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Abstract 

This report presents a high-level overview of a general strategy to 

mitigate the risks from threats to safety-critical computer-based systems.  

In this context, a safety threat is a process or phenomenon that can cause 

operational safety hazards in the form of computational system failures.  

This report is intended to provide insight into the safety-risk mitigation 

problem and the characteristics of potential solutions.  The limitations of 

the general risk mitigation strategy are discussed and some options to 

overcome these limitations are provided.  This work is part of an ongoing 

effort to enable well-founded assurance of safety-related properties of 

complex safety-critical computer-based aircraft systems by developing an 

effective capability to model and reason about the safety implications of 

system requirements and design. 

 

 

 

 

 

 



 

 

iv 

 

Table of Contents 

Abbreviations ................................................................................................................................................ v 

1. Introduction ............................................................................................................................................... 1 

2. Safety-Risk Mitigation .............................................................................................................................. 2 
2.1. Safety-Relevant Functional Characteristics ....................................................................................... 2 
2.2. Safety-Relevant Quality Attributes .................................................................................................... 3 

2.2.1. Functional Integrity ..................................................................................................................... 4 
2.2.2. Functional Reliability .................................................................................................................. 4 
2.2.3. Functional Recoverability ........................................................................................................... 4 
2.2.4. Functional Availability ................................................................................................................ 4 

2.3. General Safety-Risk Mitigation Strategy ........................................................................................... 5 
2.4. Conditioning the Fault Space ............................................................................................................. 7 

2.4.1. Prevention of Fault Introduction ................................................................................................. 7 
2.4.2. Correction of Introduced Faults .................................................................................................. 8 
2.4.3. Bounding the Fault Scope ........................................................................................................... 8 

2.5. Conditioning the Error Space ............................................................................................................. 9 
2.5.1. Prevention of Fault Activation .................................................................................................... 9 
2.5.2. Local Containment of Errors ..................................................................................................... 10 
2.5.3. Bounding of Error Conditions ................................................................................................... 10 

2.6. Architecture-Level Error Mitigation ................................................................................................ 11 
2.6.1. Fault Hypothesis........................................................................................................................ 11 
2.6.2. Means of Architectural Mitigation ............................................................................................ 12 
2.6.3. Error Passivation ....................................................................................................................... 12 
2.6.4. Error Masking ........................................................................................................................... 14 
2.6.5. Error Recovery .......................................................................................................................... 15 
2.6.6. Error Mitigation for Single Receiver ........................................................................................ 16 
2.6.7. Error Mitigation for Multiple Receivers ................................................................................... 17 
2.6.8. Error Mitigation for Single Source and Multiple Receivers ..................................................... 19 

2.7. Management of Redundant Groups ................................................................................................. 23 
2.7.1. Local Structure and Modes ....................................................................................................... 24 
2.7.2. Group Structure and Modes ...................................................................................................... 25 
2.7.3. Dynamic Group Membership .................................................................................................... 26 
2.7.4. Synchrony ................................................................................................................................. 27 

2.8. Safety-Risk Mitigation Limitations.................................................................................................. 27 
2.9. Robust Resilience ............................................................................................................................. 28 
2.10. Other Sources in the Literature ...................................................................................................... 29 

3. Final Remarks ......................................................................................................................................... 31 

References ................................................................................................................................................... 32 
 



 

 

v 

 

Abbreviations 

AA Acceptable-Item Asymmetry 

AAm Failed Active Asymmetric 

Am User Asymmetry 

ASm Failed Active Symmetric 

BIST Built-In Self-Test 

C Correct 

CCA Common Cause Analysis 

CMA Common Mode Analysis 

ConOps Concept of Operations 

COTS Commercial Off The Shelf 

CS Correct Symmetric 

D Detectable 

DIMA Distributed Integrated Modular Architecture 

DMA Direct Memory Access 

DPS Data Processing System 

ECR Error Containment Region 

ECXF Error Containment Interface Function 

ESD Electrostatic Discharge 

FAA Federal Aviation Administration 

FCR Fault Containment Region 

FPGA Field Programmable Gate Array 

FSM Finite State Machine 

GOI Group of Interest 

IEEE Institute of Electrical and Electronics Engineers 

IFR Internal Failure Recovery 

IKIWISI I’ll-know-it-when-I-see-it 

IMA Integrated Modular Avionics 

IoP Index of Performance 

IUE Initiating Unintended Event 

LoF Loss of Function 

LRU Line Replaceable Unit 

MF Malfunction 

MIL-STD Military Standard 

NAS National Airspace System 

NASA National Aeronautics and Space Administration 

ORS Operation Requirements Satisfied 

ORV Operating Requirements Violated 

OS Omissive Symmetric 

OSm Operational Symmetric 

OTH Omissive-Transmissive Hybrid 

PAm Failed Passive Asymmetric 

PRA Particular Risk Analysis 

PSm Failed Passive Symmetric 

RAF Recoverable Active Failure 

RCV Receiver 

RF Radio Frequency 

RPF Recoverable Passive Failure 

RRS Recovery Requirements Satisfied 

RRV Recovery Requirements Violated 



 

 

vi 

 

SA Acceptable-Item Symmetry 

SDOA Single-Data Omissive Asymmetric 

Sm User Symmetry 

SOA Strictly Omissive Asymmetric 

SOI System Of Interest 

SRC Source 

SS Sub-System 

TA Transmissive Asymmetric 

TRL Technology Readiness Level 

TS Transmissive Symmetric 

TTC  Time To Criticality 

TTE Time To Effect 

TUE Terminal Unintended Event 

U Undetectable 

UAF Unrecoverable Active Failure 

UPF Unrecoverable Passive Failure 

V&V Validation and Verification 

ZSA Zonal Safety Analysis 

 

 

 

 

 

 

 

 



 

 

1 

 

1.   Introduction 

An aircraft consists of a collection of systems performing a wide variety of functions with different 

levels of safety-criticality.  The aviation industry is continuing a decades-old trend of adopting increasingly 

sophisticated computer-based technology to implement aircraft functionality.  Modern aircraft are highly 

complex, functionally integrated, network-centric systems of systems [1].  The design and analysis of 

distributed-computation aircraft systems are inherently complex activities.  Ensuring that such systems are 

safe and comply with existing airworthiness regulations is costly and time-consuming as the level of rigor 

in the development process, especially the validation and verification activities, is determined by 

considerations of system complexity and safety criticality.  A significant degree of care along with deep 

insight into the operational principles of these systems are necessary to ensure adequate coverage of all 

design implications relevant to system safety.   

Validation and verification (V&V), as well as certification, of complex computer-based systems, 

including safety-critical systems, are recognized problems of national significance [2], [3], [4].  The 

challenges in assuring the design and safety of complex systems require considerable attention and financial 

investment [5].  As aircraft system complexity continues to increase, V&V and certification costs, together 

with related programmatic risks, can provide a basis against the development and implementation of new 

capabilities [6].  Such obstacles against innovation pose a threat to national competitiveness and can hinder 

the proposed operational improvements to the National Airspace System (NAS) that are intended to 

increase capacity and flexibility as well as reduce costs, but would also increase the complexity of airborne 

and ground aviation systems [7].  There are initiatives underway to produce methods, tools, and techniques 

that enable predictable, timely, and cost-effective complex systems development [8].  NASA aims to 

identify technical risks and to provide knowledge to safely manage the increasing complexity in the design 

and operation of vehicles in the air transportation system.  In furtherance of this goal, multidisciplinary 

tools and techniques are being developed to assess and ensure safety in complex aviation systems and 

enable needed improvements to the NAS. 

This document is a contribution to a design and evaluation guide currently under development.  The 

guide is intended to (1) provide insight into the system safety domain, (2) present a general technical 

foundation for designers and evaluators of safety-critical systems, and (3) serve as a reference for designers 

to formulate well-reasoned safety-related claims and arguments and identify evidence that can substantiate 

these claims.  This evidence forms a basis for demonstrating compliance with certification regulations.  The 

generation of such evidence is a major objective of a system development process.  This report is part of an 

ongoing effort to enable justifiable assurance of safety-related properties of computer-based aircraft 

systems by developing an effective capability to model and reason about the safety implications of system 

requirements and design. 

This document presents a general strategy to mitigate the risks from threats to safety-critical computer-

based systems.  In this context, a threat is a process or phenomenon that can cause operational safety 

hazards in the form of computational system failures.  The safety-risk mitigation strategy is intended to 

achieve a desired level of system dependability measured in terms of qualities based on essential 

characteristics of failure causes and effects.  The presentation is a high-level overview intended to provide 

insight into the safety-risk mitigation problem and potential solutions.  The limitations of the strategy are 

discussed and some options to overcome these limitations are provided.  The document also serves as an 

introduction to the extensive body of knowledge on safety-critical computer-based systems. 
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2.   Safety-Risk Mitigation 

The mitigation of risks from system safety threats requires consideration of likelihood (or frequency), 

severity, and uncertainty of the threats and their effects.  In this report, it is assumed that the system 

functional and performance requirements are safe in the sense that a compliant system service will not cause 

a mishap.  The risk mitigation goal is to ensure that the system is dependable in the sense that the residual 

risk level of operational service failures is acceptable to the stakeholders, including users, regulatory 

authorities, and developers, among others.  At a high level, two relations determine risk: the relation 

between likelihood and severity of system failures, and the relation between the degree of uncertainty and 

the severity of system failures.  There are two kinds of uncertainties: aleatoric uncertainty due to inherent 

randomness or variation; and epistemic uncertainty due to modeling abstractions and lack of knowledge.  

