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Spacecraft Servicing

Want to service existing spacecraft:
* Inspect

* Repair

* Refuel

* Relocate

Existing spacecraft present
navigation challenges:

* No laser retroreflectors
 No visual fiducials

Unmanned servicing spacecraft
must perform rendezvous and
docking autonomously!

« Communication delays preclude
ground control

* Must have accurate navigation
solution with sufficient bandwidth
for closed loop control

Notional robotic servicing operation rendering



Raven: Relative Navigation Testbed

» |ISS hosted payload

— Anticipating June 2016 launch as part  Visual Camera Infrared Camera IMU
of the DoD Space Technology
Program (STP-H5)

— Mount on port nadir side of ISS

Next to solar array rotation joint
— ISS provides power and comm

« Mission objectives
— Track ISS resupply vehicles

— Collect resupply vehicle imagery
* Visual
Infrared
LIDAR

« Challenges

— Command and telemetry outages
require autonomous panftilt tracking
— Raven gets no real-time data from ISS

* No ISS navigation state
No GPS measurements

*+ We DO get a clock pulse
— 16 months from project authorization

LIDAR Pan/Tilt Gimbal Star Tracker

to hardware delivery 3



ISS Visiting Vehicle Operational Paradigm

* Resupply vehicles provide relative navigation solution for their prox ops
maneuvers, monitored by ISS mission control and ISS crew

» Resupply vehicles must use their own relative navigation sensor suite
and associated computation, incurring cost and design complexity

» ISS does not produce its own relative navigation solution

« Raven is a prototype of a new paradigm:

— Air traffic control uses local radars to monitor airspace
— A relative navigation sensor suite would allow ISS to monitor its nearby space

and even provide relative navigation solutions to visiting vehicles /\
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Relative Navigation Filter (RNF) Overview

Multiplicative Extended Kalman Filter (MEKF) formulation tracks relative
pose = translation and orientation

— MEKEF formulation explicitly maintain quaternion constraints

— Extension of MEKF to pose is similar to Junkins, Geller, Tweddle
Raven includes a GSFC SpaceCube 2.0 flight processor

— fast and powerful multi-core flight computer with FPGA
Demanding filter rates

— Pointing controller requires frequent filter estimate updates

— Pose measurements from computer vision available at high rate
Information available:

— Relative pose from optical sensors

— Inertial attitude and rate from star tracker and gyro

— NO orbital information in real-time (neither ISS solutions nor raw GPS)
Focus on what information is available

— No orbital information precludes a Clohessy/Wiltshire or higher fidelity
dynamics model

— Relative pose measurements are frequent and well modeled
— Account for camera rotation using star tracker and gyro (separate filter)



RNF Block Diagram
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RNF Translation States

Filter State
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RNF Rotation States
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RNF Measurement Bias States

Filter State Filter state is augmented with a bias for each sensor channel
- RVN - o - -
VV/RVN T VIS, tran

RV N

() VIS,rot

VV/RvN

_ b
qVV/RVN — q b _ IR,tran
Vv w IR, rot

VVi/gcr

b —b_ LDR,tran
- bLDR,'rot -

Each sensor bias is assumed to be an independent first order Gauss Markov process

S P o, A (0.07)



Linearized Error State Dynamics

Filter State

- RVN -

VV/rvN
RVN

VV/rvN

q -

VV/rvN
vV

VVi/ecr

b

Linearized Error State Dynamics derived in paper (linear time varying system)

~ 1+ AtF

Linearized Error State

Az = FAx + Ww
First order approximation used to compute error state transition matrix
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Translation Measurement Component

\A%

Pose measurements from sensor CAM are denoted (fvv/RVN,CAMﬂ

The translation component is modeled as:

\A% Vv

~

VV/RVNfCAM - rVV/RVN —|_ bCAM,tran + MCAM,t’r’anmC’AM,tran
measurement true FOGM bias Gaussian white noise

Where the First Order Gauss Markov Bias is as given before:

b - — 1/7’ b + g w

CAM,tran 2 CAM,tran 2 b,CAM,tran

Resulting in the translation component innovation:

innov Vv

AT‘CAM — rVV/RVNaCAM — T — bCAM,tran
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Rotation Measurement Component

\A%

~

q

/ )
VV  rv N .CAM

Pose measurements from sensor CAM are denoted (7:

)
VV /rvN-CAM

The rotation component is modeled as:

~

qVV//RVN,CAM — q <bC’AM,rot —|— MC’AM,rothAM,rot) ® q
measurement FOGM bias Gaussian white noise true

