

JPL Publication 14-8

Grid2: A Program for Rapid Estimation of
the Jovian Radiation Environment

A Numeric Implementation of the GIRE2 Jovian Radiation
Model for Estimating Trapped Radiation for Mission Concept
Studies

Europa Clipper Pre-Project

R. W. Evans, Developer
D. E. Brinza, Editor
Jet Propulsion Laboratory

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

January 2014

https://ntrs.nasa.gov/search.jsp?R=20160001777 2019-08-31T04:25:16+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42699871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

© 2014 California Institute of Technology. Government sponsorship acknowledged.

iii

Table of Contents

1. Summary ...1

2. Introduction...1

3. Implementation ...1

4. Results ..2

5. Use of the FORTRAN Program ..7

6. Conclusions ..8

7. References ..9

8. Appendices...10

A. Epicycles on Epicycles ... A-1

B. Gridgire2.f—FORTRAN Listing ..B-1

C. Sample Record in jfluence ..C-1

D. Acronyms and Abbreviations ... D-1

iv

1

1. Summary

Grid2 is a program that utilizes the Galileo Interim Radiation Electron model 2 (GIRE2) Jovian
radiation model to compute fluences and doses for Jupiter missions. (Note: The iterations of
these two softwares have been GIRE and GIRE2; likewise Grid and Grid2.) While GIRE2 is an
important improvement over the original GIRE radiation model, the GIRE2 model can take as
long as a day or more to compute these quantities for a complete mission. Grid2 fits the results of
the detailed GIRE2 code with a set of grids in local time and position thereby greatly speeding
up the execution of the model—minutes as opposed to days. The Grid2 model covers the time
period from 1971 to 2050 and distances of 1.03 to 30 Jovian diameters radii (Rj). It is available
as a direct-access database through a FORTRAN interface program. The new database is only
slightly larger than the original grid version: 1.5 gigabytes (GB) versus 1.2 GB.

2. Introduction

GIRE2 (Ref. 1) has been out for use since 2012, but there has been no way to rapidly make
estimates of the fluence and dose for orbit evaluations—complete mission runs can require as
much as several days. The older GIRE had an approximate grid version (Ref. 2) developed for it
that has been used for about 3 years and that has substantially increased in runtime efficiency
(minutes versus hours). It was known that the new version, GIRE2, gives different results than
GIRE, but the old Grid has been used until the present because it was the only thing available for
rapid estimates.

Unlike GIRE, GIRE2 is dependent on the spacecraft local time (Sun–Jupiter–Spacecraft angle)
through a parameter calculated from the Khurana magnetic field model (Ref. 3). Because of this
local time dependence, implementing a grid fit for the new model requires the use of extra grids.
Here, the new grids (13) necessary to approximate GIRE2 are combined into one file and are
selected as needed by the grid program.

The Grid2 model is valid for a range from 1.03 to 30 Rj and for the period 1971 to 2050.

3. Implementation

Grid2 uses a “gridded” array of pre-calculated points and interpolates between these grid
positions to estimate the fluence at a specified spacecraft position. The program finds eight
points that surround the spacecraft position in a ‘cuboid’ (morphs to a cube if Rj, latitude, and
West-longitude are plotted on a Cartesian axis). It then interpolates the flux to the spacecraft
position to estimate the flux at the spacecraft.

Grid Size: Grid1 used a data file for the gridded array that is a direct access file (needed data can
be accessed directly without reading the complete file to find it) to speed up data access that was
1.2 gigabytes (GB) in size. A straight estimate of the size of the direct access file for the new
model was that it would be approximately 8 GB in size. Experimentation showed that the size
could be reduced by using a grid in log (Range) instead of Range. The original grid had 300 grid
points in Range for each latitude and West longitude pair. It was found that 100 grid points in log
(Range) was an adequate number to achieve the desired accuracy. This gives tight groupings at
small ranges where the model changes rapidly and a loose grouping where the model varies

2

slowly with range. Old and new versions use 2-degree spacing in latitude and 3-degree spacing
in West longitude. Also, experimentation showed that the local time effects could be broken up
into as few as 12 segments.

The grid has a core component range of 1–15 Rj where there are no local time variations. There
are 12 “shells” in local time, and that has a range from 15 to 30 Rj. The 12 shells are each smaller
than the core because the log (Range) variation is loosely packed there. All together, the core and
shells add up to 1.5 GB.

Local Time: Because of the local time variations, the program needs to have the values for when
the spacecraft is at a position so its local time can be calculated. For each spacecraft position, the
program now reads in a date, an ephemeris time based on the J2000 international time standard
(et), range, latitude, and West longitude. Date and et are redundant as covered below in
Section 5, Use of the Fortran Program.

Since we are interested in the Sun’s position, we need the Jupiter mean solar day, which (because
of Jupiter’s rapid rotation and long orbital period) is only 3 seconds longer than a Jupiter sidereal
day. The sidereal day is 9 hr 55 min 30 s, and the solar day is 9 hr 55 min 33 s.

From the date and time, the program calculates an et and then calculates the Sun’s sub-solar
West longitude on Jupiter. The spacecraft sub-West Longitude minus the sub-solar West
longitude is the spacecraft local time (in degrees), 15 degrees = 1 “Jupiter hour.” A circular orbit
is assumed for Jupiter, calculated a mean solar day for Jupiter and then estimated the solar sub-
West longitude. As the actual Jovian orbit is an ellipse, however, Grid 2 then uses JPL’s Space
Planet Instrument C-Matrix Events(SPICE) (Refs. 4 and 5) to calculate the correct sub-solar
West longitudes (or “true” solar day) (available for the period 1971 to 2050). From the two data
sets, Grid2 applies a correction to add to the mean solar day to get the correct solar sub-West
longitude for any date. The results are within ± 0.3 degrees of SPICE over the range of the above
dates.

The et calculations are correct for 2000–2050 (until extra leap seconds are added), but 2 seconds
are unaccounted for somewhere between 1971 and 2000. This not an issue here but will be
corrected later. SPICE adds 10 leap seconds to the beginning of 1971 (end of 1970 really—they
are accumulations from previous years) so the program does not go any further than 1971 in the
past. Again, 10 seconds is probably not an issue here. Also, the residuals for my correction to
mean solar day look like a noisy sum of sines and cosines, but a fit could not be found for them
(see Appendix A, Epicycles on Epicycles). Although the program can be pushed past 2050,
there may be accumulated errors (small if not pushed too far, say 10–20 years). The correction to
mean solar day is fit to a [sin2] function, so it will not fail catastrophically if extrapolated past the
fitting region. The fit does seems reasonably inaccurate for beyond the year 2050, but it does get
significantly worse for years before 1971. As with Grid, Grid2 is assumed to be obsolete for a
Jupiter mission planned to operate much beyond 2050.

4. Results
The program has been tested on two Europa Clipper trajectories supplied by the project, 11-F5A
and 13-F7, at 10-minute resolution and 11-F5A at 1-minute resolution. Table 1 shows the
resulting trapped particle fluences corresponding to GIRE and Grid2 for 11-F5A. Table 2 shows
similar results for 13-F7. The results for GIRE and Grid2 are within a few percent of each other

3

for each trajectory. Also the results are similar for the two trajectories, so further discussion will
be for trajectory 13-F7 only.

Table 3 shows the results for fluence for trajectory 13-F7 using Grid, which is based on the old
GIRE model and which is in use by the Europa Clipper pre-project. Note that Grid produces
smaller fluences for electrons for energies less than 20 MeV and larger fluences for energies
greater than 20 MeV (approximately). Also Grid1 produces fluences for energies only up to
100 MeV. Fluences in Grid2 above that energy are log-log extrapolations (actually, fluences in
both grids and at energies above 30 MeV are strictly extrapolations and should be only used with
caution!!). Protons are unchanged between Grid and Grid2 (and their associated GIRE models).
That is, they are unchanged from the Divine-Garrett model (Ref. 6). Figure 1 shows the particle
fluences from Grid2, GIRE2, and Grid1 as listed in Tables 2 and 3, Protons in GIRE and GIRE2.

