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GLOBAL OPTIMIZATION OF N-MANEUVER, HIGH-THRUST 
TRAJECTORIES USING DIRECT MULTIPLE SHOOTING 

Matthew A. Vavrina*, Jacob A. Englander†, and Donald H. Ellison‡  

The performance of impulsive, gravity-assist trajectories often improves with the 

inclusion of one or more maneuvers between flybys. However, grid-based scans 

over the entire design space can become computationally intractable for even one 

deep-space maneuver, and few global search routines are capable of an arbitrary 

number of maneuvers. To address this difficulty a trajectory transcription allow-

ing for any number of maneuvers is developed within a multi-objective, global 

optimization framework for constrained, multiple gravity-assist trajectories. The 

formulation exploits a robust shooting scheme and analytic derivatives for com-

putational efficiency. The approach is applied to several complex, interplanetary 

problems, achieving notable performance without a user-supplied initial guess. 

INTRODUCTION 

Deep-space maneuvers (DSM), or interior impulsive maneuvers, frequently improve performance of 

chemical propulsion based missions, reducing propellant cost or time of flight (TOF).1,2,3,4  Moreover, the 

performance can sometimes be improved further with more than one DSM.5,6 Mid-course maneuvers are 

particularly useful in reducing the ΔV cost, or even enabling a mission to close, for tightly constrained trans-

fers such as those with a strict planetary entry requirement or a restrictive TOF.  Additionally, non-traditional 

objective functions may dictate multiple DSMs on a single transfer leg.  Identifying the optimal maneuvers 

is not trivial, however, as the design space is frequently sensitive to small changes in optimization parameters.  

While the benefits of multiple gravity assists are well documented,7 designing a globally-optimal solution 

with gravity assists is difficult as the design space can grow significantly and sensitivities become more acute 

with each additional flyby and maneuver.  Incorporating trajectory constraints to accommodate mission re-

quirements on thermal, communication, and terminal conditions into the problem further complicates the 

optimization process, but ensures that solutions that are identified are indeed viable for a mission.  In turn, 

generating an initial guess that is sufficiently close to the optimal solution frequently requires hard-earned 

expertise with the problem at hand. 

A variety of approaches have been devised to address particular aspects of the outlined challenges.  

Lawden’s foundational development of the primer vector in 1963 allows for the optimization of multiple 

mid-course maneuvers.1  In the late 1960’s, Lion and Handelsman8 as well as Jezewski and Rozendaal9 built 

upon Lawden’s work, using primer vector theory to determine optimal transfers with interior impulses from 

a given sub-optimal trajectory.  These ideas have been effectively translated to multiple gravity-assist trajec-

tories with tools such as MIDAS by Sauer10 and a multi-DSM, gravity-assist technique by Olympio.11 Direct 
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optimization schemes using multiple-shooting formulations have also been successfully developed and 

widely applied in software such as CATO and MALTO.12,13,14 

To identify trajectory parameters for an initial guess within an optimization framework a broad scan for 

ballistic trajectories using a grid-based search tool is often the first step in the design of multiple gravity-

assist trajectories. While a traditional pork-chop plot or grid-based scan (e.g., STOUR15) indicates ideal bal-

listic transfer opportunities for use as an initial guess, a DSM can strongly alter mission performance.  Ac-

cordingly, Patel and Longuski developed a grid-based approach with the ability to automatically include a 

single impulsive maneuver at a strategic location of the trajectory.16  Lantukh and Russell also developed an 

approach for the automated design of transfers with leveraging maneuvers.17  These strategies are highly 

advantageous for certain maneuver types (e.g., v∞-leveraging or a broken-plane maneuver), but an arbitrary 

number of DSMs of any variety does not appear to be computationally tractable for large date bounds or 

many-phase missions.  A solution from the grid-search is then typically used as an initial guess within a 

medium-fidelity patched conics optimization tool or ported directly to a high-fidelity optimizer.  Following 

this design procedure, the refinement step is constrained to the local neighborhood of the initial guess. 

Alternatively, global optimization strategies have received much recent attention, but identifying an ar-

bitrary number of globally optimal maneuvers is challenging given the sensitivity to the number of maneu-

vers, the maneuver times, magnitude, and direction. Metaheuristic-based routines (e.g., evolutionary algo-

rithms, monotonic basin hopping, and simulated annealing) have been of particular interest for global trajec-

tory optimization because a user-defined initial guess is frequently not required to start the optimization pro-

cess.  Gage et al. developed one of the first stochastic global search techniques for trajectory optimization 

without a DSM using a genetic algorithm.18  Researchers followed with an array of different strategies to 

globally optimize the multiple gravity assist one deep-space maneuver (MGADSM) problem.19,20,21,22  A di-

rect formulation that is frequently incorporated in several global optimization techniques is using an opti-

mizer to vary the initial maneuver vector and epoch as well as the final rendezvous epoch, and then solving 

the resulting Lambert problem from the DSM date to rendezvous epoch.19  This approach guarantees a fea-

sible solution for an unconstrained problem and is the original MGADSM transcription in the Evolutionary 

Mission Trajectory Generator (EMTG) software frequently employed by NASA for preliminary design of 

chemical and electrical propulsion based missions.23,24 

In this work a multiple-shooting trajectory transcription is developed, allowing for any number of impul-

sive maneuvers on a single leg or phase for multiple gravity assist trajectories (the MGAnDSM problem).  

The trajectory formulation is a direct method in which the optimal control problem is parameterized in a 

shooting framework with similarities to the Sims-Flanagan transcription25 frequently used for low-thrust tra-

jectory optimization and the Byrnes-Bright transcription12 in CATO.  The nonlinear programming (NLP) 

problem resulting from the formulation is solved using a global-local hybrid algorithm in which a gradient-

based local optimizer, sequential quadratic programming (SQP) in this work, is combined with a global op-

timization routine, namely monotonic basin hopping (MBH).  The hybrid formulation does not require an 

initial guess as the MBH routine stochastically explores the design space, selecting trajectory parameters for 

refinement in the inner loop.  Additionally, the approach is amenable to wide-ranging mission constraints, 

and analytic derivatives are provided for a substantial portion of the Jacobian, vastly improving efficiency.  

The approach is applied to example problems, the Cassini26 and OSIRIS-REx27 interplanetary trajectories, 

searching globally for single-objective optimal solutions.  Performance is then compared to a Lambert-based 

transcription. 