Where the First Order Gauss Markov Bias is as given before:
o o

[J - 1/
bCAM,’r‘ot T 7—5 bCAM,rot + 0-5 wb,CAM,rot

The orientation component innovation is a bit more involved:
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EKF Measurement Update Procedure

for k=1,2,3,... do
Propagate State Estimate to Measurement Time

ﬁ‘;£;1+ﬁt“ﬂwﬁ))47

k

(note A2,  =0,s0 A2, =& A2 =0)
Propagate State Covarlance to Measurement Time

compute ¢ _and Q
P =9 P <I>A +@Q,
Perform Measurement Update

compute H,
k .

K =P H'(HP H'+R)
= (1-x) P (1-K1) +K B!

k
Ag =A% +K, (v, —h(2, z))
Transfer Information to State Estimate, Reset Error Estimate

e = ﬁ:k +A:%k'
Ag =0
end
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EKF Measurement Update Procedure

for k=1,2,3,... do
Propagate State Estimate to Measurement Time

& ==& +[F flx(r),r)dr

k

.

(note A2, =0,s0 A2 =& A,

k—1

=0)
Propagate State Covariance to Measurement Time
compute ¢ _and (),
B P
P ;(I)kpk—](l)k +Qk

k
Perform Measurement Update
compute H,
k .

K =P H'(HP H'+R)
1

P =(I1-KH)P (I-KMH,) + K.RK'

A.
A8 =08, +K, (y,-h(2, .t,))
Transfer Information to State Estimate, Reset Error Estimate

& =2 +A2
Ag =0
end

'S] equivalent
~ T ~ ~
r =, +Kk (yk—h(wk ,tk>) y




MEKF Measurement Update Procedure

Compute Kalman Gain
Kk = P&- Hxl; (HH.-. Pk H1I' + R\f)
Update Covariance

1

T

P’ =(1,.,-KH, )P (L., -KH,) +KR, K

Compute State Estlmate Update
[Ar "

Av Ar 7 - Same paradigm as the

Ax = | Ag N K, A ] (cumbersome version) of an EKF
Aw Ivis « Quaternion update makes this an
Ab MEKF a la Lefferts, Markley, and

Apply Update to State Estimate
i:k =7 +Ar"

b, =9, +Av"

q, =g (Ag e ) ®4q.

&, =, +Aw "

b —b +Ab

Shuster
Inclusion of translation states in an
MEKEF already in the literature
« Kim, Crassidis, Cheng,
Fosbury, Junkins
 Woffinden, Geller
 Tweddle, Saenz-Otero
We augment with biases
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Observability Issue

« Can'’t instantaneously solve for all sensor biases AND relative pose

16



Observability Issue

« Can'’t instantaneously solve for all sensor biases AND relative pose

VIS Camera

' ‘ IR Camera

LIDAR
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Observability Issue

« Can'’t instantaneously solve for all sensor biases AND relative pose

meas

VIS Camera

meas

IR Camera

meas

A

LIDAR
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Observability Issue

« Can'’t instantaneously solve for all sensor biases AND relative pose

meas bias est
< \ < VIS Camera
0 bias est
< < IR Camera
meas bias est
< < LIDAR

range estimate
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Observability Issue

« Can'’t instantaneously solve for all sensor biases AND relative pose

meas bias est
< \ < VIS Camera
0 bias est

< <
meas bias est

< < LIDAR
range estimate

¢

* Relative dynamics aren'’t “rich enough” to correctly solve over time
* Instead, only solve for N-1 sensor biases

20



Observability Issue Resolved

« Can'’t instantaneously solve for all sensor biases AND relative pose

meas bias est

< \ < VIS Camera
iy bias est
< <
meas bias est
< < LIDAR
range estimate
¢

* Relative dynamics aren’t “rich enough” to correctly solve over time
* Instead, only solve for N-1 sensor biases

LIDAR

bias est
meas
= VIS Camera
meas bias est
<€ IR Camera
-  LIDAR

range estimate
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Raven Development Montage

Raven_dragon_rend gn
firTrack_fov35.mp4
goes here, shows
GNFIR tracking
synthetic imagery of
SpaceX Dragon in
complicated lighting




Questions?

 Raven _fsp CDR_viscam.mp4 goes here
— Freespace rendering showing third person perspective as well as Raven
perspective
— SpaceX Dragon rendezvous
— Synthetic imagery shows ISS shadow on Dragon
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