Table 4 lists the results for dose using the NOVICE software package (Ref. 7) for Grid2, GIRE2,
and Grid1. Figure 2 shows the total dose for Grid2, GIRE2, and Grid1. The new Grid2 (and
GIRE2) produces 33% higher doses at 100 mils (2.5 mm) aluminum shielding in the original
Grid model. The differences in doses are within 10% for vault level shielding (~800 mils, 20
mm). The last percent entry in the dose table is probably not accurate because Grid did not go as
high in energy as Grid2 does.

There are significant time savings in using Grid2 as opposed to GIR2 to generate radiation inputs
to transport-analysis codes, such as NOVICE.

Figure 1. Particle Fluences from Grid2, GIRE2, and Grid (old Grid).

Orbit 13-F7 10 Minute resolution

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Energy (MeV)

Fl
ue

nc
e

(c
m

-2
)

Electron 13-F7 grid2

Proton 13-F7 grid2

Electron 13-F7 GIRE2

Proton 13-F7 GIRE2

Electron 13-F7 old grid

Proton 13-F7 old grid

4

Table 1. Comparison of GIRE2 and Grid2 for Particle Fluences for Trajectory 11-F5A.

 GIRE2 11-F5A Grid2 11-F5A
 Electrons Protons Electrons Protons
 Integral Integral Integral Integral % %

Energy Fluence Fluence Fluence Fluence Difference Difference
(MeV) (cm-2) (cm-2) (cm-2) (cm-2) Electrons Protons

0.1 2.93E+15 3.17E+16 2.91E+15 3.25E+16 -0.65 2.43
0.2 1.47E+15 5.29E+15 1.47E+15 5.36E+15 -0.34 1.25
0.3 9.87E+14 1.90E+15 9.82E+14 1.91E+15 -0.51 0.63
0.5 5.88E+14 5.33E+14 5.86E+14 5.35E+14 -0.36 0.34

1 2.76E+14 9.94E+13 2.75E+14 9.93E+13 -0.36 -0.10
2 1.17E+14 1.97E+13 1.17E+14 1.96E+13 -0.17 -0.41
3 6.72E+13 7.88E+12 6.73E+13 7.86E+12 0.15 -0.29
5 3.16E+13 2.58E+12 3.18E+13 2.57E+12 0.47 -0.43

10 9.38E+12 5.87E+11 9.44E+12 5.87E+11 0.68 0.00
20 1.95E+12 1.13E+11 1.96E+12 1.14E+11 0.51 0.62
30 7.17E+11 2.97E+10 7.22E+11 3.00E+10 0.64 0.91
50 2.03E+11 2.93E+09 2.04E+11 2.97E+09 0.54 1.23

100 3.71E+10 6.92E+07 3.73E+10 7.03E+07 0.62 1.53
200 6.85E+09 2.10E+06 6.89E+09 2.14E+06 0.63 2.10
300 2.55E+09 4.56E+05 2.56E+09 4.64E+05 0.51 1.82
500 7.22E+08 1.05E+05 7.26E+08 1.07E+05 0.61 1.52

1000 1.15E+08 1.86E+04 1.16E+08 1.89E+04 0.52 1.34

Table 2. Comparison of GIRE2 and Grid2 for Particle Fluences for Trajectory 13-F7.

 GIRE2 13-F7 Grid2 13-F7
 Electrons Protons Electrons Protons
 Integral Integral Integral Integral % %

Energy Fluence Fluence Fluence Fluence Difference Difference
(MeV) (cm-2) (cm-2) (cm-2) (cm-2) Electrons Protons

0.1 2.87E+15 2.64E+16 2.83E+15 2.68E+16 -1.39 1.67
0.2 1.45E+15 4.66E+15 1.43E+15 4.70E+15 -1.45 0.92
0.3 9.69E+14 1.71E+15 9.59E+14 1.72E+15 -1.05 0.64
0.5 5.77E+14 4.92E+14 5.72E+14 4.93E+14 -0.87 0.28

1 2.70E+14 9.40E+13 2.68E+14 9.40E+13 -0.81 -0.05
2 1.14E+14 1.89E+13 1.13E+14 1.89E+13 -0.88 0.00
3 6.49E+13 7.63E+12 6.46E+13 7.61E+12 -0.45 -0.30
5 3.02E+13 2.49E+12 3.01E+13 2.48E+12 -0.30 -0.24

10 8.80E+12 5.59E+11 8.82E+12 5.59E+11 0.17 -0.04
20 1.83E+12 1.05E+11 1.83E+12 1.06E+11 0.05 0.48
30 6.77E+11 2.72E+10 6.77E+11 2.74E+10 -0.03 0.88
50 1.92E+11 2.66E+09 1.92E+11 2.68E+09 0.05 0.86

100 3.51E+10 6.23E+07 3.52E+10 6.29E+07 0.14 0.93
200 6.46E+09 1.87E+06 6.48E+09 1.89E+06 0.23 1.07
300 2.39E+09 4.03E+05 2.40E+09 4.08E+05 0.50 1.24
500 6.75E+08 9.29E+04 6.79E+08 9.42E+04 0.58 1.37

1000 1.07E+08 1.66E+04 1.08E+08 1.68E+04 0.56 1.27

5

Table 3. Results of Grid1 for Particle Fluences for Trajectory 13-F7.

Grid1 13-F7 Grid2 - Grid1
Energy Electrons Protons

 Integral Integral % %
 Fluence Fluence Difference Difference
 (cm-2) (cm-2) Electrons Protons

1.00E-01 1.17E+15 2.65E+16 59.23 -0.49
2.00E-01 6.96E+14 4.67E+15 51.99 -0.21
3.00E-01 5.12E+14 1.71E+15 47.15 -0.18
5.00E-01 3.40E+14 4.92E+14 41.04 -0.04
1.00E+00 1.81E+14 9.40E+13 32.93 0.04
2.00E+00 8.45E+13 1.89E+13 25.88 -0.16
3.00E+00 5.01E+13 7.62E+12 22.87 0.08
5.00E+00 2.36E+13 2.49E+12 21.75 0.08
1.00E+01 7.29E+12 5.59E+11 17.13 0.07
2.00E+01 1.94E+12 1.05E+11 -6.17 -0.19
3.00E+01 8.48E+11 2.73E+10 -25.21 -0.29
5.00E+01 2.85E+11 2.66E+09 -48.65 -0.15
1.00E+02 6.20E+10 6.23E+07 -76.64 -0.02

Figure 2. Dose/Depth Curve for Trajectory 13-F7. Old and New Results for 100 mils (2.5 mm) of

Aluminum Shielding Are Shown.

Total Dose-Depth for Clipper 13-F7
GIRE-1 vs GIRE-2 models

2.70E+06

2.01E+06

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1 10 100 1,000 10,000

Shielding Thickness (mils Al)

D
os

e
(r

ad
s

Si
)

grid2k

GIRE2k

grid-1

6

Table 4. Total Dose for Trajectory Using Grid2, GIRE2, and Grid.