These uncertainties are about the threats, the system itself, and the environment.  Generally, for safety-

critical systems, both of the risk relations are inverse relations, each with a level no higher than a given 

maximum threshold for acceptable risk.  In effect, as the potential severity of failure scenarios increases, 

we want the failure frequency to decrease and remain below the maximum acceptable level, and we also 

want to have decreasing uncertainty (i.e., increasing confidence) about the failure frequency and severity 

estimates. 

This section provides insight into the means to mitigate safety threats.  It begins with a review of the 

functional and quality attributes of a dependable system.  A general safety-risk mitigation strategy is 

introduced which identifies the requirements and opportunities to effect mitigation of non-operational and 

operational threats.  This section also describes generic architectural structures for threat mitigation during 

system operation.  Various aspects of the problem of group redundancy management are examined, 

including options for system structures and component interaction protocols based on the types of faults 

that are expected in a system.  In addition, this section describes the limitations of architectural techniques 

from the perspective of fault tolerance guarantees.  Finally, this section provides a complementary 

perspective of best-effort robustness and recovery constrained by available resources and other system 

conditions. 

 

2.1.   Safety-Relevant Functional Characteristics 

A basic high-level functional safety assessment with a failure model defines three possible static 

functional states: operational (i.e., not failed), failed passive, and failed active.  A passive failure state is a 

loss-of-function condition in which the function is not being performed.  An active failure corresponds to 

a malfunction in which the function is performed incorrectly.  Passive and active failures are also known 

as omission and commission failures, respectively.   

A primary goal of worst-case functional safety assessments is the definition of bounds on the severity 

of failure modes and effects.  We want to determine the conditions necessary to guarantee particular 

functional failure modes and effects.  To this end, instead of assuming static functional states as above, we 

can define the state of the system under an increasingly permissive behavioral classification hierarchy in 

which a function can be in one of three possible states:  

 Operational, if only proper functional service is being delivered;  

 Failed passive, if the functional service is a combination of operational and passive failure; and  
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 Failed active, if the functional service is a combination of operational, passive failure, and active 

failure.  

An operational functional service is a subset of a failed-passive functional service, which is a subset of 

a failed-active.  Notice that in this model a failed-active service corresponds to an arbitrary failure with 

no constraints on the behavior exhibited by the system.  Intuitively, we want a safety-critical system to 

either operate properly or not operate at all (i.e., stop), rather than operate in an arbitrary manner.  The 

determination of the system state is based on the level of behavioral constraint that can be guaranteed at a 

particular point in time.   

In a real-time (i.e., time-critical) system service, the correctness of the service is determined not only 

by the value of the service items, but also the time of delivery [9].  For real-time functions, the severity of 

a failure may depend on the duration of the failure condition.  A hard real-time service must always deliver 

service items within the specified time interval, as there may be highly undesirable consequences to the 

users if this constraint is violated.  A soft real-time service may fail to deliver service items within the 

specified time constraint, but the utility of the item decreases when the constraint is violated [10].  Some 

systems have firm real-time service requirements in which infrequent timing constraint violations are 

tolerable but may degrade the quality of the service.  Some systems may be firm real-time with respect to 

the quality of the service, but hard real-time with respect to safety.  For these systems, the quality of the 

service degrades as the update delay increases beyond the firm timing constraint until the hard real-time 

constraint is reached, at which point safety is compromised.  This hard real-time delay threshold 

corresponds to the time-to-criticality of a system, which is the time interval between the occurrence of a 

failure and the user or environment reaching an unsafe state.  For highly dynamic functions, the time to 

criticality can be very short and failure recovery within that time may be unfeasible or require an automated 

capability.  For example, Paulitsch et al. [11] and Pimentel [12] reference a design requirement of 50 ms 

maximum service outage duration for an automobile steer-by-wire system.  For less dynamic functions, 

automatic recovery may be possible, with even manual recovery by a human operator being adequate. 

It is assumed that the system of interest (SOI) is embedded in a larger technical or socio-technical 

operations system (i.e., a system consisting of people and technology) that is intended to achieve higher-

level goals.  Consequently, safety in the operations system depends on the characteristics of the function 

performed by the SOI.  The acceptable level of risk for the dependence of the operations system on the SOI 

is determined by the strength (i.e., the importance or criticality) of the relation between safety in the 

operations system and the performance of the SOI.  The frequency of SOI failures is determined by the 

duration of continuous operation between failures and the time to restore service after experiencing a failure.  

For a real-time SOI whose service correctness criteria includes timing constraints, the severity of SOI 

failures is determined by the failure mode of the SOI and the duration of the failure condition.  The SOI 

service characteristics of time-to-failure, time-to-recover, and failure mode depend on the characteristics 

of the threats and the architecture of the SOI.  In general, the system architecture is designed to achieve the 

desired mapping of characteristics between threats and service quality by increasing the time-to-failure, 

reducing the time-to-recover, and reducing the complexity and severity of the failure modes (i.e., 

maximizing the desirable attributes and minimizing the undesirable ones).   

 

2.2.   Safety-Relevant Quality Attributes 

As the required SOI function is presumed to be safe, we are interested in safety-critical qualities of the 
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SOI service.  Based on the functional characteristics described in the preceding sub-section (i.e., time-to-

failure, time-to-recover, and failure mode), the dependability of the SOI is determined by the timing of 

operational and failure conditions and the characteristics of the failure modes.  It is important to notice that 

dependability and safety are determined, not only by the SOI failure modes, but also by the timing of failures 

and recovery.  The desired service dependability can be specified in terms of the qualities of functional 

integrity, availability, reliability, and recoverability. 

2.2.1.   Functional Integrity 

In a general sense, integrity is related to failure modes of a system and the concepts of truthfulness and 

trustworthiness.  Avizienis et al. [13] defined integrity as the absence of improper system state alterations.  

Paulitsch et al. [11] defined integrity as the probability of an undetected failure.  Functional integrity is an 

important functional quality related to the potential that the effects of an SOI failure will propagate and 

corrupt the operations system (i.e., the larger system that encompasses the SOI).  The SOI satisfies this 

condition when it is operational or failed passive.  Integrity is violated when the system is failed active.  

Functional integrity can be measured as the probability that the SOI will not experience an active failure 

during a specified time interval under stated conditions.  These stated conditions can be physical 

environmental conditions (e.g., temperature, vibration, etc.), the configuration of the SOI, the functional 

input patterns, and possibly the types and number of faults experienced by the SOI. 

2.2.2.   Functional Reliability 

Reliability refers to the uninterrupted delivery of correct service [13].  Reliability is measured as the 

probability that the SOI function will remain operational for a specified time interval under stated conditions 

[9].  Reliability determines the time-to-failure characteristic of the SOI.  

2.2.3.   Functional Recoverability 

Recoverability is the ability to restore service delivery after experiencing a failure.  Here we use the 

term recoverability to refer to the ability of a system to restore service on the fly.  This falls under the larger 

context of maintainability, which includes physical replacement and repair of system components.  For our 

purpose, recoverability is the complement of reliability and is measured as the probability that the service 

is restored within a specified time interval under stated conditions.  Recoverability determines the time-to-

recover characteristic of the SOI. 

2.2.4.   Functional Availability 

Availability refers to the fraction of time that the delivered service is correct.  Availability is measured 

as the probability that the SOI is operational during a specified time interval under stated conditions.  

Availability is a function of reliability and recoverability, and it combines the characteristics of time-to-

failure and time-to-recover.  Availability is highest when both reliability and recoverability are high, as in 

this case the SOI remains operational for long time intervals and quickly recovers after experiencing a 

failure.   
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2.3.   General Safety-Risk Mitigation Strategy 

The functional safety goal is for the SOI to be dependable in the sense that the frequency and severity 

of functional failures are not higher than is acceptable.  This is accomplished by applying the defense-in-

depth concept (i.e., multiple layers of protection) with non-operational and operational means to prevent 

and mitigate system failures.  This approach mitigates the risk of failures by reducing the likelihood of the 

causes and the severity of the effects. 

Figure 1 illustrates a general strategy to mitigate the risk of system-safety threats and the faults (i.e., 

defects) they can introduce in a system.  The strategy is applicable to the full set of possible faults, including 

physical and logical faults of non-operational and operational nature.  This approach leverages the causal 

chains in a threats-and-effects model.  With this model, threats to the SOI cause faults that remain latent in 

the system until there are favorable conditions for their activation in the form of errors.  Once activated, 

errors may propagate until they eventually cause service failure at the external interfaces.  The major layers 

of defense are:  

 Conditioning the fault space,  

 Conditioning the error space, and  

 Architecture-level error mitigation.   

Multiple layers of defense are needed to support each other because no single layer can ensure complete 

containment of fault causes and their effects.  In general, there is a residual uncertainty about the 

effectiveness of individual layers of defense and about the relationship between the weaknesses of different 

layers of defense. 