While single-objective, globally-optimal solutions are valuable in and of themselves, rarely is there only 

one objective that is the sole interest of a mission.  Ideally, a mission designer would be able to consider 

multiple objectives, and then select from among the set of globally optimal solutions with a full understanding 

of the tradeoffs between the objectives.  Two common objectives for most interplanetary missions are the 

minimization of flight time and the maximization of delivered mass to a target.  Recent work on solving 

multi-objective hybrid optimal control problems (MOHOCP) with discrete and continuous variables for low-

thrust trajectories28,29,30,31 is extended to the MGAnDSM transcription developed in this work.  The non-

dominated sorting genetic algorithm II (NSGA-II)32 is used as a wrapper around the MBH+NLP loop to 

simultaneously solve for multiple objectives in a single run.  The NSGA-II outer loop is capable of globally 

searching over different gravity assist bodies using the null gene technique developed by Englander.33  The 
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resulting MOHOCP technique is applied to a large MGAnDSM problem for an Earth to Jupiter mission with 

up to five variable gravity assist bodies and up to two DSMs between bodies, generating a representation of 

the Pareto front of optimal solutions. 

MISSION MODELING 

The mission model for solving the MGAnDSM problem follows from the base EMTG architecture de-

scribed in Reference 24.  The structure enables an optimizer to search over a variable number of flyby bodies 

and different destinations in one run.  The distinguishing difference is the incorporation of the MGAnDSM 

two-point shooting transcription formulated in this section. 

EMTG Mission Architecture 

Missions in EMTG are structured using three levels of event types.  As depicted in Figure 1, at the top of 

the structure is the mission level composed of all event types throughout the mission.  These event types 

include departures, arrivals, DSMs, and flybys.  One or more journeys comprise a mission, and define the 

trajectory in terms of the set of events at the required target bodies of the mission, namely the starting, ending, 

and any required intermediate bodies.  A journey’s boundaries are locations in which the spacecraft will 

execute user-defined specific events, and can be constrained in a number of ways.  Within a journey are one 

or more phases, which are similar to journeys in that they start and end at bodies.  However, phases may start 

and end at bodies other than the required targets defined at the journey level.  In particular, phases are utilized 

to incorporate flyby bodies that are used strictly to modify the trajectory with the goal of improving mission 

performance versus an encounter that is required to meet mission objectives.  As an example, the OSIRIS-

Rex mission to return a sample of the asteroid Bennu would be composed of two journeys: an outbound Earth 

to Bennu journey and a return Bennu to Earth journey.  However, the outbound journey incorporates an Earth 

flyby to decrease total ΔV, and two phases comprise that journey.  This mission structuring enables an opti-

mizer to vary the number of phases as well as the flyby bodies within a journey.  This three-level architecture 

is used in all of the transcriptions within EMTG. 

 

Figure 1. EMTG mission Structure 

MGAnDSMs Trajectory Transcription 

The direct method developed in this work employs a multiple shooting transcription within a patched-

conic modeling framework.  The current implementation is focused on rapid, medium fidelity trajectory gen-

eration, but patched conics are not required should a higher-fidelity application be desired.  A match point is 

incorporated in each trajectory phase (between each body) with forward/backward shooting to enable reduced 

sensitivity to initial guess errors.  This strategy avoids unmitigated error growth that can occur from small 

initial errors in a forward-only shooting scheme.  Additionally, in this way, trajectories are preconditioned 

with the intermediate (flybys) and terminal body encounters imposed on the underlying trajectory structure 



 4 

regardless of the quality of the initial guess.  Encounter states can be parameterized to ensure flybys meet 

specific conditions provided user-defined design variable bounds.   

This trajectory phase option is referred to as MGAnDSMs in EMTG parlance for multiple gravity assists 

(MGA) with n DSMs per phase, using a shooting technique, s.  A diagram of the trajectory transcription is 

illustrated in Figure 2, where MP designates the match point.  The diagram outlines the trajectory structure 

for a single phase in a mission.  The endpoints represent the beginning and end of the phase in mission time 

(left to right in figure).  End points are typically planetary bodies or another spacecraft, but can also be an 

arbitrary state specified by the user.  Impulsive maneuvers, or DSMs, are represented by arrows, and instan-

taneously change the spacecraft’s velocity.  The maneuvers are separated in time by a Δt optimization varia-

ble.  Note that maneuvers at the phase end points are also possible.  Alternatively, the phase endpoint may 

be a gravity-assist body.  The number of maneuvers per phase may be specified by the user or an outer-loop 

optimizer.  If fewer than n maneuvers are optimal for the transfer the formulation is structured so that one or 

more of the potential maneuvers will have a magnitude of zero. 

 

Figure 2. MGAnDSMs transcription for n = 4, depicting the two-point shooting scheme to match 

point for a trajectory phase. 

The trajectory is propagated forward in time, nominally using a Kepler propagation between each ma-

neuver point, from the phase start point until the match-point DSM is reached.  At each maneuver point the 

three components comprising the impulsive maneuver instantaneously change the spacecraft velocity.  Sim-

ilarly, the trajectory is propagated backwards in time from the phase end point to the match point time, stop-

ping at each maneuver along the way to modify the spacecraft velocity.  The match point maneuver is defined 

by the number of maneuvers in the phase, where the match point maneuver will be at the n/2 maneuver if the 

number of maneuvers is even or at the middle maneuver if the number of maneuvers is odd.  The match point 

maneuver always resides on the forward propagation side of the match point, and varies in time according to 

the Δt variables of the phase.  In general, a discontinuity in position, velocity, mass, and time will exist at the 

match point from the forward and backward shooting.   

Ensuring that the position, velocity, mass are continuous (within a tolerance) at the match point are the 

critical nonlinear constraints of the formulation.  That is, the optimizer must eliminate the match point errors 

to achieve a feasible trajectory.  Time continuity is enforced via a linear constraint that the sum of the Δt 

variables equals the phase time of flight. Analytic derivatives are provided for all continuity constraints and 

are critical to the transcription’s robustness. 