Shielding Thickness (Aluminum) Total Dose %change

g/sq. cm mm mils Grid2 GIRE2 Grid1
Grid2-
Grid1

6.86E-03 2.54E-02 1.00E+00 2.60E+08 2.61E+08 1.79E+08 45.50
6.86E-02 2.54E-01 1.00E+01 2.57E+07 2.60E+07 1.47E+07 74.92
1.37E-01 5.08E-01 2.00E+01 1.36E+07 1.37E+07 8.41E+06 61.37
2.06E-01 7.62E-01 3.00E+01 9.25E+06 9.32E+06 6.05E+06 52.97
2.74E-01 1.02E+00 4.00E+01 7.00E+06 7.06E+06 4.75E+06 47.47
3.43E-01 1.27E+00 5.00E+01 5.61E+06 5.65E+06 3.90E+06 43.64
4.12E-01 1.52E+00 6.00E+01 4.65E+06 4.69E+06 3.31E+06 40.28
4.80E-01 1.78E+00 7.00E+01 3.96E+06 3.99E+06 2.87E+06 38.16
5.49E-01 2.03E+00 8.00E+01 3.43E+06 3.46E+06 2.52E+06 35.84
6.17E-01 2.29E+00 9.00E+01 3.02E+06 3.05E+06 2.24E+06 34.53
6.86E-01 2.54E+00 1.00E+02 2.68E+06 2.70E+06 2.01E+06 33.54
8.23E-01 3.05E+00 1.20E+02 2.18E+06 2.19E+06 1.66E+06 31.61
9.60E-01 3.56E+00 1.40E+02 1.81E+06 1.82E+06 1.40E+06 29.55
1.10E+00 4.06E+00 1.60E+02 1.55E+06 1.55E+06 1.19E+06 29.58
1.17E+00 4.32E+00 1.70E+02 1.43E+06 1.43E+06 1.11E+06 29.06
1.23E+00 4.57E+00 1.80E+02 1.33E+06 1.33E+06 1.03E+06 29.43
1.37E+00 5.08E+00 2.00E+02 1.16E+06 1.17E+06 9.08E+05 27.75
1.51E+00 5.59E+00 2.20E+02 1.03E+06 1.03E+06 8.02E+05 28.02
1.65E+00 6.10E+00 2.40E+02 9.14E+05 9.17E+05 7.17E+05 27.44
1.78E+00 6.60E+00 2.60E+02 8.18E+05 8.20E+05 6.43E+05 27.17
1.92E+00 7.11E+00 2.80E+02 7.35E+05 7.37E+05 5.80E+05 26.65
2.06E+00 7.62E+00 3.00E+02 6.65E+05 6.67E+05 5.27E+05 26.32
2.20E+00 8.13E+00 3.20E+02 6.05E+05 6.06E+05 4.80E+05 25.93
2.74E+00 1.02E+01 4.00E+02 4.30E+05 4.30E+05 3.47E+05 24.08
3.43E+00 1.27E+01 5.00E+02 2.98E+05 2.98E+05 2.47E+05 20.39
4.12E+00 1.52E+01 6.00E+02 2.17E+05 2.17E+05 1.86E+05 16.91
4.80E+00 1.78E+01 7.00E+02 1.62E+05 1.62E+05 1.44E+05 12.72
5.49E+00 2.03E+01 8.00E+02 1.25E+05 1.25E+05 1.16E+05 7.95
6.17E+00 2.29E+01 9.00E+02 9.94E+04 9.93E+04 9.47E+04 4.97
6.86E+00 2.54E+01 1.00E+03 8.10E+04 8.10E+04 7.93E+04 2.09
7.54E+00 2.79E+01 1.10E+03 6.72E+04 6.72E+04 6.73E+04 -0.12
8.23E+00 3.05E+01 1.20E+03 5.67E+04 5.68E+04 5.78E+04 -1.85
8.92E+00 3.30E+01 1.30E+03 4.88E+04 4.88E+04 5.03E+04 -2.90
9.60E+00 3.56E+01 1.40E+03 4.25E+04 4.25E+04 4.41E+04 -3.65
1.03E+01 3.81E+01 1.50E+03 3.75E+04 3.75E+04 3.90E+04 -3.74
1.10E+01 4.06E+01 1.60E+03 3.33E+04 3.34E+04 3.47E+04 -3.92
1.17E+01 4.32E+01 1.70E+03 3.01E+04 3.01E+04 3.11E+04 -3.06
1.23E+01 4.57E+01 1.80E+03 2.73E+04 2.73E+04 2.80E+04 -2.60
1.30E+01 4.83E+01 1.90E+03 2.49E+04 2.49E+04 2.54E+04 -1.85
1.37E+01 5.08E+01 2.00E+03 2.29E+04 2.29E+04 2.31E+04 -0.95
2.06E+01 7.62E+01 3.00E+03 1.30E+04 1.30E+04 1.09E+04 19.41

Table 5 shows a benchmark test of the models. Numbers in red compare the times to run Grid2
and GIRE2. Other numbers are estimates for running programs to complete the task.

7

Table 5. Benchmark.

Benchmark assumed 1 CPU at 3.5 GHz

 GIRE2 Grid2

Trajectory 11-F5A 13-F7 11-F5A 13-F7
Lines 1,308,205 187,755 1,308,205 187,755
Render trajectory 5 minutes 1 minute 5 minutes 1 minute
Compute B & L 16 days 20 hours N/A N/A
Run Fluences 4 hours 54 minutes 94 seconds 19 seconds
Run Novice 15 minutes 15 minutes 15 minutes 15 minutes
Total 16 days 1 day 21 minutes 16 minutes

5. Use of the FORTRAN Program
Since a date is used in this program, it is not necessary to use uniform time steps. The difference
in time (ΔT) time step between orbit points is used to accumulate the fluence. Because of this,
the first orbit position does not contribute to the fluence because there is no ΔT associated with
it. Also times (et) when the spacecraft is out of range are calculated so the last point out of range
and the first point in range of the model produce a ΔT for that first point in range. Out-of-range
and in-range crossings happen every time the spacecraft crosses 30 Rj—the outer boundary of
the Grid2 model.
Supplied orbits should not have large gaps when the range exceeds 30 Rj because this will
produce an incorrect ΔT. A work-around for this situation is to have a supplied large gap but
with one data listing outside the 30 Rj boundary with a reasonable et next to a data listing inside
30 Rj.

Because of the date, the data files cannot be read with a free format style (read(*,*)). As
implemented, the READ format in FORTRAN is:

 1 READ(10,401,end=2001)date,et,rj,alat,wlong
 401 format(a25,1x,f13.2,3(1x,e13.7))

Note that, as is, the program reads both date and et (so one does not have to change how one
renders obits from SPICE kernels). et is ephemeris time based on J2000. If et is not supplied,
use this format statement:

 1 READ(10,301,end=2001)date,rj,alat,wlong
 301 format(a25,3(1x,f7.3))

Or supply “ 0.00” for et (14 characters) with format statement 401 above. No et or a 0.00 et
is considered ‘not supplied’. Also if et is supplied,

 1 READ(10,*,end=2001) et,rj,alat,wlong

can be used to allow free formatting. et is not calculated if supplied. The advantages of
supplying et is that it avoids the missing 2 seconds between 1971 and 2000, it will automatically
add future leap seconds, and it speeds up the program a bit.

8

An attempt to convert the direct access Grid2 file to binary was made because it would have
reduced the file size to ~600 Mb from 1.5 GB. Unfortunately, this was unsuccessful. There
appear to be compiler-unique problems with direct access files—indeed, it’s not clear that a
direct-access file can be written as a binary, at least in the compilers we have used. Each
compiler ignored the “FORM=’unformattted’ statement and wrote an ASCII direct-access file,
some with extra blank lines (and 2–3 times the size of the original). One can produce binary files
for the regular data files in g77, gfortran, and Intel Fortran. G77 and Intel FORTRAN can read
each other’s binaries, even across the Windows (DOS) and Linux platforms. However, gfortran
does not read other compilers’ binaries and does not produce binaries that can be read by other
compilers.

Perhaps writing direct-access files as binary files is contradictory, like writing a binary file with a
format statement.

Finally, FORTRAN program listings are provided in Appendix B. A sample record with
explanation is provided in Appendix C, Sample Record in Gid2 Output File (jfluence). The
binary file is available for distribution with the source code.