The first major layer of defense is conditioning the fault space in the physical and logical layers of the 

SOI.  In this context, conditioning refers to creating favorable conditions in the fault space applicable to the 

SOI.  This is achieved by minimizing the number of faults present in the system and the scope (i.e., extent) 

of each fault.  The number of faults is minimized by preventing the introduction of non-operational and 

operational faults and by correcting faults that are discovered.  The scope of the remaining faults is 

minimized by ensuring adequate independence in the introduction of primary faults and between primary 

and secondary faults.  This is accomplished by minimizing the strength of causal couplings between primary 

faults that are directly caused by threats (i.e., minimize the likelihood that a single threat event introduces 

multiple faults), and by minimizing the causal couplings between primary and secondary faults due to 

cascade propagation effects. 

As shown in Figure 1, the second major layer of defense is conditioning the error space in the 

information layer.  This can be accomplished by preventing the activation of faults, for example, by 

workarounds that circumvent known existing faults.  Per Figure 1, the next way to manage the error space 

is to provide mechanisms in the SOI components to contain fault-induced errors by locally detecting them 

and, if possible, correcting them.  If faults become active and their effects cannot be contained locally, we 

want to ensure that the scope of the error conditions does not overwhelm the protection mechanisms at the 

architecture level. 

 



 

 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-operational Fault Set Operational Fault Set 

Fault Set 

Physical Non-operational Fault Set 

Logical Non-operational Fault Set Physical Operational Fault Set 

Definition of Fault Space 

Scope and Structure 

Reduction of 

Error Likelihood 

Reduction of 

Error Severity 

Fault Risk 

Mitigation 

Functional Dependability 

Conditioning 

of Fault Space  

 

 

Conditioning 

of Error Space  

 

 

Prevention of Fault Introduction 

Correction of Introduced Faults 

Bounding of Fault Scope 

Prevention of Fault Activation 

Bounding of Error Conditions 

Local Containment of Errors 

Architecture-Level 

Error Mitigation Error Passivation  

Error Recovery Error Masking 

Functional Recoverability Functional Reliability 

System 

Qualities 

Functional Integrity Functional Availability 

Figure 1: General Strategy for Safety-Risk Mitigation 



 

 

7 

 

The third major layer of defense is the mitigation of errors by the architecture of the SOI.  The 

fundamental requirement is to contain the propagation of errors in the system.  If containment is 

accomplished, the system can mask the errors to prevent the external service from being affected in any 

way, or it can recover from errors by correcting the service after a failure.   

The layers of defense in this strategy combine to mitigate the overall risk posed by the threats.  The 

conditioning of the fault and error spaces is intended to reduce the likelihood of error conditions in the SOI, 

especially complex error conditions that could overwhelm the fault handling capabilities of the architecture.  

The architecture-level error mitigation is intended to reduce the severity of error conditions by constraining 

the system failure modes and minimizing their duration.  The combined architecture-level mitigations of 

passivation (i.e., to make passive), masking, and recovery deliver the desired functional qualities of integrity 

and availability, and together result in a dependable system with an acceptable risk of failure.  As stated 

previously, there is always uncertainty about the effectiveness of the employed means of risk mitigation.  

Any assessment of a risk mitigation approach against system failures must consider the three risk 

components of likelihood, severity, and uncertainty, which are dependent on random variation and 

knowledge of the threats, the system, and the environment. 

The following sections provide insight into this risk mitigation strategy, including implications and 

limitations. 

 

2.4.   Conditioning the Fault Space 

The motivation for conditioning the fault space is to have favorable conditions for dependable system 

operation.  The goal is to minimize the number and scope of faults present in the SOI.  These faults can be 

non-operational or operational in origin and can be in the physical or logical layers of the system.  This is 

accomplished by preventing the introduction of faults, correcting discovered faults, and maximizing the 

independence of introduced faults. 

2.4.1.   Prevention of Fault Introduction 

This layer of defense targets the introduction of physical and logical faults in all phases of the system 

life cycle.  Non-operational faults can be introduced during development, production, manufacturing, 

refinement, and maintenance of the system.  Guidelines, standards, policies, and regulations for 

development and other phases of the system life cycle have been created to ensure a minimum adequate 

level of rigor and quality.  These life cycle measures aim to achieve a higher level of quality for the most 

critical components relative to the desired system properties.  Some of the system development standards 

in the aviation industry include SAE International Aerospace Recommended Practice ARP-4754A 

Guidelines for Development of Civil Aircraft and Systems [14], RTCA DO-254 Design Assurance 

Guidance for Airborne Electronic Hardware [15], and RTCA DO-178 Software Considerations in Airborne 

Systems and Equipment Certification [16].  There are many other sources of information on recommended 

and standard practice for system life cycle quality assurance.  In general, the level of effort and rigor to 

ensure the quality of a system is determined by its complexity and criticality.  Operational faults can be 

prevented by the selection of electrical (e.g., diodes and integrated circuits) and mechanical (e.g., 

enclosures) system components with an adequate level of quality, and by ensuring that the system is able 

to tolerate the stresses in the expected physical environment, such as specified in the standard RTCA DO-

160 Environmental Conditions and Test Procedures for Airborne Equipment [17].  Equally important is 
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ensuring that the system is not exposed to harsher environmental conditions than that for which it is 

qualified.   

In spite of these measures, it generally cannot be guaranteed that faults are not introduced into a system.  

The best that can be expected is a minimization of the likelihood of introducing non-operational and 

operational faults.   

2.4.2.   Correction of Introduced Faults 

The next layer of defense is to correct faults after they are introduced.  This is applicable to non-

operational and operational faults in the physical and logical layers of the system.  V&V activities examine 

the system to determine whether the requirements are correct and complete according to the intended system 

purpose, and also to determine whether the implementation complies with the requirements.  The types of 

V&V activities include tests, analyses, and reviews of the system and its life cycle data.  In addition to non-

operational V&V activities, faults may also be discovered during operation if the system or its components 

fail to perform their intended function.  In that case, offline verification and analysis could be used to 

diagnose the failure and identify the causal defect(s).  This applies to system development and refinement 

faults as well as faults introduced during manufacturing, production, and maintenance processes.   

2.4.3.   Bounding the Fault Scope 

If we cannot prevent the introduction of faults or correct them all, then we need to ensure that the faults 

present in the system are causally unrelated or minimally related.  The prime motivator for this strategy is 

the presumed correlation between shared causality of faults and similarity of manifestations in value and 

time.  Another way of stating this heuristic principle is that things that are different and unrelated fail 

differently and at different times.  The minimization of causal relations must address the introduction of 

multiple primary faults with common causal threats and multiple secondary faults with common causal 

primary faults.  This minimization of causal relations effectively bounds the scope of introduced faults.   

Common Cause Analysis (CCA) as described in SAE International Aerospace Recommended Practice 

ARP-4761 Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne 

Systems and Equipment [18] is intended to ensure that faults in the system are independent or that the risk 

associated with dependence is acceptable.  CCA is divided into three types of analyses: Zonal Safety, 

Particular Risk, and Common Mode.  

Zonal Safety Analysis (ZSA) is a qualitative analysis to verify independence claims for component 

failures.  ZSA examines the effects of component failures on other components in physical proximity and 

the implications of errors during maintenance actions.  ZSA is performed for each zone of a vehicle during 

development and modifications to the vehicle.    

Particular Risk Analysis (PRA) examines particular events or conditions external to the system that have 

the potential to cause violation of independence claims.  Examples of these threats include fire, fluids, 

lightning, high intensity radiated electromagnetic fields, and break-up and explosion of mechanical systems.  

The PRA aims to identify direct and cascade effects of these threats in order to eliminate or mitigate the 

safety risk.   

Common Mode Analysis (CMA) is a qualitative analysis to verify independence claims related to 

design, manufacturing, and maintenance errors.  The analysis is intended to provide the technical basis to 
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eliminate or minimize common design, manufacturing, and maintenance conditions that could violate 

independence claims.  This analysis covers aspects such as hardware faults, software faults, production and 

repair flaws, environmental factors, requirement errors, cascading effects, and external sources of faults.  A 

CMA examines the system for commonalities for each of the lifecycle stages and operational conditions 

such as concept and design (e.g., architecture, technology, and specifications), manufacturing (e.g., 

manufacturer and procedures), installation (e.g., location and routing), operation (e.g., staff and 

procedures), and environment (e.g., temperature, vibration, humidity, particle radiation, and 

electromagnetic radiation).   

An approach to bound the scope of faults is to define and enforce confinement boundaries that prevent 

the indiscriminate propagation (i.e., a cascade) of faults throughout a system and the generation of 

secondary faults.  A fault containment region (FCR) is carefully crafted with fault isolation mechanisms 

and common-cause analyses, as described above, to ensure containment of propagation into and out of each 

FCR.  An FCR is effectively a discrete unit of failure in a system.  Ideally, faults introduced in different 

FCRs are different and unrelated.  However, some threats (e.g., lightning and design errors) may be able to 

influence multiple FCRs, thus compromising failure independence.  The goal is then to achieve an adequate 

level of containment in order to bound the influence of introduced faults to their respective FCRs.  Because 

different threats may have different scopes of influence in the introduction of faults, it may be possible and 

advantageous to structure a system with a hierarchy of FCRs that provide multiple layers of containment, 

and that promote containment within a region no larger than the scope of direct influence of threats relative 

to the introduction of primary faults (i.e., to prevent fault propagation and generation of secondary faults in 

multiple FCRs). 

