. M. Kieckhafer, "Exploting Omissive Faults in Synchronous Approximate

Agreement," IEEE Transactions on Computers, vol. 49, no. 10, pp. 1031 - 1042, October 2000.

[46] B. W. Johnson, "An Introduction to the Design and Analysis of Fault-Tolerant Systems," in Fault-Tolerant

Computer System Design, Prentice Hall, 1996, pp. 1 - 87.

[47] F. Cristian, "Understanding Fault-Tolerant Distributed Systems," Communications of the ACM, vol. 34, no. 2,

pp. 57 - 78, February 1991.

[48] K. Driscoll, B. Hall, H. Sivencrona and P. Zumsteg, "Byzantine Fault Tolerance, from Theory to Reality," in

The 22nd International Conference on Computer Safety, Reliability and Security SAFECOMP, 2003.

[49] D. Briere, C. Favre and P. Traverse, "Electrical Flight Controls, From Airbus A320/330/340 to Future Military

Transport Aircraft: A Family of Fault-Tolerant Systems," in The Avionics Handbook, C. R. Spitzer, Ed., CRC

Press, 2001, p. Chapter 12.

[50] Y. C. Yeh, "Design Considerations in Boeing 777 Fly-By-Wire Computers," in Proceedings of the Third IEEE

International High-Assurance Systems Engineering Symposium, 1998.

[51] Y. C. Yeh, "Triple-Triple Redundant 777 Primary Flight Computer," in Proceedings of the 1996 Aerospace

Applications Conference, 1996.

[52] Y. C. Yeh, "Safety Critical Avionics for the 777 Primary Flight Controls System," in 20th Digital Avionics

Systems Conference (DASC), 2001.

[53] Y. C. Yeh, "Unique Dependability Issues for Commercial Airplane Fly by Wire Systems," in Building the

Information Society, IFIP 18th World Congress, Topical Sessions, 2004.

[54] W. L. Heimerdinger and C. B. Weinstock, "A Conceptual Framework for System Fault Tolerance," Carnegie

Mellon University - Software Engineering Institute (CMU/SEI), 1992.

[55] R. W. Butler, "A Primer on Architecture Level Fault Toelrance (NASA/TM-2008-215108)," NASA Langley

Research Center, 2008.

[56] A. Hussey and B. Atchison, "Safe Architectural Design Principles," 2000.

[57] D. M. Johnson, "A review of fault management techniques used in safety-critical avionic systems," Progress

in Aerospace Sciences, vol. 32, no. 5, pp. 415 - 431, October 1996.

[58] R. Hammett, "Design by Extrapolation: An Evaluation of Fault Tolerant Avionics," IEEE Aerospace and

Electronic Systems Magazine, vol. 17, no. 4, pp. 17 - 25, 2002.

[59] J. Hasson and D. Crotty, "Boeing's Safety Assessment Processes for Commercial Airplane Designs," in 16th

Digital Avionics Systems Conference (DASC), 1997.

[60] R. J. Bleeg, "Commercial Jet Transport Fly-By-Wire Architecture Considerations," in 9th AIAA/IEEE Digital

Avionics Systems Conference (DASC), 1988.

[61] J. Rushby, "Critical System Properties: Survey and Taxonomy," SRI International, Technical Report SRI-

CSL-93-1, 1993.

[62] L. Hatton, "N-Version Design Versus One Good Version," IEEE Software, vol. 14, no. 6, pp. 71 - 76,

Nov/Dec 1997.

[63] Federal Aviation Administration, Certification Authorities Software Team (CAST), Reliance on Development

Assurance Alone when Performing a Complex and Full-Time Critical Function. Position Paper CAST-24,

2006.

[64] National Aeronautics and Space Administration (NASA), "NASA Software Safety Guidebook (NASA-GB-

8719.13)," 2004.

[65] J. Downer, "When Failure is an Option: Redundancy, reliability, and regulation in complex technical

systems," Center for Analysis of Risk and Regulation, 2009.

[66] V. M. Hoepfer, J. H. Saleh and K. B. Marais, "On the value of redundancy subject to common-cause failures:

Toward the resolution of an on-going debate," Reliability Engineering and System Safety, vol. 94, no. 12, pp.

1904 - 1916, 2009.

[67] P. T. Popov, L. Stringini and B. Littlewood, "Choosing Between Fault-Tolerance and Increased V&V for

Improving Reliability," in Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications, Las Vegas, 2000.

35

[68] R. T. Wood, "Diversity Strategies to Mitigate Postulated Common Cause Failure Vulnerabilities," in Seventh

American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control and

Human-Machine Interface Technologies (NPIC&HMIT 2010), Las Vegas, Nevada, 2010.

[69] IAEA, "Protecting against Common Cause Failues in Digital I&C Systems of Nuclear Power Plants,"

International Atomic Energy Agency (IAEA), 2009.

[70] J. H. Lala and R. E. Harper, "Reducing the Probability of Common-Mode Failure in the Fault Tolerant Parallel

Processor," in 12th Digital Avionics Systems Conference (DASC), Fort Worth, Texas, 1993.

[71] N. Suri, C. J. Walter and M. M. Hugue, Advances in Ultra-Dependable Distributed Systems, IEEE Computer

Society Press, 1995.

[72] B. Hall and K. Driscoll, "Distributed System Design Checklist," NASA Langley Research Center, NASA/CR-

2014-218504, 2014.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Torres-Pomales, Wilfredo

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20622

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA STI Program (757) 864-9658

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical
computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards
in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem
and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some
options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of
safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to
model and reason about the safety implications of system requirements and design.

15. SUBJECT TERMS

Computer; Error; Failure; Fault; Model; Safety; System

18. NUMBER
 OF
 PAGES

44
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

999182.02.50.07.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA-TM-2015-218988

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

11 - 201501-