6. Conclusions
A Grid2 form of the latest GIRE2 model has been produced that can be added to the tools used
by flight projects for rapid evaluation of trajectories about Jupiter for trapped-particle fluences.
Program output is in the same format as in the original Grid1, so the dose tool produced for
Grid1 should work. The dose tool might need additional response functions added because of the
extended energy range of Grid2, or the project may choose to ignore the energies past 100 MeV
produced by Grid2 (as values past 30 MeV for electrons are suspect at best), so the dose tool will
work as is. Grid2 is based on GIRE2. Grid2 is valid from dates 1971 to 2050 for R < 30 Rj. The
program can be updated to different time periods without much work. It can also be updated to
for changes in the GIRE model (e.g., protons extended past 12 Rj), again without much work
(new grids are easily produced with the existing templates). Grid2 is as fast as Grid1 and
produces results that agree with GIRE2 to a few percent.

9

7. References

1. H. B. Garrett, M. Kokorowski, I. Jun, and R. Evans, Galileo Interim Radiation Electron Model
Update—2012 [GIRE2], JPL Publication 12-9, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, March 2012.

2. Robin Evans, A Grid for Quick Estimates for Spacecraft Trajectories at Jupiter, JPL IOM 5132-10-
027 (to Insoo Jun) (internal document) , Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, July 4, 2010.

3. K. K. Khurana, “A Generalized Hinged-Magnetodisc Model of Jupiter's Nightside Current Sheet.”
J. Geophys. Res., vol. 97, p. 6269–6276, 1992.

4. Charles .H. Acton, Jr., Ancillary data services of NASA's Navigation and Ancillary Information
Facility, Planet. Space Sci., vol. 44, pp. 65–70, 1996.

5. “SPICE: An Observation Geometry System for Robotic Space Science Missions,” NAIF Planetary
Data System Navigation Node, NASA website, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, Dec. 30, 2013. http://naif.jpl.nasa.gov/naif/index.html (accessed Jan. 21,
2014)

6. N. Divine, N., and H. B. Garrett, “Charged Particle Distributions in Jupiter's Magnetosphere,”
J. Geophys. Res., vol. 88, A9, pp. 6889–6903, Sept. 1, 1983.

7. Thomas Jordan, NOVICE, A Radiation Transport Shielding Code, Experimental and Mathematical
Physics Consultants, Gaithersburg, Maryland, Jan. 2006 (original version was 1993).
http://www.empc.com/ (accessed Jan. 21, 2014)

http://naif.jpl.nasa.gov/naif/index.html
http://www.empc.com/

10

8. Appendices

A-1

A. Epicycles on Epicycles
Jupiter travels on an ellipse, not a circle, so mean solar time is not quite adequate for this study.
In the days of Copernicus, astronomers kept adding epicycles to fix this. In modern days we
decompose signals into sines and cosines.

The variation is almost 10 degrees from my mean solar time which was calculated for 1 Earth
year only starting in January 2024 (tuned for the Europa Clipper). The variation has a fixed
offset of a little more than 3 degrees. Removing a sine2 function with a fixed offset removes the
major variations and leaves an approximate 0.3 degree “noisy” sine with a 0.2 degree increasing
trend from 1971 to 2050. Removing the trend and a further sine term with a period of 5.93 years
reduces the residuals to ±0.1 degree. As of this writing, these last two corrections have not been
implemented, but the program has notes (and subroutines) on how to do this. We are unable to fit
the final residuals to any function.

We notice that Saturn perturbs the solar day as Jupiter passes it (slows, speeds Jupiter in its orbit
as they pass every 19.85838 years). The variation is a “pulse” and too small to effect this work.
Figure A-1 shows the major variation of sub-solar West longitude and a fit to that variation. The
Bottom axis is the ephemeris time et, and the drift and residuals are in degrees. Figure A-2 shows
the trend removed from the residuals above. Figure A-3 shows the additional 5.92 year sine
function and trend removed. Figures A-1 and A-2 are the resulting residuals after the above
corrections. Fitted functions are in grey.

Figure A-1. Sine squared removed from mean solar time to approximate true solar time on Jupiter.

The residuals curve is on top. The fixed offset is implemented in the current grid.

A-2

Figure A2. Trend extracted from residuals above to further approximate true solar time on Jupiter.

Residuals are in the next figure. This could give higher accuracy, but it is probably not needed.
And it has not been implemented as of this writing.

Figure A3. Sine removed from residuals in Figure A-2 to further approximate true solar time on

Jupiter. Residuals are on top. This could also give higher accuracy, but it has not been
implemented as of this writing.

The program, Table Curve 2D, was used to fit Figure A-1 and A-3 (with a user function). Excel
was used to fit Figure A-2.

y = 1.23235929261042E-10x - 4.60298954442332E-02

-0.4

-0.2

0

0.2

0.4

-1.E+09 -5.E+08 0.E+00 5.E+08 1.E+09 2.E+09

et

de
gr

ee
s

Residual

Linear
(Residual)

B-1

B. Gridgire2.f—FORTRAN Listing
Program reads

Date Date in NAIF/Spice format YYYY MMM DD hh:mm:ss

 Example 2024 JAN 02 00:00:00.0000

Etx ephemeris time J2000 (sec)

Rj spacecraft range (Rj)

Alat spacecraft latitude (deg)

Wlong spacecraft West longitude (deg)

Options are
C 1 READ(10,*,end=2001)etx,rj,alat,wlong ! program does not calculate et
C 1 READ(10,301,end=2001)date,rj,alat,wlong ! program calculates et
 1 READ(10,401,end=2001)date,etx,rj,alat,wlong ! default (reads orbits I produce) does not
 !calculate et
Comment out the default and uncomment the one required in the program listing.

Output is a listing of fluences vs. energy

Output file from orbit 13-F7

Fluences estimated by use of a pre-calculated grid of points using

• integral flux from GIRE2 Garrett et al., JPL Publication 12-9 (Ref. 1)

• orbit ends at line 187755

 Electron Fluence Proton fluence
Energy Integral Integral
(MeV) (cm^-2) (cm^-2)
 1.000E-01 2.830E+15 2.684E+16
 2.000E-01 1.429E+15 4.703E+15
 3.000E-01 9.588E+14 1.721E+15
 5.000E-01 5.720E+14 4.934E+14
 1.000E+00 2.678E+14 9.395E+13
 2.000E+00 1.130E+14 1.890E+13
 3.000E+00 6.461E+13 7.607E+12
 5.000E+00 3.011E+13 2.484E+12
 1.000E+01 8.815E+12 5.588E+11
 2.000E+01 1.831E+12 1.055E+11
 3.000E+01 6.768E+11 2.744E+10
 5.000E+01 1.921E+11 2.683E+09
 1.000E+02 3.515E+10 6.288E+07
 2.000E+02 6.475E+09 1.890E+06
 3.000E+02 2.402E+09 4.080E+05
 5.000E+02 6.789E+08 9.417E+04
 1.000E+03 1.076E+08 1.681E+04

B-2

Refer to Appendix C for explanation of the yellow highlighted code areas below.