The core optimization variables comprising this phase transcription are outline in Table 1. These optimi-

zation variables comprise the phase decision variable vector p that is later used to describe the partial deriv-

atives for the Jacobian. Other important match point state parameters that are not optimization variables, but 
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are instead a function of the optimization parameters are detailed in Table 2.  Mass is included in the propa-

gation to allow for mass constraints outside of the match points or when mass is involved in the objective 

function.  It is particularly useful to consider mass when missions begin with a launch vehicle and the objec-

tive is to maximize the delivered mass at a destination versus minimizing total ΔV.  In these circumstances 

total ΔV is not an accurate representation of mass as the launch vehicle Isp is typically different from the 

spacecraft Isp.   

 

 

Table 1. MGAnDSMs Core Phase Optimization Variables 

Variable Description 

Δtphase phase time of flight 

Δt1 time between phase start point and first maneuver 

Δt2, … Δtn relative time between maneuvers, where n is the total number of maneuvers in the phase 

Δtn+1 time between last maneuver of phase and phase end point 

Δv1, Δv2, …, Δvn velocity change vectors for maneuvers one through n 

vinitial initial velocity vector relative to the central body at the phase start node  

vfinal final velocity vector relative to the central body at the phase end node. 

 

 

Table 2: MGAnDSMs Match Point State Parameters 

State Parameter Description 

rx
-, ry

-, rz
- Cartesian position state at forward propagation side of the match point 

rx
+, ry

+, rz
+ Cartesian position state at backward propagation side of the match point 

vx
-, vy

-, vz
- Cartesian velocity state at forward propagation side of the match point 

vx
+, vy

+, vz
+ Cartesian velocity state at backward propagation side of the match point 

m- mass state at forward propagation side of the match point 

m+ mass state at backward propagation side the of match point 

 

 

 

The match point continuity constraints are summarized in vector form as : 

𝐜𝑚𝑝 = [𝑟𝑥
+ − 𝑟𝑥

−,  𝑟𝑦
+ − 𝑟𝑦

−,  𝑟𝑧
+ − 𝑟𝑧

−,  𝑣𝑥
+ − 𝑣𝑥

−,  𝑣𝑦
+ − 𝑣𝑦

−,  𝑣𝑧
+ − 𝑣𝑧

−,  𝑚+ − 𝑚−]
𝑇

= 𝛆𝑇 ,  (1) 

where ε is a vector of near-zero tolerances. These constraints ensure a feasible trajectory with no state dis-

continuities across the match point.  Another key phase constraint for the transcription maintains that the 

summation of the time between the maneuvers in addition to the time from phase start to the first maneuver 

and the time from the last maneuver to the phase end point does not exceed the phase time of flight: 

  

∑ ∆𝑡𝑛 = 𝑡𝑝ℎ𝑎𝑠𝑒 ,

𝑛+1

𝑛=1

 
(2) 

In implementation the Δt variables are normalized by tphase such that the sum is equal to one.  User-defined 

distance constraints to any body are also available, and are enforced at the maneuver or solely at the match 

point if there are not any maneuvers.  Alternative time transcriptions are possible within the same multiple 

shooting trajectory structure.  As an example, absolute DSM epochs could be used as design parameters with 

additional constraints ensuring that events occur in logical order. 

The phase start and end points are located at control nodes, and dictate the phase starting and ending 

position, velocity, mass states, and epoch.  These start and end states are dependent on the departure and 

arrival type.  Departure types include launches within a specified launch vehicle performance envelope and 
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direct insertions that allow for an initial departure maneuver as well as post-flyby states following a gravity 

assist at a body.  The forward propagation state of the phase begins after all departure activities.  Arrival 

types include analogs such as an impulsive arrival maneuver and the start of planetary flyby.  Similarly, the 

backward propagation state and the phase end point “begins” prior to the arrival activities.  

If a phase begins with a launch, a polynomial curve fit is employed to determine the initial spacecraft 

mass, m0, as a function of the C3: 

 ))(1( 3

2

3

3

3

4

3

5

30 LVLVLVLVLVLVLV fCeCdCcCbCam     (3) 

where C3 is equal to the square of the magnitude of the outgoing excess velocity vector (a function of the 

initial central body velocity), σLV is a user-specified launch vehicle margin, and aLV through fLV are the poly-

nomial coefficients derived from launch vehicle performance curve published in the literature or supplied to 

the mission from the launch vehicle provider.  The optimizer selects the initial control node velocity along 

this curve within any user-defined bounds on the right ascension, declination of the launch asymptote and 

C3. 

The full mission formulation is depicted in Figure 3, illustrating the multiple shooting strategy from body-

based control nodes to the phase match points.  Multiple trajectory phases between flybys are constructed for 

MGA problems with n maneuvers allowed for each phase.  Flybys are modeled using the zero sphere-of-

influence approach34 in which the spacecraft position is matched to the flyby body at a control node, and the 

body imparts an instantaneous change in the spacecraft’s central-body velocity (e.g., heliocentric velocity).  

In the construct of the transcription, the optimizer selects the initial and final velocity vectors of a phase 

(vinitial and vfinal as noted previously), which, given the flyby body velocity, define the incoming and outgoing 

hyperbolic excess velocities relative to flyby body at a node connecting two phases: v∞-in and v∞-out, respec-

tively.  Assuming the flyby is unpowered (i.e., no Oberth maneuver), the magnitude of these velocities must 

be equal for a physically realizable hyperbolic transfer.  The first flyby constraint is then  

 outin   vv .  
(4) 

A second constraint at the flyby, ensures the spacecraft stays above a user-specified minimum flyby altitude, 

hmin: 

 01
)2sin(

1
min_2

_













hr
v

bodyflyby

bodyflyby




,  (5) 

where δ is the flyby turn angle as illustrated in Figure 4, and µflyby_body and rflyby_body are the gravitational pa-

rameter and radius of the flyby body, respectively.   The flyby angle is defined as 

  

𝛿 = arccos (
𝐯∞−𝑖𝑛 ∙ 𝐯∞−𝑜𝑢𝑡

|𝐯∞−𝑖𝑛||𝐯∞−𝑜𝑢𝑡|
). 

.  