None of the layers and existing techniques for conditioning the fault space offers a guarantee of 

effectiveness.  Furthermore, the effectiveness of the composition of layers of protection is not guaranteed 

either.  The available approaches are mostly heuristic and qualitative and their effectiveness is assessed 

based on engineering judgment and compliance with best practices.  Additional layers of protection may 

be needed to reduce the risk to an acceptable level. 

 

2.5.   Conditioning the Error Space 

The next major layer of defense is conditioning errors in the SOI information layer that may be generated 

by faults present in the system.  The approaches and techniques for error conditioning must account for 

non-operational and operational faults in the physical and logical layers of the SOI.  The overall goal is to 

minimize the number and scope of error conditions that must be handled by architecture-level fault-

tolerance mechanisms in the system.   

2.5.1.   Prevention of Fault Activation 

If there are known faults present in the system, it may be possible to manage the external and internal 

operation of the SOI to prevent the generation of errors.  For example, if certain input patterns to a 

component cause it to generate errors, there may exist an alternative input sequence (in effect, a work-

around) with a different but equivalent input pattern that allows the component to compute a correct output 

without the activation of internal faults.  This could be achieved by a re-expression or a decomposition and 

reordering of the input sequence [19].  Another approach to prevent the activation of known faults in a 

particular component is to switch to an alternate component that provides an identical or equivalent 
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function.  Also, a component or the whole system may have reversionary (i.e., alternate) modes of operation 

that reconfigure the internal data flow to deliver alternate and possibly simpler but effective functionality.  

The flight control systems in Airbus airplanes [20] [21] [22] and the Boeing 777 airplane [23] are good 

example of systems with reversionary modes.  Notice that fault activation prevention is a general approach 

that can be applied to manage both physical and logical faults. 

2.5.2.   Local Containment of Errors 

This layer of defense exploits the bounded scope of faults, the hierarchical structure of FCRs within 

system components, and redundancy within a component for self-checking its internal operation.  A 

component may perform both offline and online checks to detect internal faults and locally contain the 

propagation of errors.  Some of the possible kinds of checks include timing checks (e.g., processing delays), 

coding checks (e.g., checksums), reasonableness of computation results based on known semantic 

properties, and checks based on properties of data structures [19].  Hardware circuits may have built-in self-

test (BIST) and self-checking logic [24].  Periodic background scrubbing of data protected by error control 

codes in memory and programmable logic circuits is another technique to prevent the propagation of local 

errors [25].  All these techniques are effective and may have very high coverage for certain types of errors.  

For some applications, these local error checks may be adequate to achieve an acceptable level of error 

containment.  However, in general, this sort of self-checking cannot guarantee complete coverage for all 

possible or relevant faults and error manifestations. 

2.5.3.   Bounding of Error Conditions 

At this point, the goal is to do whatever is reasonable to minimize the size and complexity of error 

conditions that must be handled by the system architecture.  Ideally, the system components fail 

independently and with easy-to-handle failure modes.  Simpler failure modes can be mitigated with fewer 

resources, thus allowing the architecture to remain relatively simple and focused primarily on optimal 

implementation of the system function.  Component failure independence is intended to ensure that the 

failures are scattered spatially and temporally, allowing the architecture to deal with them locally and one 

at a time.  This means that the time between error arrivals is larger than the time to recover from them.  We 

also want to minimize the likelihood of coincident component failures, even if they are relatively simple.  

One concern for time-coincident (i.e., concurrent or simultaneous) component failures is the possibility of 

coupling or correlation of the failure modes such that the components effectively collude to create 

conditions that are much more difficult to mitigate.   

This is the last layer of defense before architecture-level error mitigation.  We would like the error space 

at this point to be characterized by an inverse relation between the likelihood and severity of error 

conditions.  This means that the architecture would most often have to handle relatively simple failure 

modes, while still having the means to protect against uncommon complex error conditions.  Because of 

the importance of achieving this error risk relation, there should also be an inverse relation between the 

degree of uncertainty about the error conditions and their level of severity.  The characteristics of the error 

space achieved at this point in the safety-risk mitigation strategy will be a primary factor in the definition 

of the system fault hypothesis (i.e., fault assumptions), which is the design basis for architecture-level error 

mitigation. 

 



 

 

11 

 

2.6.   Architecture-Level Error Mitigation 

Error mitigation at the architecture level is the third layer of defense in the proposed safety-risk 

mitigation strategy.  Architecture-level mitigation provides resources and mechanisms to achieve an 

acceptable level of risk due to errors originating within the SOI.   

The SOI is required to have a certain level of functional quality for a specified mission duration and 

stated operational conditions.  The principal quality of interest for the systems considered in this report is 

dependability.  As described previously, dependability is the maximum acceptable risk for the SOI function 

and it is specified in terms of the attributes of functional integrity and availability (including reliability and 

recoverability).  The exposure of a particular function during a mission (i.e., the amount of time that there 

is a need and demand for the function) can range from minutes up to full mission duration, depending on 

the kind of function and mission phases.  The operational conditions include the specification of the threats 

that the SOI may face during a mission. 

The architecture of the SOI provides the link between the assumptions (i.e., the stated operational 

conditions) and the required system properties (i.e., the system guarantees).  These assumptions and 

guarantees cover both function and quality aspects of the system, including dependability.  The architecture 

of the SOI specifies the composition of the system in terms of components (i.e., sensing, computation, and 

actuation nodes), their communication interconnections, and the interaction protocols.  Each of these 

architectural elements has its own assumptions and guarantees for function and quality.  The dependability 

of the system is a function of the dependability of the architectural elements.   

2.6.1.   Fault Hypothesis 

The fault hypothesis (or assumption) is the effective threat risk the SOI architecture must mitigate to 

achieve the required functional dependability during a mission.  These are the relevant fault and error 

conditions in the physical, logical, and information layers of the internal components, interconnections, and 

interaction protocols.  These fault and error conditions are the result of the combined effect of the threats 

to the SOI and the mitigation provided by the layers of defense of fault space and error space conditioning.  

Henceforth, the fault hypothesis of the SOI will be referred as the architecture-level threat (AT) 

hypothesis.     

In general, the SOI must contend with two major types of faults and errors: exogenous and endogenous.  

Exogenous faults and errors are not relevant to the dependability of the SOI itself.  In this report, it is 

assumed that the SOI as a whole forms a fault-containment region in the sense that faults external to the 

SOI do not cause secondary faults within the SOI, and faults originating within the SOI do not propagate 

outside its boundary.  In addition, external errors are not considered in the dependability of the SOI.  Only 

faults internal to the SOI and their effects are relevant to the dependability of the SOI.  In effect, in 

determining the dependability of the SOI, it is assumed that the environment has perfect dependability (i.e., 

no failures).  Note that in a context of a larger system containing the SOI, errors at the inputs to the SOI 

may propagate and influence the observed dependability at the outputs of the SOI.  Such a scenario would 

be relevant to the dependability of the containing system. 

The AT hypothesis consists of two major parts: fault containment regions (FCRs) and dependabilities 

of architectural elements (i.e., components, interconnections, and interaction protocols).  The FCRs are 

subsets of architectural elements assumed to experience physical and logical defects with a high degree of 

probabilistic independence from other subsets [26] [27] [28] [29] [30] [31].  This is achieved by minimizing 
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the causal couplings among primary faults and between primary and secondary faults (see preceding section 

on Conditioning the Fault Space).  The dependabilities of architectural elements describe their failure 

frequencies and modes relative to their own faults.  The failure frequencies of architectural elements are 

related to their time-to-failure and time-to-recover characteristics.  The dependabilities of architectural 

elements can be specified in terms of their own functional integrity and availability (including reliability 

and recoverability).   

The AT hypothesis can be stated in probabilistic or deterministic terms.  A probabilistic AT hypothesis 

would include the probability of coincident FCR failures and the functional integrity and availability stated 

in terms of failure occurrence rates (e.g., 10-6 per hour) or probabilities for a given mission duration.  A 

deterministic AT hypothesis describes the scenarios that the system may encounter, such as number of 

sequential or simultaneous internal failures, the failure modes, and failure durations.   

2.6.2.   Means of Architectural Mitigation 

A safety-critical computer-based system has two major aspects: function and safety.  The safety aspect 

complements the function in order to achieve the required level of system dependability.  The system safety 

features are necessary for performing the required system function only because of the risk due to non-

operational and operational faults.  These safety features are introduced for handling error conditions at the 

boundary and within the system, including failures of the safety features themselves.  The system 

architecture defines the error mitigation strategy, including the extent of the safety features and the level of 

integration between the function and safety features.  Taken together, the system can be viewed as a set of 

integrated functional and safety resources and mechanisms with a management policy designed to realize 

the system function with the required dependability. 