 program gridgire2
C Reads orbits with dates, RJ, ALAT, WLONG in format statement
C 301 format(a25,3(1x,f7.3)) or dates, et, RJ, ALAT, WLONG in format
C statement 401 format(a25,1x,f13.2,3(1x,e13.7))
C 2024 JAN 02 00:00:00.0000 757425667.18 18.000 -45.000 310.000
C 0's after decimal can be left out of date but leave spaces. space and
C 6 characters for remaining numbers. Use extra spaces for numbers that
C fall short of 6 characters and (-) sign counts as a character.
C Program will find last line of input file which should contain data
C (don't have a blank line at end). Error code is harmless if you forget
C the last instruction. You can change the format line (301) to suit
C yourself. you will have to do this if you use negative west longitudes
C (-345.000 will not work as is - too many characters).
C
C Reads a direct access file for data.
C
C Dates good from 1971 to 2050. Beyond 2050 it is probably ok but iffy
C (not tested). Before 1971, I do not know when the extra leap seconds
C fit in (10 dumped into 1971 in spice but they are accumulated from
C previous years). Until fixed, do not go before 1971 without expecting
C errors assumed to start at 10 seconds and increasing backwards in time.
C For R less than 15.1948, program ignores the date, for R greater than
C 15.1948 program uses the date to find the local time of the spacecraft
C to choose which records to use. Data file has a core of 873621 records
C for R less than 15.1948 and shells of 229341 records for each of the
C 12 bins in local time.
C
C Computes fluences from flux * delta T, time steps do not have to be
C uniform, uses ephemeris time (et) to calculate delta T.
C
C Note that if you have a large gap in the orbit the flux for the first
C point after the gap will be bogus, flux * LARGE delta T

 character*25 date
 character*70 line2,line3,line4,line5,line6
 character*418 line
 integer ict(8), ireca(14), irec(8), irecx
 dimension alll(34),allh(34), alhl(34), alhh(34),ry(8)
 dimension ahll(34),ahlh(34), ahhl(34), ahhh(34),ay(8,34)
 dimension wlx(14), rbogus(100),e(17), blaty(8)
 dimension aly(8), alay(8), wly(8), by(8), beqy(8)
 dimension bl(34), bh(34), cl(34), ch(34), flux(34)
 real*8 rdb(100), et,etx, flue(34), etold, rl,rh
C SHORT Version
C energies
 data e / 0.10, 0.20, 0.30, 0.50, 1.00, 2.00, 3.00,
 + 5.00, 10.00, 20.00, 30.00, 50.00, 100.00, 200.00,
 + 300.00, 500.00, 1000.00 /
C real range data for db
 data rdb /
 +1.03459704D0,1.07039094D0,1.10742331D0,1.14573681D0,1.18537581D0,
 +1.22638619D0,1.26881552D0,1.31271267D0,1.35812867D0,1.40511572D0,
 +1.45372856D0,1.50402319D0,1.55605793D0,1.60989285D0,1.66559029D0,
 +1.72321475D0,1.78283274D0,1.84451342D0,1.90832806D0,1.97435033D0,
 +2.04265690D0,2.11332679D0,2.18644142D0,2.26208591D0,2.34034729D0,
 +2.42131615D0,2.50508642D0,2.59175491D0,2.68142176D0,2.77419114D0,
 +2.87016964D0,2.96946883D0,3.07220364D0,3.17849278D0,3.28845859D0,
 +3.40222955D0,3.51993656D0,3.64171576D0,3.76770830D0,3.89805937D0,
 +4.03292036D0,4.17244768D0,4.31680202D0,4.46615028D0,4.62066603D0,
 +4.78052664D0,4.94591856D0,5.11703253D0,5.29406643D0,5.47722530D0,
 +5.66672039D0,5.86277199D0,6.06560659D0,6.27545834D0,6.49257040D0,

B-3

 +6.71719408D0,6.94958782D0,7.19002295D0,7.43877649D0,7.69613600D0,
 +7.96239948D0,8.23787308D0,8.52287960D0,8.81774521D0,9.12281322D0,
 +9.43843555D0,9.76497555D0,10.1028166D0,10.4523439D0,10.8139601D0,
 +11.1880913D0,11.5751657D0,11.9756327D0,12.3899536D0,12.8186092D0,
 +13.2620945D0,13.7209234D0,14.1956263D0,14.6867533D0,15.1948662D0,
 +15.7205639D0,16.2644482D0,16.8271503D0,17.4093189D0,18.0116291D0,
 +18.6347790D0,19.2794857D0,19.9464989D0,20.6365891D0,21.3505535D0,
 +22.0892124D0,22.8534336D0,23.6440945D0,24.4621086D0,25.3084259D0,
 +26.1840210D0,27.0899105D0,28.0271397D0,28.9967957D0,29.9999981D0/
C db range listings (low precision for space)
 data rbogus / 1.03,1.07,1.11,1.15,1.19,1.23,1.27,1.31,1.36,1.41,
 + 1.45,1.50,1.56,1.61,1.67,1.72,1.78,1.84,1.91,1.97,
 + 2.04,2.11,2.19,2.26,2.34,2.42,2.51,2.59,2.68,2.77,
 + 2.87,2.97,3.07,3.18,3.29,3.40,3.52,3.64,3.77,3.90,
 + 4.03,4.17,4.32,4.47,4.67,4.78,4.95,5.15,5.29,5.48,
 + 5.67,5.86,6.07,6.28,6.49,6.72,6.95,7.17,7.44,7.70,
 + 7.96,8.24,8.52,8.82,9.12,9.44,9.77,10.1,10.5,10.8,
 + 11.2,11.6,12.0,12.4,12.8,13.3,13.7,14.2,14.7,15.2,
 + 15.7,16.3,16.8,17.4,18.0,18.6,19.3,19.9,20.6,21.4,
 + 22.1,22.9,23.6,24.5,25.3,26.2,27.1,28.0,29.0,30.0/
C record breaks for core, shells
 data ireca / 0,873600,1102920,1332240,1561560,1790880,2020200,
 + 2249520,2478840,2708160,2937480,3166800,3396120,
 + 873600/
C local time breaks for shells lt = 30 (2 hr) used for 15-45 (1-3)
C hr, lt = 60 (4 hr) used for 45-75 (3-5 hr), etc.
C lt = 360 (0 hr) used for 345-15 (23 to 1 hr)
 data wlx / 0., 15., 45., 75., 105., 135., 165.,
 + 195., 225., 255., 285., 315., 345.,
 + 360./
C open trajectory file, output file and data file
 open(10,file='trajd.in',status='old')
 open(11,file='JFluencegridgire.out',status='unknown')
 open(12,FILE='JgridballintGIRESynch1-30.direct',STATUS='OLD',
 +ACCESS='DIRECT',RECL=418)
 n = 0
 do i = 1,34
 Flue(i) = 0.D0
 enddo
C process
 etx = 0.D0
C 1 READ(10,*,end=2001)et,rj,alat,wlong
C 1 READ(10,301,end=2001)date,rj,alat,wlong
 1 READ(10,401,end=2001)date,etx,rj,alat,wlong
 n = n + 1
 if(float(n/10000) .eq. float(n)/10000.)
 + print*,n,' ',date,' ',rj,alat,wlong
 irj = 0
 do i = 1,100
 if(rj .gt. rdb(i)) irj = i
 enddo
C find et (don't skip dates where Range is out of bounds to avoid LARGE
C delta T, use etx if available
 if(etx .eq. 0.D0) call xtime(date,et)
 if(etx .ne. 0.D0) et = etx
 if(n .eq. 1)etold = et

C if irj out of range read another record.
 if(irj .eq. 0. .or. irj .eq. 100) go to 1

 if(alat .eq. 90.) alat = alat - 0.0001 ! for proper integer below
 ial = int(alat + 90.)/2
 iwl = int(wlong)/3