(6) 
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Figure 3: MGAnDSMs full-mission transcription 

 

Figure 4: Flyby geometry 

The MGAnDSMs transcription is integrated into the EMTG code base and enables the design of a wide 

variety of mission scenarios with any number of DSMs, multiple gravity assists (with or without powered 

flybys), and a range of mission-specific constraints directly prescribed in the optimization formulation.  Con-

trol nodes are formulated in the same way as the Sims-Flanagan low-thrust phase transcription in EMTG.  
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This common configuration allows for mixed mission types in EMTG in which a mission can be composed 

of both chemical propulsion and electric propulsion journeys.  Mission constraints such as entry interface 

azimuth, latitude, and longitude can be constrained for a planetary entry mission (e.g., sample return).  Ad-

ditionally, the solar phase angle can be constrained at arrival, which is frequently important for small body 

rendezvouses. A number of other constraints are outlined in Reference 35. 

Derivatives 

Accurate partial derivatives comprising the Jacobian are important to MGAnDSMs robustness and effi-

ciency.  As the match-point derivatives can be highly nonlinear, analytic partial derivatives enable the opti-

mizer to converge with a less accurate initial guess and fewer iterations than with numerical derivatives via 

finite differencing.  Furthermore, analytic derivatives save many computations required to compute the de-

rivatives as compared with finite differencing, which is particularly beneficial for larger problems (i.e., many 

flyby bodies and many maneuvers).  This efficiency gain is important not only for transcription efficacy in 

terms of solution of the NLP problem, but is critical to the automated global optimization outer loop. 

It is the experience of the authors that, somewhat surprisingly, multiple-DSM, gravity-assist trajectories 

can be noticeably more sensitive to the quality of the initial guess than the low-thrust analog in a Sims-

Flanagan transcription.  It is postulated that the reason for this heightened sensitivity is the large change that 

a single maneuver can impart on the transfer topography.  Contrastingly, a low-thrust transfer incurs rela-

tively small perturbations from typical design variable changes after an iteration of a gradient-based optimizer 

because of the limitations of the low-thrust engine.  This sensitivity can make identifying global optimums 

more difficult for high-thrust MGAnDSM trajectories than low-thrust MGA trajectories despite fewer design 

variables (in direct formulations) because a better initial guess is often required.  This observation further 

supports the need for accurate derivatives.  

A key benefit over transcriptions that apply Lambert-based targeting is that derivatives for MGAnDSMs 

are more readily derivable.  Moreover, the derivatives are similar in form to those that exist for the low-

thrust, gravity-assist transcription already existing in EMTG.  The match point derivatives make up the ma-

jority of the non-zero Jacobian entries, and the process of calculating the critical match point derivatives for 

the Sims-Flanagan low-thrust transcription was detailed in Reference 36.  Similar procedures for calculating 

MGAnDSMs derivatives can be followed, where for the match point constraint vector, cmp, the requisite 

partial derivatives for the Jacobian with respect to the decision variables are  

  

𝜕𝐜𝑚𝑝

𝜕𝒑
=

𝜕𝐒𝑚𝑝
+

𝜕𝒑
−

𝜕𝐒𝑚𝑝
−

𝜕𝒑
 

.  

(7) 

The state vector 𝐒𝑚𝑝
−  is simply, 

 𝐒𝑚𝑝
− = [

𝐫−

𝐯−

𝑚−
],  (8) 

where r-, v-, and m- represent the position state, velocity state, and mass, respectively, on the forward propa-

gation side of the match point.  The match point state at the backwards propagation side follows in an analog 

form.  The two terms on the right-hand side of Equation 7 can be expanded using the chain rule to expose 

the needed partial derivatives, and is written in a general form as: 

𝜕𝐒𝑘

𝜕𝑝𝑖

=
𝜕𝐒𝑘

𝜕𝑟𝑥,𝑘−1

𝜕𝑟𝑥,𝑘−1

𝜕𝑝𝑖

+
𝜕𝐒𝑘

𝜕𝑟𝑦,𝑘−1

𝜕𝑟𝑦,𝑘−1

𝜕𝑝𝑖

+
𝜕𝐒𝑘

𝜕𝑟𝑧,𝑘−1

𝜕𝑟𝑧,𝑘−1

𝜕𝑝𝑖

+ 

                                 
𝜕𝐒𝑘

𝜕𝑣𝑥,𝑘−1

𝜕𝑣𝑥,𝑘−1

𝜕𝑝𝑖

+
𝜕𝐒𝑘

𝜕𝑣𝑦,𝑘−1

𝜕𝑣𝑦,𝑘−1

𝜕𝑝𝑖

+
𝜕𝐒𝑘

𝜕𝑣𝑧,𝑘−1

𝜕𝑣𝑧,𝑘−1

𝜕𝑝𝑖

+
𝜕𝐒𝑘

𝜕𝑡

𝜕𝑡

𝜕𝑝𝑖

, 

 

(9) 
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where the subscript i indicates the ith entry in the phase decision vector and k refers to the kth segment in the 

phase.  To calculate the terms of Equation 8 that will then form a substantial portion of the Jacobian, an 

augmented two-body state transition matrix (STM) can be chained from the control node to the match point 

across maneuver transitions, assuming Kepler propagation.  The augmented STM for takes the form: 

  

𝚽(𝑡, 𝑡0) =

[
 
 
 
 
 
 

𝜕𝐫

𝜕𝐫0

𝜕𝐫

𝜕𝐯0

𝜕𝐫

𝜕𝑚0

𝜕𝐯

𝜕𝐫0

𝜕𝐯

𝜕𝐯0

𝜕𝐯

𝜕𝑚0

𝜕𝑚𝑘

𝜕𝐫0

𝜕𝑚𝑘

𝜕𝐯0

𝜕𝑚𝑘

𝜕𝑚0]
 
 
 
 
 
 

=

[
 
 
 
 
 

𝜕𝐫

𝜕𝐫0

𝜕𝐫

𝜕𝐯0

𝟎3×1

𝜕𝐯

𝜕𝐫0

𝜕𝐯

𝜕𝐯0

𝟎3×1

𝟎1×3 𝟎1×3 1 ]
 
 
 
 
 

  

  

(10) 

representing the state sensitivities at time t with respect to variations in the state at an earlier time t0.  The 

upper-left quadrant entries comprise the standard two-body STM.37  Provided a two-body propagation, the F 

and G Lagrange coefficients required for the STM are calculated along with the Kepler propagation.  How-

ever, the augmented STM does not consider the state transition across the impulsive maneuvers.  To address 

this deficiency, a maneuver transition matrix (MTM), is constructed to represent the sensitivities across ma-

neuver k: 

  

𝐌𝑘 =

[
 
 
 
 
 