As indicated in the general safety-risk mitigation strategy (see Figure 1), system functional dependability 

can be specified in terms of functional integrity and functional availability.  Functional availability can be 

decomposed into functional reliability and functional recoverability.  An architecture-level error mitigation 

strategy achieves system dependability by enforcing constrained system-level failure modes and by 

enabling the system to either remain operational or fail and recover quickly after internal failures.  The 

means of architectural mitigation are error passivation, masking, and recovery.  As shown in Figure 1, 

functional integrity and functional reliability depend on error passivation and masking.  Error passivation 

and recovery are needed for functional recoverability.   

The architecture-level error mitigation capabilities of passivation, masking, and recovery are realized 

by local and global error handling mechanisms.  A fundamental principle of an error mitigation strategy is 

the granularization of failure by defining and enforcing error containment regions (ECRs).  ECRs 

complement FCRs in the physical and logical layers to define independent units of failure.  ECRs can be 

structured hierarchically to provide multiple layers of containment between the points of origin of internal 

failures and SOI outputs.  Local ECR boundary (i.e., interface) enforcement is achieved by leveraging good 

operating resources to detect and correct errors from failed resources thus achieving the desired ECR 

functional dependability.  Local ECR dependability is complemented with error-mitigating global 

interaction protocols that ensure desired system properties in the presence of a bounded number of failed 

participating ECRs.    

2.6.3.   Error Passivation 

As asserted earlier, from a safety perspective, a function has three possible states: operational (i.e., not 
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failed), failed passive (i.e., failure constrained to a loss of function), and failed active (i.e., unconstrained 

malfunction).  This classification is relative to the worst-case guarantee that can be offered at a point time, 

which may not be the same as the actual state of the function.  Therefore, a failed passive function may be 

operational or failed passive, and a failed active function is essentially arbitrary.  In general, unconstrained 

active failures and their associated effects are inherently unsafe and undesirable conditions because the 

consequences are unknown and possibly unbounded, including the possibility of cascade (i.e., uncontained) 

secondary failures that violate failure independence assumptions.   

Error passivation is the ability to constrain and contain active failure effects.  The goal in error 

passivation is to prevent active failure effects from propagating onto a good FCR and corrupting its state, 

effectively rendering it failed and potentially becoming a secondary source of active failure effects.  At a 

conceptual level, error passivation has two basic elements: self-checking and self-protection [32].  These 

are illustrated in Figure 2 and Figure 3, respectively.  In these figures, SRC and RCV denote source and 

receiver, respectively.  In self-checking error passivation, the output of a source-function FCR is checked 

by an independent source-safety FCR before being sent out to a receiver FCR.  In this configuration, the 

source-function FCR and source-safety FCR form an ECR.  In self-protection error passivation, the input 

from a source FCR is checked by an independent receiver-safety FCR before forwarding it to the receiver 

FCR.  Here the receiver-safety FCR and receiver FCR form an ECR.  In the self-checking and self-

protection configurations, the safety FCRs are solely responsible for error passivation.  The effectiveness 

of these configurations is limited by the error coverage of the inline safety checks.  For some applications, 

inline syntactic and semantic error checks may be adequate to achieve the required level of error 

passivation.  However, Meyer and Sundstrom have shown that the probability of fault detection for a 

component can be made equal to unity only if the detector is as complex, in terms of number of states, as 

the component being monitored [33].  Thus, the only way to achieve the extremely high probability of error 

passivation required for critical applications is to use independent redundant copies of FCRs.  This is 

illustrated in Figure 4 and Figure 5, where there are now two source FCRs and the safety check is a 

comparison of delivered services performed at the source ECR or at the receiver ECR, respectively.  The 

optimal error passivation configuration for a particular application may be a combination of source-side 

and receiver-side checks with or without redundancy. 
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Figure 2: Self-Checking (Source-based) Error Passivation Concept 

Figure 3: Self-Protection (Receiver-based) Error Passivation Concept 
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2.6.4.   Error Masking 

Error masking is the ability to preserve the operational state of a function.  The threat assumed here is 

a passive FCR failure, and the goal is to ensure that the delivered function effectively remains in the 

operational state after the failure of the performing FCR.  This is an error handling capability in which 

functional failure effects are contained and corrected without disrupting the delivered service.  Self-

checking and self-protection ECR structures as illustrated in Figure 6 and Figure 7 can be applied to realize 

this capability.  The selection function in the FCR Safety Select block outputs the first valid input (i.e., an 

input that is not detectably incorrect).  Both configurations use independent redundant source FCRs to 

ensure that at least one is operational and the safety FCR can forward the output of an operational source 

FCR without interruption.   
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Figure 4: Self-Checking Error Passivation with Source-side Redundancy Comparison Check 

Figure 5: Self-Protection Error Passivation with Receiver-side Redundancy Comparison Check 
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2.6.5.   Error Recovery 

Error recovery is the ability to restore a function to operational state.  The assumed threat is a passive 

FCR failure.  This capability ensures that service will be restored if required resources are available, but 

uninterrupted service is not guaranteed.  Self-checking and self-protection configurations are possible to 

realize an error recovery capability, as illustrated in Figure 8 and Figure 9.  The source FCR performs the 

function of interest, and the safety FCR is responsible for signaling a failure condition, which triggers a 

recovery action such as restarting the source FCR or enabling an alternate source FCR to re-establish 

operational functional state as illustrated in Figure 10.  The safety FCR can be contained in a source ECR 

or a receiver ECR.   
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Figure 7: Self-Protection (Receiver-based) Error Masking 
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Figure 8: Self-Checking (Source-based) Error Recovery 

Figure 9: Self-Protection (Receiver-based) Error Recovery 
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2.6.6.   Error Mitigation for Single Receiver 

The preceding mitigation capabilities can be combined to achieve the desired degree of error mitigation 

at a receiver for a given failure mode of the source.  This configuration is illustrated in Figure 11, where 

there are up to n sources and the receiver has an error containment interface function (ECXF) to manage 

the inputs.  Table 1 shows the required minimum number of sources n assuming the number of failed 

sources is at most F.  The Table also lists the ECXF function for a given worst-case source failure mode as 

well as the desired effect at the output of the ECXF.  These configuration parameters are determined by 

assuming that the outputs of operational sources agree (i.e., they have either exact or approximate equality).  

The vote interface function can be a majority, mid-value, or mid-point select, depending on the context.  Of 

note is the general approach of using good operational sources to mitigate the effects of failed sources.  

Also, note that the desired effect of this approach is to propagate to the receiver the agreed-upon output of 

operational sources, or to fail in a passive way.  An operational worst-case effect supports both functional 

availability and integrity requirements at the system level, and the passive worst-case effect supports the 

functional integrity requirement. 
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Table 1: Error Mitigation Parameters for Single Receiver 

Worst-Case 

Source 

Failure Mode 

 

Desired 

Worst-Case 

Failure Effect 

Number of 

Sources 

Required 

(n) 

 

Error 

Containment 

Interface 

Function 

Failed Passive Operational F + 1 Select 

Failed Active Failed Passive 2F Vote 

Failed Active Operational 2F + 1 Vote 

 

2.6.7.   Error Mitigation for Multiple Receivers 

Figure 12 illustrates a configuration for redundant sources sending to multiple receivers.  The failure 

modes for the sources now add the dimension of symmetry as perceived by the receivers.  The resulting 

failure modes are listed in Table 2.  Note that these are worst-case failure constraints and that the implication 

concept applies (e.g., active failure constraint implies that the failure can actually be passive, and 

asymmetric failure can actually be symmetric).  The desired worst-case effects now include consideration 

of agreement (i.e., symmetry) among the receivers.  Error mitigation in this configuration is a combination 

of line failure-mode mitigation (i.e., relative to the passive-versus-active failure mode dimension) and 

asymmetry mitigation (i.e., relative to the symmetric-versus-asymmetric failure mode dimension).  The 

error mitigation parameters for various combinations of worst-case source failure mode and desired worst-

case effects at the receivers are listed in Table 3.  These configuration parameters are determined assuming 

that at most F sources are failed and that the outputs of operational sources agree (i.e., they have either 

exact or approximate equality).  Note that, in general, disagreement among the receivers is not desirable.  