B-4

C irec for bounding 'cuboid'
 irec(1) = iwl + ial*120 + (irj-1)*10920 ! minr minal minwl
 irec(2) = iwl + (ial+1)*120 + (irj-1)*10920 ! minr maxal minwl
 irec(3) = iwl+1 + ial*120 + (irj-1)*10920 ! minr minal maxwl
 irec(4) = iwl+1 + (ial+1)*120 + (irj-1)*10920 ! minr maxal maxwl
 irec(5) = iwl + ial*120 + irj*10920 ! maxr minal minwl
 irec(6) = iwl + (ial+1)*120 + irj*10920 ! maxr minal maxwl
 irec(7) = iwl+1 + ial*120 + irj*10920 ! maxr maxal minwl
 irec(8) = iwl+1 + (ial+1)*120 + irj*10920 ! maxr maxal maxwl
 if (iwl .eq. 0) then
 irec(1) = 120 + ial*120 + (irj-1)*10920 ! 360 --> 0
 irec(2) = 120 + (ial+1)*120 + (irj-1)*10920 ! 360 --> 0
 irec(5) = 120 + ial*120 + irj *10920 ! 360 --> 0
 irec(6) = 120 + (ial+1)*120 + irj *10920 ! 360 --> 0
 endif

 if(rj .gt. rdb(80)) then
 call jup(et,wlong,wlt0)
C -15 to 15, 15-45, etc.
 do i = 2,14
 if(wlt0 .ge. wlx(i-1) .and. wlt0 .lt. wlx(i))
 + irecx= ireca(i) - 79 * 10920
 enddo
 do i = 1,8
 irec(i) = irec(i) + irecx
 enddo
 endif
 do i = 1,8
C read records, irec(i)
 read(12,REC=irec(i))line
 read(line,11) ict(i),ry(i),alay(i),wly(i),by(i),beqy(i),aly(i)
 + ,blaty(i),(ay(i,j),j=1,34)
 enddo
C for fluence calculations
C rtp to keep order straight
 illl = 1
 ilhl = 2
 illh = 3
 ilhh = 4
 ihll = 5
 ihhl = 6
 ihlh = 7
 ihhh = 8
C 8 * 34 fluxes
 do i = 1,34
 alll(i) =ay(illl,i)
 allh(i) =ay(illh,i)
 alhl(i) =ay(ilhl,i)
 alhh(i) =ay(ilhh,i)
 ahll(i) =ay(ihll,i)
 ahlh(i) =ay(ihlh,i)
 ahhl(i) =ay(ihhl,i)
 ahhh(i) =ay(ihhh,i)
 enddo
C interpolate box to spacecraft position
C Collapse longitudes 2 wl s
 call linear(wly(illl),wly(illh),wlong,alll,allh,bl)
 call linear(wly(ilhl),wly(ilhh),wlong,alhl,alhh,bh)
C Collapse latitude 2 lats
 call linear(alay(illl),alay(ilhl),alat,bl,bh,cl)
C Collapse longitudes 2 wl s
 call linear(wly(ihll),wly(ihlh),wlong,ahll,ahlh,bl)

B-5

 call linear(wly(ihhl),wly(ihhh),wlong,ahhl,ahhh,bh)
C Collapse latitude
 call linear(alay(ihll),alay(ihhh),alat,bl,bh,ch)
C r's in database at low resolution
 do i= 1,100
 if(ry(illl) .eq. rbogus(i)) rl = rdb(i)
 if(ry(ihhh) .eq. rbogus(i)) rh = rdb(i)
 if(rh .eq. rl) rh = rdb(i+1)
 enddo
C collapse r 2 r s
 call linear2(rl,rh,rj,cl,ch,flux)
C Calculate Fluence from flux, delta-t
 do j = 1,34
 flue(j) = flue(j) + (et - etold) * dble(flux(j))
 enddo
 etold = et
 go to 1
 2001 continue
 ictold = n
 print*,'orbit ends at line ',ictold
C write output file
 line2 = ' Fluences estimated by use of a pre-caclulated grid of po
 +ints using '
 write(11,70) line2
 line3 = ' integral flux from GIRE2. Garrett et al., JPL Publication 12-9
 + '
 write(11,70) line3
 line3 = ' '
 write(11,70) line3
 line4 = ' Electron Fluence Proton fluence
 + '
 line5 = 'Energy Integral Integral
 + '
 line6 = '(MeV) (cm^-2) (cm^-2)
 + '
 write(11,*) ' '
 write(11,*) 'orbit ends at line ',ictold
 write(11,*) ' '
 write(11,70) line4
 write(11,70) line5
 write(11,70) line6
 do i = 1,17
 write(11,12) e(i), flue(i),flue(i+17)
 write(*,*) e(i), flue(i),flue(i+17)
 enddo
 write(11,*) ' '
 11 format(i8,41(1x,e9.3))
 12 format(1PE10.3,3x,1PE10.3,11x,1PE10.3)
 70 format(a70)
 301 format(a25,3(1x,f7.3))
 401 format(a25,1x,f13.2,3(1x,e13.7))
 end

C Single precision for Alat and Wlong
 subroutine linear(xl,xh,x,al,ah,s)
 dimension al(34),ah(34),s(34)
 do i = 1,34
 slope = (ah(i) - al(i)) / (xh - xl)
 yintercept = al(i) - slope * xl
 s(i) = slope * x + yintercept
C print*,slope,yintercept,xh,xl,x
 enddo
 return

B-6

 end

C Double precision for Range
 subroutine linear2(xl,xh,x,al,ah,s)
 dimension al(34),ah(34),s(34)
 real*8 xl,xh,slope,yintercept
 do i = 1,34
 slope = (dble(ah(i)) - dble(al(i))) / (xh - xl)
 yintercept = dble(al(i)) - slope * xl
 s(i) = slope * dble(x) + yintercept
 enddo
 return
 end

 subroutine JUP(et,wlsc,wlt0)
C find WL of spacecraft WRT sun
 real*8 et ,d2,wls,et0
C Sun at WL = 0.0 at t0 = 875633641.5485 (2027 OCT 01 03:32:54.36615)
C Jupiter (mean) solar day is 35732.86816 sec
C order 0
 et0 = 875633641.5485D0
C wls = mod((et - et0) * 360.D0/35732.86816D0,360.D0)
 wls = (et - et0)*870.452902871049D0/86400.D0 +0.02015D0
 wls = mod(wls,360.D0)
 if(wls .lt. 0.D0) wls = 360.D0 + wls
C order 1 - correct for eliptical orbit |residuals| < .3 deg)
C equ8015 wrt et, not delta et
 call eqn8015(et,d2)
 wls = wls + dble(d2)
 wls = wls + 0.3D0
C FIX LATER
C get rid of this term if beelow implemented
C wls = wls + 0.3D0
C order 2 - looks like sum of sines and cosines, with a small linear term -
C will fix later but 0.3 degrees ok and my present routine will not do it.
C epicycles on epicycles ...
C can reduce residuals by hand fit to 0.1 deg
C 10 remove a linear trend
C wlt0 = wlt0 -(1.23245536447971E-10*et - 0.0460284264937504
C then remove another sinw ith period 5.93158 years (see
C SUBROUTINE eqn8001(x,y) below
C equ8001 wrt et, not delta et
C Call eqn 8001(et,d3)
 wls = wls + dble(d2)
 wls = wls + 0.3D0
 wls0 = real(wls)
 if(wls0 .ge. 360.) wls0 = 360. - wls0
 if(wls0 .ge. 360.) wls0 = 360. - wls0
 wlt0 = (wlsc - wls0)
 if(wlt0 .lt. 0.) wlt0 = wlt0 + 360.
 if(wlt0 .gt. 360.) wlt0 = wlt0 - 360.
 return
 end

--
 SUBROUTINE eqn8015(x,y)
--
***** TableCurve H:\missions\Grid2\sun\eqn8015.f Jul 11, 2013 2:14:58 PM
***** H:\missions\Grid2\sun\Jupiter_rotation.xls
***** X= et
***** Y= drift
***** Eqn# 8015 SineSquared(a,b,c,d)

B-7

***** r2=0.998062750570461D0
***** r2adj=0.9980625284088292D0
***** StdErr=0.1736402125675777D0
***** Fval=5990181.452082999D0
***** a= -2.386504709810813D0
***** b= 11.06980649551408D0
***** c= 2.527084753103394D0
***** d= 748890926.9842513D0
***** Constraint: d<>0
--
 DOUBLE PRECISION x,y
 DOUBLE PRECISION n
 n=DSIN(6.2831853071795864770D0*x/748890926.9842513D0+
 12.527084753103394D0)
 y=(-2.386504709810813D0)+11.06980649551408D0*n*n
 RETURN
 END