 
𝜕𝐫𝑘+

𝜕𝐫𝑘−

𝜕𝐫𝑘+

𝜕𝐯𝑘−

𝜕𝐫𝑘+

𝜕𝑚𝑘−

𝜕𝐯𝑘+

𝜕𝐫𝑘−

𝜕𝐯𝑘+

𝜕𝐯𝑘−

𝜕𝐯𝑘+

𝜕𝑚𝑘−

𝜕𝑚𝑘+

𝜕𝐫𝑘−

𝜕𝑚𝑘+

𝜕𝐯𝑘−

𝜕𝑚𝑘+

𝜕𝑚𝑘−]
 
 
 
 
 
 

=  

[
 
 
 
𝕀3×3 𝟎3×3 𝟎3×1

𝟎3×3 𝕀3×3 𝟎3×1

𝟎1×3 𝟎1×3

𝜕𝑚𝑘+

𝜕𝑚𝑘−]
 
 
 

. 

  

(11) 

The augmented STM and MTM can then be chained together from the phase segment of interest, k, to the 

match point to generate the match point derivatives in which either a control node or maneuver define the 

end points of a segment.  The resulting partial derivatives from the appropriate STM chain are used to aid 

the population of the right-hand side of Equation 8 for the segment of interest.  Other partial derivatives of 

constraints (e.g., flyby altitude and v∞ constraints) are outlined in Reference 38. 

OPTIMIZATION FORMULATIONS 

Both single-objective and multi-objective optimization strategies are applied to the MGAnDSMs tran-

scription.  The approach enables the generation of single global optimum in the case of a single objective, or 

a set of equally optimal solutions should multiple objectives be considered without the need for an initial 

guess.  The automated routines are described in the following section. 

Global Single-Objective Optimization 

The NLP problem resulting from the MGAnDSMs transcription for a single objective can be stated as 

 

ublb

A

f

xxx

x

xc

x







                      

   0                      

0)(     :subject to

)(     :minimize

  (12) 

where f(x)is the objective function, c(x) is a vector of the nonlinear inequality constraints, A is a matrix of 

linear constraints, and xlb and xub are vectors defining the lower and upper bounds on the vector of problem 

decision variables x.   
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To exploit the availability of analytic derivatives, a gradient-based sequential quadratic programming 

(SQP) solver, namely SNOPT39, is applied to optimize the stated NLP problem.  While the local trajectory 

optimization problem solved with SNOPT is notably robust, it does require an initial guess and is only capa-

ble of local optimization.  One approach to automating the trajectory design process is to apply a stochastic-

based wrapper to guide a global search of the NLP design space, a global-local hybrid scheme.40,23 

In this work a monotonic basin hopping 

algorithm is combined with SNOPT to pro-

vide a global search of the design space fol-

lowing from Reference 24. MBH is designed 

to solve global search problems in a multi-

modal design space. It operates as a Monte-

Carlo-like optimization scheme, taking sto-

chastic “hops” in the design space from a base 

design. The algorithm is adept at identifying 

the global optimum in design spaces in which 

the local optima are often clustered together, 

exploiting the search area near any local opti-

mum that is identified. The exploration com-

ponent of the algorithm is enhanced by ran-

domly resetting the base design from which to 

hop. Importantly, MBH does not require an 

initial guess and can be started from a random 

initial point design. The utility of the algo-

rithm for interplanetary trajectory design has 

been demonstrated in several recent stud-

ies.23,24,35 The MBH+NLP algorithm is sum-

marized in Algorithm 1.23  

Several objective functions are available 

for the user to select.  The traditional minimization of ΔV can be used as well as the maximization of final 

mass.  Maximizing the final mass while applying a launch vehicle model has the advantage of trading launch 

vehicle performance (i.e., mass versus C3) from the departure planet versus DSMs using the spacecraft’s 

propulsion system.  Ultimately, the delivered mass to the destination is of critical importance to a mission.  

A straight maximization of delivered mass can be sensitive numerically because the derivatives of the rocket 

equation are not well behaved to the problem decision variables.  Reference 31 notes that the derivatives of 

an objective function that takes the log10 of the final mass are much better behaved.  Additionally, minimi-

zation of time of flight, launch date, and arrival date are possible objectives in EMTG, as well as maximiza-

tion of launch date and arrival date. 

Global Multi-objective Optimization 

The multi-objective optimization problem can be stated as follows: 

 

ublb

A

xxx

x

xc

xf







                      

   0                      

0)(     :subject to

)(     :minimize

  (13) 

where f(x) is a vector of objectives 

 T
21 ])()()([)( xxxxf

objnfff  , (14) 

x is a vector of design variables (with xlb and xub lower and upper bounds), and nobj is the scalar number of 

objectives. The objective space is nobj-dimensional, and the objective functions are often coupled (i.e., con-

taining the same design variables) and competing (i.e., the optimal solution in one objective is not the same 

optimal solution in the other objectives).  

Algorithm 1 Monotonic Basin Hopping with NLP 

    generate random point  

    run NLP solver to find point * using initial guess 

     

    if is feasible then 

          save * to archive 

    while not hit stop criterion do 

           generate randomly perturbing  

           for each TOF variable ti in x’ do 

               if rand(0,1) < ρtime-hop then 

                   shift ti forward or backward 1 synodic period 

           run NLP solver to find point * from  

           if * is a feasible and  then 

                 

                 save * to archive 

          else if is infeasible and then 

                 

    return best in archive 
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Given multiple objectives the aim of the optimization process is the generation of the Pareto front of 

solutions. The Pareto front41 represents the set of equally-optimal tradeoff solutions, in which no improve-

ment can be attained in one objective without degrading another objective.  As such, the goal of multi-objec-

tive optimization is to identify as many Pareto-optimal solutions such that a representation of the Pareto front 

is generated.  This hyper-surface of dimension nobj then enables a tradeoff decision between the optimal 

designs with an understanding of objective function sensitivities. 

The multi-objective concept of domination permits the comparison of a set of designs with multiple ob-

jectives, yielding a measure of the relative quality of the design. When comparing two multi-objective de-

signs, the design x1 dominates design x2 if: 

 

objpp

objpp

npffp

and

npffp

,...,2,1          )()(:

,...,2,1          )()(:

21

21





xx

xx

 (15) 

The designs are non-dominant to each other if neither design dominates the other. In a comparison of designs 

in a set, the best designs are those that are not dominated by any other designs, forming the non-dominated 

subset.  In this way, any Pareto-optimal design is a member of the non-dominated subset associated with the 

entire feasible objective space and is located along the Pareto front. 