An interesting property of these configurations with multiple receivers is that, because of the desired 

symmetric worst-case effects, the line failure-mode mitigation must be targeted to achieve the least severe 

possible state.  The two cases where this property is relevant are indicated with * and ** in Table 3.  For 

Passive Asymmetric failure mode and Passive Symmetric worst-case effect (indicated by *), it is possible 

for one receiver to have only Operational inputs, and therefore, the line failure-mode mitigation must be 

targeted as a worst-case Operational result at all the receivers with a Select ECXF.  The same situation 

exists for Active Asymmetric failure mode and Passive Symmetric worst-case effect (indicated by **), 

where the ECXF is a vote.  Table 4 shows the configuration parameters when the failure modes of the 

sources are a combination of passive and active failures.  In this table, FPS, FPA, FAS, and FAA denote the 

maximum number of passive symmetric, passive asymmetric, active symmetric, and active asymmetric 

failed sources, respectively.  A failure-mode model with two or more failure-mode types is called a hybrid 

model.  Note that passive failures can be mitigated with a simple selection function and that active failure 

are mitigated with a vote (or comparison) function.  When there is a combination of passive and active 

failure modes, the mitigation function is a hybrid vote in which detected passive-failure inputs are excluded 

from (i.e., not selected as input to) the vote. 
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Table 2: Source Functional Failure Modes for Multiple Receiver Configuration 

 Symmetry Failure Mode 

Failed Symmetric (Sm) Failed Asymmetric (Am) 

Worst-Case Line 

Failure Mode 

Failed Passive (P) Failed Passive Symmetric (PSm) Failed Passive Asymmetric (PAm) 

Failed Active (A) Failed Active Symmetric (ASm) Failed Active Asymmetric (AAm) 

 

Table 3: Error Mitigation Parameters for Multiple Receivers and a Single Worst-Case Failure Mode for the Sources 

Worst-Case Source 

Failure Mode 

Desired Worst-Case 

Failure Effect 

Number of 

Sources, n 

Error Containment 

Interface Function 

Passive Symmetric Operational Symmetric F + 1 Select 

Passive Asymmetric Passive Symmetric* F + 1 Select 

Passive Asymmetric Operational Symmetric F + 1 Select 

Active Symmetric Passive Symmetric 2F Vote 

Active Symmetric Operational Symmetric 2F + 1 Vote 

Active Asymmetric Passive Symmetric** 2F + 1 Vote 

Active Asymmetric Operational Symmetric 2F + 1 Vote 

 

Table 4: Error Mitigation Parameters for Multiple Receivers and Multiple Failure Modes of the Sources 

Passive Failures 

(FPS, FPA) 

Active Failures 

(FAS, FAA) 

Desired Worst-Case 

Failure Effect 

Minimum 

Number of 

Sources, n 

Error 

Containment 

Interface 

Function 

Passive Symmetric, 

Passive Asymmetric 

None Operational Symmetric FPS + FPA + 1 Select 

None Active Symmetric, 

Active Asymmetric 

Operational Symmetric 2(FAS + FAA) + 1 Vote 

Passive Symmetric, 

Passive Asymmetric 

Active Symmetric, 

Active Asymmetric 

Operational Symmetric 2(FAS + FAA) + 

(FPS + FPA) + 1 

Hybrid Vote 
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Figure 12: Error Mitigation Configuration for Multiple Receivers 



 

 

19 

 

2.6.8.   Error Mitigation for Single Source and Multiple Receivers 

Figure 13 illustrates a configuration with one source and m multiple receivers.  We consider two possible 

failure scenarios.  In the first scenario, only the source is failed.  In the second scenario, the source and one 

of the receivers are failed.  The receivers must execute a data exchange protocol to mitigate source and 

receiver failures.  The exchange protocol must guarantee that all the non-failed receivers agree on the result 

and that if the source is not faulty, the result of the exchange is equal to the data from the source.  In this 

configuration, the number of receivers is assumed to be larger than or equal to 2 (i.e., m  2) 

 

 

 

 

 

 

 

 

 

 

 

Table 5 lists the required configurations for a single-source failure scenario with various worst-case 

failure modes and desired worst-case results at the receivers.  A single receiver-exchange protocol is used 

here in which the receivers relay to each other the data they received from the source.  Notice that the 

exchange protocol can ensure agreement (i.e., symmetry) in the result, but it cannot mitigate the worst-case 

line failure mode because there are no alternate sources of data.  Also, note that an exchange protocol does 

not mitigate the worst-case result for passive symmetric and active symmetric source failures.  The failure 

categories in the table are based on worst-case failure constraints, and the actual source failures and results 

may be less severe than listed in the table.  For example, a passive asymmetric source failure would be 

mitigated to an operational symmetric result if the source were operational rather than failed.  Finally, note 

that the hybrid vote, as introduced in Table 4, in effect encompasses both select and vote functions and its 

application returns the same results as in Table 5.  From this point on in this report, only the hybrid vote 

function will be used. 

 

SRC 

FCR 

 

RCV 

RCV ECR/FCR 1 

ECXF 

RCV 

RCV ECR/FCR 2 

ECXF RCV 

RCV ECR/FCR m 

ECXF 

Figure 13: Error Mitigation Configuration for Single Source and Multiple Receivers 
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Table 5: Single-Source, Multiple-Receivers Configuration Parameters for Source-Only Failure Scenario 

Worst-Case Source 

Failure Mode 

Desired Worst-Case 

Result 

Minimum 

Number of 

Receivers, m 

Error Containment 

Interface Function 

Passive Symmetric Passive Symmetric 2 Select 

Passive Asymmetric Passive Symmetric 2 Select 

Active Symmetric Active Symmetric 2 Select 

Active Asymmetric Active Symmetric 3 Vote 

 

The second failure scenario involves one failed source and at most one failed receiver.  To simplify the 

description, we only consider the case of m = 4 receivers, one of which may be failed.  The exchange 

protocol must guarantee agreement on the result among the non-failed receivers, and the result must equal 

the data sent by the source if it is not failed.  The following protocol is used. 

Exchange Protocol: 

1. The source node sends its data to all the receivers.  If a receiver perceives the source as failed 

passive, it tags the received data as ERROR1. 

Notes: 

 The source is referred as the step-1 source.  This source has no additional participation in the 

protocol. 

 There are four step-1 receivers.   

 For steps 2, 3, and 4 the goal is to reach agreement on the data received by each step-1 receiver. 

2. Each step-1 receiver (now called a step-2 source) relays to the other receivers (now called step-2 

receivers) the data it received directly from the step-1 source.  If a step-2 receiver perceives a step-

1 source as failed passive, it tags the received data as ERROR2. 

Notes: 

 Each of the four receivers has data from three step-2 sources. 

3. For each step-2 source, each step-2 receiver (now called a step-3 source) relays to the other two 

step-2 receivers (now called step-3 receivers) the data received from the step-2 source. 

Notes: 

 For each step-2 source, each step-2 receiver has a set of three data items: the data received 

directly from the step-2 source and the data relayed by each of the other two step-2 receivers. 

4. For each step-2 source, all the step-2 receivers perform a hybrid vote on the data they have received.  

A vote result of ERROR2 or no-majority means that the step-2 source was failed, and in either case 

the result is labelled ERROR2. 
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Note: 

 At the end of this step, each step-1 receiver has four data items from the step-1 source: the data 

received directly from the source, and the three hybrid-vote results on the data relayed by the 

other step-1 receivers.  

5. Each receiver performs a hybrid vote on the data from the step-1 source.  ERROR2 data is excluded 

from the hybrid vote.  The vote result is the protocol result.  A vote result of ERROR1 or no-majority 

means that the step-1 source was failed. 

The protocol data flow is illustrated in Figure 14, which shows the data flow from the source followed 

by the data flow from receiver RCV1.  Note that the section of the data flow beginning with RCV1 is the 

same as in the first scenario described above.  Table 6 shows the protocol mitigation results for various 

combinations of source and single receiver failure modes.  The protocol guarantees a symmetric result, but 

it cannot mitigate the line failure mode of the source (i.e., if the source is operational, passive, or active, the 

worst-case result is operational, passive, or active, respectively). 

 

 

 

 

 

 

 

Table 6: Mitigation Results for Single Source, Multiple Receivers Configuration with Combinations of One Source Failure and 

One Receiver Failure 

Worst-Case Source 

Failure Mode 

Worst-Case Receiver 

Failure Mode 

Worst-Case Result 

Operational Symmetric Passive Asymmetric Operational Symmetric 

Active Asymmetric Operational Symmetric 

Passive Symmetric Passive Asymmetric Passive Symmetric 

Active Asymmetric Passive Symmetric 

Active Symmetric Passive Asymmetric Active Symmetric 

Active Asymmetric Active Symmetric 

Passive Asymmetric Passive Symmetric Passive Symmetric 

Active Symmetric Passive Symmetric 

Passive Asymmetric Passive Symmetric 

Active Asymmetric Passive Symmetric 

Active Asymmetric Passive Symmetric Active Symmetric 

Active Symmetric Active Symmetric 

Passive Asymmetric Active Symmetric 

Active Asymmetric Active Symmetric 
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Figure 14: Partial Data Flow of Exchange Protocol for Single Failed Source and Single Failed Receiver 
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To gain insight into the properties of the protocol, we consider the properties of the relay function and 

of the exchange protocol with a hybrid vote.  Table 7 shows the effective line failure mode of a relay.  

Notice that the relay function outputs ERROR when the input data is perceived as failed passive.  Also, 

notice that the line failure mode of the source flows through the relay only when the relay is in the 

operational function state.  Of course, the effective symmetry state of the relay is determined exclusively 

by the functional failure mode of the relay itself.   

 

Table 7: Effective Failure Mode for Data Relay 

 

 

 

Source State Relay State RCVi Data 

Operational Operational Operational 

Passive Passive 

Active Active 

Passive Operational ERROR 

Passive Passive 

Active Active 

Active Operational Active 

Passive Passive 

Active Active 

 

 

 

 

 

 

 

 

Figure 15 illustrates the two-stage exchange-protocol data flow for the single-source, multiple-receivers 

configuration.  We are interested in the symmetry properties of the exchange protocol.  We consider cases 

in which at most one node is failed, which can be the source or a relay.  Table 8 breaks down all the cases.  

In order to achieve agreement, Stage 2 must satisfy at least one of the two following properties:  

 The operational relays agree on the data they send out; 

 All the relays are symmetric. 