--
 SUBROUTINE eqn8001(x,y)
--
***** TableCurve C:\Users\rwe\Desktop\New_folder\missions\Grid2\sun\usrsine2.f Jul 24,
2013 9:19:52 PM
***** sub linear
***** X= et
***** Y= sl
***** Eqn# 8001 usr sine(a,b,c,d)
***** r2=0.8488206233876732D0
***** r2adj=0.8488032863031993D0
***** StdErr=0.05617393071274914D0
***** Fval=65281.63833772391D0
***** a= 0.008316332144591362D0
***** b= -0.187912858309531D0
***** c= 0.9993681331650221D0
***** d= 0.472891292232232D0
--
 DOUBLE PRECISION x,y
 TWOPI = 2.*PI

 Y = 0.008316332144591362D0 + 0.187912858309531D0 *
 +SIN(0.9993681331650221D0*TWOPI/187058311.284091 * X +
 +0.472891292232232D0)

 RETURN
 END

 subroutine xtime(xdate,sec)
C find et (sec)
 real*8 sec,nl(25),pl(3)
 character*25 xdate
 character*3 mon,month(12)
 dimension mm(12)
 data month / 'JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG',
 + 'SEP','OCT','NOV','DEC' /
 data mm / 0, 31, 59, 90, 120, 151, 181, 212,
 + 243, 273, 304, 334 /
 data nl /
 +-883655958.82D0,-867931157.82D0,-852033556.82D0,-820497555.82D0,
 +-788961554.82D0,-757425553.82D0,-725803152.82D0,-694267151.82D0,
 +-662731150.82D0,-631195149.82D0,-820497555.82D0,-583934348.82D0,
 +-552398347.82D0,-520862346.82D0,-457703945.82D0,-378734344.82D0,
 +-315575943.82D0,-284039942.82D0,-236779141.82D0,-205243140.82D0,
 +-173707139.82D0,-126273538.82D0,-94651137.82D0,-79012737.82D0,

B-8

 +-31579136.82D0 /
 data pl / 189345664.18D0,284040065.18D0,394372865.18D0 /
 read(xdate(1:4),104) iyyy
 read(xdate(6:8),203) mon
 read(xdate(10:11),102) ida
 read(xdate(13:14),102) ihr
 read(xdate(16:17),102) imi
 read(xdate(19:24),306) sss

C what is et? (good to < 0.001 sec to 2050, good to < 3 sec 1971)
C will fix later for pre 1971 - problem with Spice documentation on
C leapseconds
 if(iyyy .ge. 2000) then
 sec = 0.D0
C 2000 JAN 1 00:00:00.000 is et -43135.82
C count full years between 2000 and year before date
 iyrs = iyyy - 2000
 sec = dble(iyrs)*86400.D0*365.D0 ! 365 day years
C first get rid of the -43135.81607 we carry by counting from 2000
C Jan 01 00:00:00 (J2000 is 2000 JAN 01 11:58:55.8200) We would like
C to start at 00:00:00.000
 sec = sec - 43135.81607D0
C take care of previous leap years
 idx = 0
 if(iyyy .gt. 2000) then
 do i = 2000,iyyy-1
 if(((mod(i,4) .eq. 0) .and. (mod(i,100) .ne. 0)) .or.
 + (mod(i,400)) .eq. 0) idx = idx + 1
 enddo
 endif
C remaining time for year iyyy
 do i = 1,12
 if(mon .eq. month(i)) day = float(mm(i) + ida)
 enddo
 day = day + float(idx)
 sec = sec + dble(day-1)*86400.D0 + dble(ihr)*3600.D0 + dble(imi)
 + *60.D0 + dble(sss)
C is iyyy a leapyear?
 if(day .gt. 59.) then
 if(((mod(iyyy,4) .eq. 0) .and. (mod(iyyy,100) .ne. 0))
 + .or.(mod(iyyy,400)) .eq. 0) sec = sec + 86400.D0
 endif
C finally leap seconds !!!!! Last leap 2012 June 30 !!!! add more as needed
 do i = 1,3
 if (sec .ge. pl(i)) sec = sec + 1
 enddo
 endif

C 2000 JAN 1 00:00:00.000 is et -43135.82
C count full years between 2000 and year of date - include date year
 if(iyyy .le. 1999) then
 idx = 0
 iyrs = iyyy - 2000
 sec = dble(iyrs)*86400.D0*365.D0
C starting from 2000 Jan 1 00:00:00.000
 sec = sec - 43135.81607D0
C take care of leap years
 do i = iyyy,1999
 if(((mod(i,4) .eq. 0) .and. (mod(i,100) .ne. 0)) .or.
 + (mod(i,400)) .eq. 0) idx = idx - 1
 enddo
C backtrack to date
 do i = 1,12

B-9

 if(mon .eq. month(i)) day = float(mm(i))
 enddo
 day = day + float(ida -1)
 sec = sec + dble(day)*86400.D0 + dble(ihr)*3600.D0 + dble(imi)*
 + 60.D0 + dble(sss)
C is iyyy a leapyear?
 if(day .gt. 59.) then
 if(((mod(iyyy,4) .eq. 0) .and. (mod(iyyy,100) .ne. 0))
 + .or.(mod(iyyy,400)) .eq. 0) sec = sec + 86400.D0
 endif
C finally leap seconds !!!!! Last leap 2012 June 30 !!!! add more as needed
 do i = 1,25
 if (sec .le. nl(i)) sec = sec - 1.D0
 enddo
 endif
 102 format(i2)
 104 format(i4)
 203 format(a3)
 306 format(f6.3)
 return
 end

--
 SUBROUTINE eqn8015(x,y)
--
***** TableCurve H:\missions\Grid2\sun\eqn8015.f Jul 11, 2013 2:14:58 PM
***** H:\missions\Grid2\sun\Jupiter_rotation.xls
***** X= et
***** Y= drift
***** Eqn# 8015 SineSquared(a,b,c,d)
***** r2=0.998062750570461D0
***** r2adj=0.9980625284088292D0
***** StdErr=0.1736402125675777D0
***** Fval=5990181.452082999D0
***** a= -2.386504709810813D0
***** b= 11.06980649551408D0
***** c= 2.527084753103394D0
***** d= 748890926.9842513D0
***** Constraint: d<>0
--
 DOUBLE PRECISION x,y
 DOUBLE PRECISION n
 n=DSIN(6.2831853071795864770D0*x/748890926.9842513D0+
 12.527084753103394D0)
 y=(-2.386504709810813D0)+11.06980649551408D0*n*n
 RETURN
 END

--
 SUBROUTINE eqn8001(x,y)
--
***** TableCurve C:\Users\rwe\Desktop\New_folder\missions\Grid2\sun\usrsine2.f Jul 24,
2013 9:19:52 PM
***** sub linear
***** X= et
***** Y= sl
***** Eqn# 8001 usr sine(a,b,c,d)
***** r2=0.8488206233876732D0
***** r2adj=0.8488032863031993D0
***** StdErr=0.05617393071274914D0
***** Fval=65281.63833772391D0
***** a= 0.008316332144591362D0

B-10

***** b= -0.187912858309531D0
***** c= 0.9993681331650221D0
***** d= 0.472891292232232D0
--
 DOUBLE PRECISION x,y
 TWOPI = 2.*PI

 Y = 0.008316332144591362D0 + 0.187912858309531D0 *
 +SIN(0.9993681331650221D0*TWOPI/187058311.284091 * X +
 +0.472891292232232D0)