The approach to multi-objective optimization of MGAnDSM trajectories in this development follows the 

recent work in multi-objective optimization of MGADSM trajectories using a Lambert-based transcription 

in Reference 31.  However, that previous work limited transfers to a single DSM per phase, whereas multiple 

DSMs are enabled in the current implementation.  As in the previous work, a multi-objective hybrid optimal 

control problem algorithm is structured with the modified NSGA-II as an outer-loop optimizer and the 

MBH+NLP algorithm as an inner-loop trajectory optimizer.  With application of the NSGA-II, the outer loop 

provides global search capability with the capacity to optimize discrete parameters.  It generates a represen-

tation of the Pareto front for any number of mission objectives including minimization of flight time, ΔV, 

and arrival v∞ as well as the maximization of arrival mass, or any available inner-loop objective function. In 

turn, the complementary, inner-loop component provides robust, automated trajectory optimization capabil-

ity, solving the resulting nonlinear programming problem using MBH+NLP.  

Within this nested loop structure, the outer-loop employs a “cap and optimize” strategy. The outer loop 

chooses the design variables such as destination bodies, flyby bodies, launch vehicle, and bounds on the 

launch epoch, flight time, and final body arrival C3 to define a tractable inner-loop subproblem.  Launch 

epoch is transcribed as a menu of candidate launch dates plus a launch window size. The method for time of 

flight is similar, in which the user specifies a list of flight times and the optimizer chooses one and sets it as 

the upper-bound for the inner-loop problem. 

Flyby sequence selection is unique in that the outer-loop optimizer may vary the number of flybys.  This 

variation creates non-uniform “chromosome” lengths in the NSGA-II.  To accommodate this non-uniformity, 

the null-gene technique is applied to select the number and identity of flyby bodies.  In this strategy, a list of 

possible flyby bodies and a maximum number of flybys for each journey is provided by the user.  For each 

potential flyby, the outer-loop chooses from a list of the possible bodies and also a number of null options 

equal to the number of acceptable bodies.  In this way, the outer loop is as likely to select “no flyby” for each 

opportunity as it is a flyby in the creation of the first generation of the NSGA-II population.  The null gene 

approach has shown to be efficacious in the selection of the flyby sequence in a number of interplanetary 

problems.33  
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With the objectives selected and a menu of 

discrete design variables designated for the mis-

sion design problem at hand, the outer loop de-

fines a trajectory optimization problem to be 

solved by the inner loop. The NSGA-II selects 

the optimal discrete parameters, bounding the tra-

jectory problem, while the inner loop executes a 

global search according to the specified trajec-

tory parameters for an optimal solution. Trajec-

tory constraints are then efficiently handled by 

the MBH+NLP-based inner loop and the multi-

objective problem of the outer loop is effectively 

unconstrained. If no feasible trajectory is identi-

fied within the inner loop, the design is penalized 

in the NSGA-II such that it will be dominated by 

feasible solutions.   If two infeasible solutions are 

compared to each other, the less feasible design 

is considered to be dominated.  Once the popula-

tion of trajectories is solved in the inner loop, the 

individuals are sorted according to their objective 

function values using the NSGA-II non-domi-

nated sorting routine, and a single relative fitness 

metric is assigned based on the individual’s non-

dominated front value and crowding distance 

(i.e., proximity to neighboring designs in solution 

space).  A new parent population of top-perform-

ing solutions is then created with the NSGA-II 

tournament selection genetic operator. Next, the 

parent population is combined to generate an off-

spring population via the NSGA-II uniform 

crossover genetic operator. The offspring popu-

lation of trajectories undergoes mutation with 

relatively small alterations of an individual’s de-

sign variables, before the trajectories are optimized in the MBH+NLP loop. The process is then repeated until 

a maximum number of generations or a time limit is reached as illustrated in the algorithm flowchart of 

Figure 5.  For further details on the multi-objective hybrid optimal control algorithm the reader is referred to 

Reference 29. 

EXAMPLE APPLICATIONS 

The MGAnDSMs phase transcription is applied to three interplanetary mission design problems to eval-

uate different performance aspects.  In the first two examples, single-objective performance of the new 

EMTG transcription is compared to a Lambert-based transcription that allows a single DSM.  The final ex-

ample illustrates application to a multi-objective MGAnDSM problem. 

Application to OSIRIS-REx  

In this first example, multiple DSM options for early return options for the OSIRIS-REx mission are 

evaluated.  These results are compared to scenarios with a single DSM using a Lambert-based targeting 

transcription, MGADSMk (see Reference 31 for a detailed description of MGADSMk).  The OSIRIS-Rex 

trajectory problem is a compelling example because it involves an Earth gravity assist on the outbound jour-

ney, a rendezvous and subsequent stay at the asteroid Bennu, and then return to Earth with atmospheric entry 

interface requirements. 

Figure 5: Multi-objective optimization algorithm 

flowchart 



 13 

The project is interested in returning as early 

as possible while understanding the sensitivity of 

mission performance to the stay time at Bennu 

and the allowable bounds of the entry interface 

velocity azimuth.  With the Earth arrival dates 

constrained to be at least 10 months earlier than 

the nominal 2023 arrival, a variety of scenarios 

are evaluated.  The minimum stay time at Bennu 

was varied between 300 and 500 days in 100 day 

increments and the entry-interface azimuth is 

constrained between 46 and 66 degrees in one 

scenario, and 0 and 180 degrees, enforcing a pro-

grade return, in a second scenario.  In the latter 

scenario, the Bennu arrival date is constrained to 

be no later than October 15, 2018 to accommo-

date operational considerations.  Pertinent pa-

rameters are outlined in Table 3. 