The first property guarantees that all the receivers in Stage 2 have the same input majority.  The second 

property guarantees that all the receivers in Stage 2 have the same set of inputs.  A symmetric source 

SRC 

 

  Relay 

 

  RCVi 

 

Stage 1 Stage 2 

  RCV1 

 

  RCV2 

 

  RCV3 

 

  RCV2 

 

  RCV3 

 

  RCV4 

 

  RCV4 

 
Source Relay Hybrid Vote 

Figure 15: Data Flow for Exchange Protocol of Single-Source, Multiple-Receivers Configuration 
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guarantees the first property.  A worst-case failed symmetric relay guarantees the second property.  This 

exchange protocol fails to achieve a symmetric result only when the source and a failed relay are 

simultaneously asymmetric.  To overcome this possibility, the previous configuration shown in Figure 14 

has m = 4 receivers and the receivers take turns relaying the data received from the source using the 

exchange protocol described here.  This guarantees a symmetric result for each of these source-relaying 

actions and the same input set to the final vote that decides the result. 

 
Table 8: Symmetry Characteristics of Exchange Protocol for Single-Source, Multiple-Receivers Configuration with Single-Node-

Failure Hypothesis 

Source 

Symmetry 

Mode 

Relay 

Symmetry 

Mode 

Data at 

Operational 

Symmetric 

Relays  

Applicable Stage 

Property 

Data at Operational 

Voting Receivers 

Worst-

Case 

Symmetry 

Result 

Symmetric All 

Symmetric 

Agreement/ 

Symmetric 

Propagation of 

Agreement/Symmetry; 

Propagation by 

Symmetrics 

Majority Agreement;  

Input Agreement 

Symmetric 

At most one 

Asymmetric 

Agreement/ 

Symmetric 

Propagation of 

Agreement/Symmetry 

Majority Agreement Symmetric 

Asymmetric All 

Symmetric 

Disgreement/ 

Asymmetric 

Propagation by 

Symmetrics 

Input Agreement Symmetric 

At most one 

Asymmetric 

Disagreement/ 

Asymmetric 

None Disagreement Asymmetric 

 

The following section is an overview of the problem of managing groups of redundant nodes. 

 

2.7.   Management of Redundant Groups 

A function may be realized as a redundant group of nodes in order to achieve a required level of 

dependability.  As shown in the previous section, the mitigation of source errors in line and symmetry 

failure modes requires source redundancy, failure independence, and agreement among operational sources.  

Additionally, a function implemented on a data processing system has a set of modes and transitions that 

must be managed consistently for the members of a redundant group. 

Figure 16 illustrates a redundant group of interest (RGOI) that interacts with an input group (IG) and an 

output group (OG).  Mitigation for input and output interactions have been discussed in the preceding 

sections.  The number of nodes in the RGOI depends on the failure modes and dependability requirements 

of the group.   
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2.7.1.   Local Structure and Modes 

A node is essentially a state machine with input, output, and state data and a data processing function.  

The general structure is illustrated in Figure 17.  Figure 18 illustrates a generic mode transition graph for a 

local processing node.  There are four major modes: Off, Operation, Failed Passive, and Failed Active.  

The Operation major mode consists of three minor modes: Idle, Recovery, and Operation.  When there is 

a demand for the node, it transitions to the Operation major mode, where it idles until the requirements for 

successful recovery are satisfied.  The node transitions to Operation minor mode when the required 

conditions are satisfied.  The node transitions back to Recovery mode if the requirements for Operation 

minor mode are violated, and then back to Idle if the Recovery requirements are violated.  There are four 

types of failure: Recoverable Passive, Unrecoverable Passive, Recoverable Active, and Unrecoverable 

Active.  Unrecoverable failures are permanent and require external manual maintenance action to repair the 

node.  Recoverable failure can be automatically repaired, for example, by an internal reset action. 
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Figure 16: Conceptual View of Redundant Group of Interest Interacting with Input and Output Groups 
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Figure 17: Internal Structure of a Processing Node 
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RRS Recovery Requirements Satisfied RPF Recoverable Passive Failure 

RRV Recovery Requirements Violated UPF Unrecoverable Passive Failure 

ORS Operation Requirements Satisfied RAF Recoverable Active Failure 

ORV Operation Requirements Violated UAF Unrecoverable Active Failure 

  IFR Internal Failure Recovery 

 

2.7.2.   Group Structure and Modes 

A redundant group consists of a set of nodes and a communication network.  The general structure is 

illustrated in Figure 19.  The nodes operate as a consistent group by executing failure mitigating agreement 

protocols on one or more of the input, state, and output data sets.  The decision of which data sets to execute 

an agreement protocol upon considers the dependability of the input data, the group dependability 

requirement, and the architecture-level threat (AT) hypothesis for the group.  In concept, the mode graph 

for the group is the same as for the nodes (see Figure 18).  The difference is only in the definition of the 

modes and transitions as, for example, a group failure occurs when there are certain combinations of failed 

nodes in the system.  In general, a redundant group is failed when good nodes are in disagreement on some 

or all of their internal data sets (i.e., input, state, and output).   

 

 

 

 

  Recovery 

Recoverable 

Passive 

 

Recoverable 

Active 

 

Operation Failed Passive 

      Off 

 

Failed Active 

      Idle 

RRS RRV 

Unrecoverable 

Passive 

 

Unrecoverable 

Active 

 

RPF 

IFR 

RAF 

IFR 

UPF UAF 

  Operation 

 

ORS ORV 

Figure 18: Local Mode Graph 
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2.7.3.   Dynamic Group Membership 

The group management strategy may introduce a dynamic membership capability if the number of nodes 

in a group is large and the mission duration is long.  In this case, the probability of experiencing many node 

failures, including high severity failures (e.g., failed active asymmetric), is a significant factor in the 

dependability of the group.  Insightful presentations of dynamic group membership can be found in the 

work by Walter et al. [34], Torres-Pomales et al. [35], and Kopetz [9].  In general, the dynamic membership 

capability uses local and collective error detection and diagnosis to ascertain the trustworthiness of each 

node and of the group as a whole.  A trusted node is allowed to actively participate with other nodes in the 

group function.  Every node keeps a dynamic list of the nodes it trusts and whose data it uses in local 

processing.  The entries on this membership list are based on local and collective decision about the 

trustworthiness of nodes.  Figure 20 shows a simple two-state concept for the membership status graph.  A 

node is Isolated if it is not trusted, and it is Integrated if it is trusted.  The diagnosis policy is normally 

biased to ensure that a trustworthy node is not distrusted, because that could lead to the logical exhaustion 

of nodes even if physically good nodes are available.  A clique is set of mutually trusting nodes.  Ideally, a 

group has at most one operating clique that includes all the good nodes.   

Dynamic membership has several weaknesses that could threaten the dependability of a group.  All of 

these weaknesses listed here are due to imperfect coverage in error detection and diagnosis.  First, it is 

impossible to guarantee accurate diagnosis of asymmetric node failures [36].  This means that a clique may 

fail due to accumulation of failed nodes.  Second, if a group develops multiple cliques, the group may not 

be able to merge back the cliques and it would thus fail as a group because of inconsistency in the outputs.  

A multiple-clique condition may be self-sustaining because of mutual distrust among the cliques.  The 

fundamental problem with multiple-clique conditions is that unexpected behavior of a source node observed 

at a receiver can have multiple causes, including source node faults and unexpected internal state at the 

source node.  Because it may not be possible for receivers to distinguish between these causes by monitoring 

received data flows, observing receivers may not be able to distinguish between a faulty node and a good 

node with incorrect state.  Either way, the source node is not trustworthy to join normal operation with the 

observing receiver.  Third, an isolated node attempting to recover and join a clique may not be able to 

develop a membership list consistent with that of nodes in the clique.  This could result in an inconsistent 

internal state in the recovering node that is not detected by the clique, thus leading to the node being judged 

trustworthy and allowed into the clique.  The key issue here is that a node with inconsistent state can be as 

much a threat to a clique as a failed node, and trusting nodes with inconsistent state can cause the failure of 

the clique.  The potential benefits and weaknesses of dynamic membership must be carefully considered to 

ensure that the overall risk level is acceptable and the dependability of the group is not compromised.  

Node 1 Node i Node N                              

Interconnection Network 

Figure 19: General Structure of a Redundant Group 
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2.7.4.   Synchrony 

A redundant group that performs real-time functions and agreement protocols requires bounded delay 

uncertainty in data processing and communication, as well as bounded uncertainty in the relative timing of 

events at different nodes of the group (i.e., bounded relative timing skew).  The bound on relative timing 

uncertainty in effect defines equality in the time dimension for redundant data flows in the group.  Hence, 

correctness in a real-time redundant group is determined by accuracy (i.e., bound on absolute timing 

uncertainty) and precision (i.e., bound on relative timing uncertainty) requirements that must be guaranteed 

by the group.  Because of the interdependencies among the nodes, these group-level timing requirements 

translate to node and network timing accuracy and precision requirements.   

Actions in a group are triggered by events originating from sources internal or external to the group.  

The timing of these events may be time-independent or time-referenced.  Events can be distributed to all 

the group nodes with a certain level of accuracy and precision.  Time-independent sourced events can be 

the result of internal processing condition (e.g., error exceptions) or they can be derived from external 

events (e.g., the arrival of input data).  Time-referenced (i.e., time-triggered) events can be derived from 

logical-time clocks that keep track of the passage of real time as indicated by clock oscillators [37].  

Synchronized periodic clocks are re-synchronized periodically using event agreement protocols to ensure 

a certain logical time precision which is normally much smaller than the period.  Unsynchronized periodic 

clocks are allowed to run independently without an agreement protocol, and their precision is approximately 

equal to their period.    

Event timing synchrony and value agreement are critical aspects of a real-time redundant group and 

serve as a basis for inline and cross-lane error detection in input, state, and output data flows.   

 

2.8.   Safety-Risk Mitigation Limitations 

The effectiveness and confidence in the proposed general safety-risk mitigation strategy is limited by 

uncertainties in the accuracy of models of the threats and the system implementation, and by uncertainties 

in the correctness of analyses of models (i.e., differences between models and reality).  These uncertainties 

may be due to simplifying abstractions in the models to enable analysis tractability, or due to lack of 

knowledge about the threats, the system, or the environment.  The degree of uncertainty is related to the 

complexity of the threats, the system, and the environment.  Though in principle the system properties are 

based on assume-guarantee relations, in reality for highly complex systems it may not be possible to ensure 

that these properties and relations are valid for all possible, or even all assumed, conditions experienced by 

the system.  The coverages (i.e., probability of being true) of the fault hypothesis and the error mitigation 

Integrated 
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  Isolated 

 

Distrusted 

Figure 20: Clique-Relative Membership Status of a Node 
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mechanisms may be less than perfect.  This coverage uncertainty is a critical factor in the design of safety-

critical systems because dependability is determined by these coverages.  Coverage uncertainties can be 

mitigated by a defense-in-depth strategy that adds robustness to the fault hypothesis and the error mitigation 

capabilities.  The resulting system may be dependable but sub-optimal (i.e., over-designed) relative to the 

amount of resources and overall complexity.  Without more precise information to reduce uncertainties 

(i.e., increase confidence) about the properties of the system and the operating conditions, the only other 

option to ensure dependability is to make the system properties more robust to uncertainties (i.e., less 

sensitive, more tolerant).   

 

2.9.   Robust Resilience 

Siewiorek et al. [38] define robustness as the ability of a system to identify and handle errors (at the 

functional inputs or internal to the system) of varying severity in a consistent and predictable manner.  

Kopetz in [9] states that a system is robust if the severity of the consequences of a fault is inversely 

proportional to the probability of fault occurrence (i.e., frequent faults have less severe effects on service 

quality than infrequent faults).  Bishop et al. [39] considers a system to be robust if it resists a wide range 

of attacks (i.e., faults) and adverse operational conditions without significant service degradation, but may 

not have the ability to restore lost functionality (i.e., service quality).  The main aspect of interest regarding 

system robustness is the assessment of service quality over a wide range of operational conditions 

(including number and severity of internal faults).  Under these conditions, a service is robust if it satisfies 

Kopetz’s criterion for robustness (i.e., severity of effects is inversely proportional to the frequency of the 

fault).  In general, robustness does not imply ability to recover the service, but recovery may be essential 

for safety-critical real-time systems in order to satisfy Kopetz’s criterion. 

A resilient system may experience degraded operation due to faults, but will eventually recover.  In [40], 

Laprie defines resilience as “the persistence of service delivery that can justifiably be trusted, when facing 

changes.”  Trivedi et al. [41] states that “resilience deals with conditions that are outside the design 

envelope” and, in general, refers to the ability of a system to resist and recover from shock or strain.  In 

[42], Leveson states that resilience is often defined as “the ability to continue operations or recover stable 

state after a major mishap or event”.  Bishop et al. [39] states that “a resilient system is effectively a 

survivable system that is capable of restoring not only its performance level back to desirable levels, but 

also the capacity of the system itself to recover, maintaining its ability to sustain future attacks or failures.”  

From our perspective, resilience describes the ability of a system to mitigate the effects of component-level 

service degradations.  A system is resilient to faults if its service quality is hard to degrade and quality is 

restored after the fault condition has subsided.  For safety-critical real-time systems, availability (in terms 

of reliability and recoverability) and integrity are the most significant measures of service quality.  

Therefore, for safety-critical real-time systems, we define resilience as the ability to preserve and restore 

service availability and integrity under stated conditions. 

Robust resilience is a defense-in-depth concept to mitigate the risk (i.e., causes and effects) of faults in 

a system.  The fault hypothesis divides the fault space into normal and rare fault subsets based on assumed 

FCR failure rates [9].  The normal fault subset may also be referred as expected or credible, and the rare 

fault subset may be referred as unexpected or non-credible.  A primary system design goal is to achieve 

fault-handling coverage as close as possible to 100% for normal faults.  To mitigate the risk of a fault 

assumption violation, the system fault-handling design should also cover a significant percentage of the 

most likely fault scenarios in the rare-fault region.  According to Kopetz [26], in a properly designed system, 
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a likely scenario for a fault-hypothesis violation is a transient correlated failure of multiple FCRs.  For such 

scenarios, a robust safety-critical real-time system should recover to an operational state with high 

probability. 

A system should be designed to meet the functional and service quality requirements while handling the 

fault space defined by the fault hypothesis.  The operational fault-handling effectiveness of a system 

depends on two basic factors: the fault-assumption coverage (i.e., the probability that actually occurring 

faults are within the assumed fault space) and the fault-handling coverage (i.e., the probability that 

assumed faults are properly handled by the system) [13] [43].  System development is an iterative risk 

optimization process involving refinements to the fault hypothesis and the fault handling strategy and 

mechanisms.  Usually, the fault modes and fault rates of non-redundant, primitive system components are 

fixed as determined by the implementation technology.  The component fault rate is a determining factor 

in the amount of redundancy needed to satisfy the system service availability requirement, and the fault 

modes (i.e., failure semantics) influence the amount and organization of redundancy to satisfy the integrity 

requirement [44] [45] [27] [43].  In general, to satisfy particular availability and integrity requirements, 

higher fault rates necessitate increased redundancy, while less constrained fault modes demand increased 

redundancy and more complex organization.  However, using redundancy in hardware, software, time 

and/or information domains [46], it is possible to define higher-level structural components with less severe 

(i.e., safer) failure modes and failure rate profiles [47].  This approach increases the complexity of these 

higher-level components in exchange for easier-to-handle component failure modes and failure rates, which 

enables a simpler high-level system design.  Examples of this include Honeywell’s SAFEbus with self-

checking-pair components [48], Airbus’ Command-Monitor (COM-MON) computers [49] [19] [21], and 

the Boeing 777 primary flight computers with triple internal redundancy in a command-monitor-standby 

configuration [50] [51] [52] [53].  The design of the Boeing 777 flight computers shows that it is possible 

to constrain the failure-mode rates of high-level components while preserving availability. 

 

2.10.   Other Sources in the Literature 

There any many other sources of knowledge and insight into safety-risk mitigation and fault tolerance.  

Heimerdinger and Weinstock have proposed a conceptual framework for system fault tolerance covering 

requirements, fault tolerance concepts, and mechanisms [54].  Butler has written an excellent primer on 

architecture-level fault tolerance [55].  Hussey and Atchison have published an overview of architecture-

level design principles for safety-critical systems [56].  Johnson has presented a review of fault management 

techniques for safety-critical avionics systems [57].  Hammett published a very insightful paper into fault-

tolerance avionics requirements and common architectures based on component failure modes [58].  Hasson 

and Crotty described Boeing’s safety assessments processes for commercial airplanes [59], and Yeh has 

authored a number of papers on the flight control computers for the Boeing 777 transport aircraft [51] [50] 

[52] [53].  Bleeg presents a very interesting list and description of avionics architecture considerations for 

commercial transport aircraft [60].  Rushby has published a survey and taxonomy of critical system 

properties from different system design perspectives and traditions, including dependability, safety 

engineering, security, and real-time operation [61].  Hatton considers the problem and trade-off in designing 

one good software version versus multiple redundant versions (i.e., reduction of error likelihood versus 

reduction of error consequences) [62].  It is not clear within the safety-critical avionics community, 

including certification authorities, that relying entirely on software development assurance for a single 

software version will adequately mitigate software safety risks [63] [2].  NASA has published an extensive 

software safety guidebook [64].  The problem of how to objectively justify and ensure failure independence 
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among redundant functions, systems, and components remains open, especially for safety-critical systems, 

despite the extensive research and guidance material on the subject [65] [66] [67] [68] [69] [70].  Suri, 

Walter, and Hugue have published a compendium of select papers on ultra-dependable systems, including 

several papers on classical designs for ultra-dependable systems [71].  Hall and Driscoll have published an 

insightful overview of considerations for safety-critical distributed systems [72].  This is but a sample of 

the numerous treatises concerning fault tolerance and safety risk mitigation. 
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3.   Final Remarks 

This report is intended to be part of a design guide for safety-critical computer-based systems.  It 

describes a general strategy to mitigate the risks of threats and achieve the desired level of dependability in 

safety-critical computer-based systems.  The limitations of the strategy were discussed and options to 

overcome these limitations were presented.  The next document in this series will collect all the 

contributions generated to date on various aspects of the system design problem.   
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