A comparison of total mission ΔV using the 

two different transcriptions is highlighted in Table 4.  In every case MGAnDSMs is able to identify a lower 

ΔV cost than MGADSMk as long as at least one maneuver is allowed.  In the case of an Earth entry interface 

azimuth between 46 and 66 degrees and a 500 day minimum stay, the new transcription is able to reduce the 

ΔV cost by over 200 m/s.  MGADSMk was allowed to run for 8 hours, but was not able to identify the more 

optimal DSM locations and event dates.  This difference is attributable to the improved efficiency and ro-

bustness of the MGAnDSMs formulation within the global optimization framework.  A single DSM provides 

a substantial reduction in ΔV versus no DSMs, but more than one DSM is not beneficial as indicated in Table 

4.  MGAnDSMs run time to achieve the assumed global minimum ranges from 8 seconds to 9 minutes on a 

2.6 GHz Intel Core i7-496 processor.  No initial guesses are provided to the optimizer.   

Example trajectories for a 500 day minimum stay at Bennu with an Earth return azimuth between 46 and 

66 degrees are shown in Figure 6.  The body encounter dates are similar, but the placement and magnitude 

of the DSMs are significantly different, driving the large disparity in optimal ΔV.  Each of the four phases 

includes a DSM, contributing to the 300 m/s savings versus a mission without DSMs.  The DSM prior to the 

Earth flyby is particularly important as it facilitates a more optimal flyby geometry. 

 

Table 4, OSIRIS-REx MGADSMk and MGAnDSMs comparison 

 

 

MGAnDSMs

max. DSMs: 0

MGAnDSMs

max. DSMs: 1

MGAnDSMs

max. DSMs: 2

MGAnDSMs

max. DSMs: 3

MGADSMk

(1 DSM)

300 1.492 1.330 1.331 1.331 1.352

400 1.537 1.338 1.338 1.338 1.352

500 2.026 1.711 1.712 1.711 1.923

300 1.779 1.620 1.620 1.620 1.638

400 1.779 1.622 1.622 1.622 1.638

500 2.019 1.746 1.746 1.746 1.773

Scenario

Minimum 

Stay Time 

(days)

46° < Azimuth < 66°,

Bennu Arrival Free

0° < Azimuth < 180°,

Bennu Arrival < 10/15/18

ΔV (km/s)

Table 3. Trajectory assumptions, bounds, and con-

straints for OSIRIS-REx 

Description  Value 

Launch date open September 11, 2016 

Launch window 30 days 

Launch declination  [-28.5, 28.5] deg 

Max. launch C3 29.27 km2/s2 

Max. launch mass 1995 kg 

Wait time at Bennu <300, <400, or  <500  days 

Entry interface (EI) altitude 6503.14 km 

Max. speed relative to atmos-

phere at EI 
12.4 km/s 

Entry interface altitude 6503.14 km 

Entry interface latitude 37.0 

Entry interface azimuth bounds [46, 66] or [0, 180] deg. 

Earth arrival date < Dec. 1, 2022 
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Figure 6: Example OSIRIS-REx trajectories for a min. 500 day stay at Bennu with an Earth return 

azimuth between 46 and 66 degrees: MGAnDSMs solution (left), MGADSMk solution (right) 

 

Application to Cassini  

The MGAnDSMs transcription is also 

evaluated for a Cassini mission test problem.  

This problem is challenging as the nominal in-

terplanetary trajectory includes four gravity 

assists on the way to Saturn (Venus, Venus, 

Earth, Jupiter), and a single deep space ma-

neuver is allowed in each phase.  Problem pa-

rameters are outlined in Table 5, and an inser-

tion maneuver into a highly eccentric orbit, as-

suming a burn at periapsis, is included in the 

ΔV total and final mass computation. 

The time to identify the globally optimal 

solution using one DSM across ten independ-

ent runs is listed in Table 5.  The comparison 

runs are conducted with a 2.6 GHz Intel Core 

i7-496 processor.  The mean time to global 

optimum is 16 minutes and the median time to 

optimum is 8 minutes.  The known global op-

timum is identified in all ten cases using 

MGAnDSMs.  Independent runs using MGADSMk are also executed, and while all of the runs identify a 

solution within 50 m/s of the globally optimal solution ΔV of 1.004 km/s after launch (launch C3 of 18.07 

km2/s2), none of the runs identify the solution within an eight hour run time.  The mean computation time for 

MGADSMk to identify the best solution is an order of magnitude higher than MGAnDSMs.  The globally 

optimal solution is depicted in Figure 7, illustrating a DSM at the apoapsis of the transfer trajectory preceding 

the second Venus flyby.  Notably, the minimum ΔV and the maximum final mass solution are not the same.  

The ΔV associated with maximum final mass objective is 1.049 km/s with a final mass of 3221 kg, while the 

minimum ΔV solution has a final mass of 3129 kg.  Note that the minimum ΔV objective is applied for the 

MGADSMk runs for improved efficiency in that transcription. 

Description  Value 

Launch date open January 1, 1997 

Launch window 365 days 

Launch declination  [-28.5, 28.5] deg 

Max. launch C3 18.06 km2/s2 

Launch vehicle curve Atlas V, 551 

Saturn arrival date unbounded 

Saturn insertion orbit semi-major 

axis 
5,447,500 km 

Saturn insertion orbit eccen-

tricity 
0.98 

Objective function 

Max: log10(final mass) 

for MGAnDSMs 

Min: ΔV  

for MGADSMk 

 

Table 5: Cassini example problem parameters and 

bounds 
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Figure 7: Optimal Cassini mission interplanetary trajectory 

 

Table 6. Cassini Mission ΔV Comparison, MGADSMk versus MGAnDSMs 

 

 

Multi-objective Optimization of a Mission to Jupiter 

The final example demonstrates the MGAnDSMs multi-objective optimization capability to search over 

different flyby bodies and generate a representation of the Pareto front of globally optimal solutions.  A 

mission to Jupiter is examined with up to two DSMs per phase and three different objectives: maximize 

log10(final mass), minimize time of flight, and minimize Jupiter arrival v∞.  Early 2020 launch dates and flight 

times ranging from two to nine years are considered.  Additionally, up to five gravity assists are available in 

the outer loop menu.  The null gene approach is utilized to allow for a variable number of flybys using any 

Run 

Number

MGAn DSMs

Time to Identify 

Global Optimum 

(minutes)

MGADSMk             

Time to Identify 

Best Solution   

(minutes)

MGADSMk

Time Identify Solution 

within 50 m/s of 

Global Optimum 

(minutes)

MGADSMk 

Best ΔV 

(km/s)

1 5.3 223.8 220.3 1.025

2 7.9 140.9 32.9 1.043

3 8.8 260.8 149.3 1.026

4 12.8 74.3 74.3 1.014

5 63.1 178.1 122.0 1.020

6 4.3 295.4 112.0 1.034

7 5.0 471.3 465.7 1.039

8 6.3 382.9 328.5 1.049

9 9.4 80.6 58.4 1.033

10 38.4 63.6 63.6 1.038

Mean 16.1 217.2 162.7 1.032

Median 8.4 200.9 117.0 1.033



 16 

combination of Venus, Earth, and Mars.  These outer-loop menu choices are listed in Table 7. Many param-

eters and assumptions are common to all inner-loop problems, and are outlined in Table 9.  Also note that all 

trajectories start from an Atlas V-551 launch, and the inner-loop objective is to maximize final mass.  Upon 

Jupiter arrival the spacecraft is inserted into a highly eccentric orbit using a periapsis burn, and the deduction 

of the propellant for the insertion burn is reflected in the final mass. In the outer loop, an NSGA-II population 

of 256 is used with a 15% mutation rate to encourage population diversity as listed in Table 8. 

 

 

 

The outer loop is stopped after 100 generations, which takes 3.5 days on a 2.6 GHz 64-core AMD Op-

teron.  The optimization is completely automated after initial problem definition with no human oversight, 

and no user-supplied initial guesses.  A representation of the globally-optimal Pareto front is shown in Figure 

8.  The Pareto front is three dimensional as there are three objectives.  Labeled on the delivered mass versus 

time of flight projection plot are mission sequence tags representing a sampling of the wide variety of se-

quences in the non-dominated set.  Mission sequences along the best non-dominated front include a mixture 

of classic and non-classic Jupiter flyby sequences: EJ, EEJ, EEEJ, EVEJ, EVEEJ, EVEEEJ, EVVEJ, 

EVVVEJ, EVMVEJ, EMJ, EMMJ, EMMMJ, EMMMMJ, EVMJ, EVMMJ, EVVMJ, EVEMJ, EMEJ, 

EEMJ, EMEEJ, EEMMJ, and EEEMMJ.  The best performing trajectory in terms of maximum arrival mass 

is depicted in Figure 9.  The trajectory is a classic VEEGA transfer (EVEEJ), delivering 3192 kg into the 

eccentric Jupiter orbit after a 7.9 year TOF.  At the other end of the Pareto front is the shortest flight time 

solution, a direct Earth-to-Jupiter (EJ) transfer with a flight time of two years and a delivered mass of 642 

kg.  This solution is plotted in Figure 10, and has two DSMs on the out-bound journey.  The first maneuver, 

7 days after launch, offsets the launch vehicle, allowing for a lower launch C3 and higher launch mass while 

leveraging the spacecraft Isp (no consideration of spacecraft propellant tank limits are included in the exam-

ple).  The second maneuver is a broken plane maneuver to enable an efficient 180 degree transfer.  Notably, 

scenarios with multiple Mars flybys preceding the final Jupiter phase achieve low arrival v∞. 

Design Variable Value  Resolution 

Launch window open epoch {1/1/2021, 1/1/2022, 1/1/2023, 1/1/2024} 1 year 

Flyby body {Venus, Earth, Mars, null, null, null} n/a 

Flight time [730, 3467.5] days 182.5 days 

 

Description  Value 

Launch window 365.24 days 

Launch declination  [-28.5, 28.5] deg 

Launch vehicle curve Atlas V, 551 

Chemical Isp 320 s 

Jupiter arrival date 
Determined by 

 optimizer 

Jupiter insertion orbit semi-major 

axis 

10,054,900 km (140.6 

RJ 

Jupiter insertion orbit eccentricity 0.911 

Maximum number of DSMs 2 

Inner-loop objective function Max: log10(final mass) 

Inner-loop run time 40 minutes 

 

Table 9. Common Trajectory Assumptions for       

Jupiter Example 

Parameter Value 

Population size 256 

Mutation probability 15% 

Objective functions 
 log10(final mass), TOF,  

arrival v∞ 

 

Table 8. Outer loop optimization               

parameters for Jupiter Example 

Table 7. Outer-Loop Design Variable Menu for Jupiter Example 
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Figure 8: Representation of the Pareto front for the Jupiter example  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EVEEJ 

EJ 

EVEJ 

EVMVEJ 

EVVEJ 

EVEJ 
EVEJ 

EVEEJ 

EMMJ 

EMMJ 
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Figure 9: Maximum delivered mass solution 

(EVEEJ) from Jupiter example Pareto front 
Figure 10: Minimum time of flight solution 

(EJ) from Jupiter example Pareto front 
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A number of other Pareto-optimal solutions have multiple DSMs in a single phase for improved perfor-

mance over a single DSM per phase.  Figure 11 highlights two two-DSM examples from the Pareto front.  In 

several optimal trajectories two maneuvers are applied to efficiently rotate the line of apsides leading into a 

flyby.  

 

 

 

 

CONCLUSIONS 

The MGAnDSMs trajectory transcription provides global optimization of high-thrust trajectories with an 

arbitrary number of maneuvers.  Single-objective and multi-objective implementations are available, and the 

approach is capable of efficiently exploring the large design spaces associated with multiple gravity-assist 

scenarios.  The multi-objective formulation is particularly well suited to exploring the design space for prob-

lems in which a grid search is computationally intractable.  Moreover, the destination body and flyby bodies 

can be incorporated as design variables for a more thorough examination of the design space.  Though not 

studied in this paper, the transcription allows for trajectory optimization of spacecraft with hybrid propulsion 

systems (i.e., both chemical and electric).  The appropriate propulsion system for each mission phase could 

be traded within the construct of the multi-objective approach.  Additionally, a variety of operational con-

straints can be directly incorporated into the optimization problem. 

The transcription is analyzed on a range of mission design problems, providing a significant increase in 

computational efficiency in 1-DSM trajectories as compared to a Lambert targeting based transcription be-

cause of the robust multiple shooting scheme and incorporation of analytic match point derivatives.  A rep-

resentation of the three-dimensional Pareto front of globally-optimal solutions for a multiple gravity assist 

mission to Jupiter is developed, allowing for an understanding of the tradeoff between maximum delivery 

mass, minimum time of flight, and minimum arrival v∞. 

Figure 11: Pareto-optimal solutions with two DSMs in one phase: EEJ (left), EVEJ (right) 
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