 RETURN
 END

 subroutine xtime(xdate,sec)
C find et (sec)
 real*8 sec,nl(25),pl(3)
 character*25 xdate
 character*3 mon,month(12)
 dimension mm(12)
 data month / 'JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG',
 + 'SEP','OCT','NOV','DEC' /
 data mm / 0, 31, 59, 90, 120, 151, 181, 212,
 + 243, 273, 304, 334 /
 data nl /
 +-883655958.82D0,-867931157.82D0,-852033556.82D0,-820497555.82D0,
 +-788961554.82D0,-757425553.82D0,-725803152.82D0,-694267151.82D0,
 +-662731150.82D0,-631195149.82D0,-820497555.82D0,-583934348.82D0,
 +-552398347.82D0,-520862346.82D0,-457703945.82D0,-378734344.82D0,
 +-315575943.82D0,-284039942.82D0,-236779141.82D0,-205243140.82D0,
 +-173707139.82D0,-126273538.82D0,-94651137.82D0,-79012737.82D0,
 +-31579136.82D0 /
 data pl / 189345664.18D0,284040065.18D0,394372865.18D0 /
 read(xdate(1:4),104) iyyy
 read(xdate(6:8),203) mon
 read(xdate(10:11),102) ida
 read(xdate(13:14),102) ihr
 read(xdate(16:17),102) imi
 read(xdate(19:24),306) sss

C what is et? (good to < 0.001 sec to 2050, good to < 3 sec 1971)
C will fix later for pre 1971 - problem with Spice documentation on
C leapseconds
 if(iyyy .ge. 2000) then
 sec = 0.D0
C 2000 JAN 1 00:00:00.000 is et -43135.82
C count full years between 2000 and year before date
 iyrs = iyyy - 2000
 sec = dble(iyrs)*86400.D0*365.D0 ! 365 day years
C first get rid of the -43135.81607 we carry by counting from 2000
C Jan 01 00:00:00 (J2000 is 2000 JAN 01 11:58:55.8200) We would like
C to start at 00:00:00.000
 sec = sec - 43135.81607D0
C take care of previous leap years
 idx = 0
 if(iyyy .gt. 2000) then
 do i = 2000,iyyy-1
 if(((mod(i,4) .eq. 0) .and. (mod(i,100) .ne. 0)) .or.
 + (mod(i,400)) .eq. 0) idx = idx + 1
 enddo
 endif
C remaining time for year iyyy
 do i = 1,12

B-11

 if(mon .eq. month(i)) day = float(mm(i) + ida)
 enddo
 day = day + float(idx)
 sec = sec + dble(day-1)*86400.D0 + dble(ihr)*3600.D0 + dble(imi)
 + *60.D0 + dble(sss)
C is iyyy a leapyear?
 if(day .gt. 59.) then
 if(((mod(iyyy,4) .eq. 0) .and. (mod(iyyy,100) .ne. 0))
 + .or.(mod(iyyy,400)) .eq. 0) sec = sec + 86400.D0
 endif
C finally leap seconds !!!!! Last leap 2012 June 30 !!!! add more as needed
 do i = 1,3
 if (sec .ge. pl(i)) sec = sec + 1
 enddo
 endif

C 2000 JAN 1 00:00:00.000 is et -43135.82
C count full years between 2000 and year of date - include date year
 if(iyyy .le. 1999) then
 idx = 0
 iyrs = iyyy - 2000
 sec = dble(iyrs)*86400.D0*365.D0
C starting from 2000 Jan 1 00:00:00.000
 sec = sec - 43135.81607D0
C take care of leap years
 do i = iyyy,1999
 if(((mod(i,4) .eq. 0) .and. (mod(i,100) .ne. 0)) .or.
 + (mod(i,400)) .eq. 0) idx = idx - 1
 enddo
C backtrack to date
 do i = 1,12
 if(mon .eq. month(i)) day = float(mm(i))
 enddo
 day = day + float(ida -1)
 sec = sec + dble(day)*86400.D0 + dble(ihr)*3600.D0 + dble(imi)*
 + 60.D0 + dble(sss)
C is iyyy a leapyear?
 if(day .gt. 59.) then
 if(((mod(iyyy,4) .eq. 0) .and. (mod(iyyy,100) .ne. 0))
 + .or.(mod(iyyy,400)) .eq. 0) sec = sec + 86400.D0
 endif
C finally leap seconds !!!!! Last leap 2012 June 30 !!!! add more as needed
 do i = 1,25
 if (sec .le. nl(i)) sec = sec - 1.D0
 enddo
 endif
 102 format(i2)
 104 format(i4)
 203 format(a3)
 306 format(f6.3)
 return
 end

C-1

C. Sample Record in jfluence
For those who want to implement the Grid2 into their own programs, the above program listing
has the algorithm to find records that have positions that surround the spacecraft position for a
specific local time (Locations < 15 Rj ignore local time) highlighted in yellow.

For graphics, the grid is probably too course in range to use as is. You can define your own grid
and use it as “spacecraft positions” below. Interpolate between grid points using the same
algorithm. In this case you will have to switch shells as you go around Jupiter in local time.

Below is an explanation of the highlighted lines, not in order of the program listing.

Find an index (iri) associated with range (database range < range).
 irj = 0
 do i = 1,100
 if(rj .gt. rdb(i)) irj = i
 enddo

The program listing has a data statement that list rdb near the top of the program.

Or skip point
C if irj out of range read another record.
 if(irj .eq. 0. .or. irj .eq. 100) go to 1

Find index associated with latitude (ial) and West longitude (iwl)
 if(alat .eq. 90.) alat = alat - 0.0001 ! for proper integer below
 ial = int(alat + 90.)/2
 iwl = int(wlong)/3

Calculate initial records for 8 bounding positions, the “cuboid”
C irec for bounding 'cuboid'
 irec(1) = iwl + ial*120 + (irj-1)*10920 ! minr minal minwl
 irec(2) = iwl + (ial+1)*120 + (irj-1)*10920 ! minr maxal minwl
 irec(3) = iwl+1 + ial*120 + (irj-1)*10920 ! minr minal maxwl
 irec(4) = iwl+1 + (ial+1)*120 + (irj-1)*10920 ! minr maxal maxwl
 irec(5) = iwl + ial*120 + irj*10920 ! maxr minal minwl
 irec(6) = iwl + (ial+1)*120 + irj*10920 ! maxr minal maxwl
 irec(7) = iwl+1 + ial*120 + irj*10920 ! maxr maxal minwl
 irec(8) = iwl+1 + (ial+1)*120 + irj*10920 ! maxr maxal maxwl

include 0 in 330-360 shell
 if (iwl .eq. 0) then
 irec(1) = 120 + ial*120 + (irj-1)*10920 ! 360 --> 0
 irec(2) = 120 + (ial+1)*120 + (irj-1)*10920 ! 360 --> 0
 irec(5) = 120 + ial*120 + irj *10920 ! 360 --> 0
 irec(6) = 120 + (ial+1)*120 + irj *10920 ! 360 --> 0
 endif

Use et (calculated) or etx (supplied) to find out which shell

First, is et supplied?
C find et (don't skip dates where Range is out of bounds to avoid LARGE
C delta T, use etx if available
 if(etx .eq. 0.D0) call xtime(date,et)
 if(etx .ne. 0.D0) et = etx
 if(n .eq. 1)etold = et

C-2

Find spacecraft local time (wlt0)
 if(rj .gt. rdb(80)) then
 call jup(et,wlong,wlt0)

Find index of record

The program listing has a data statement that lists wlx near the top of the program:

C -15 to 15, 15-45, etc.
 do i = 2,14
 if(wlt0 .ge. wlx(i-1) .and. wlt0 .lt. wlx(i))
 + irecx= ireca(i) - 79 * 10920
 enddo
 do i = 1,8
 irec(i) = irec(i) + irecx
 enddo
 endif

The core grid is in records 1-873600
Shell grids for Spacecraft Local times are

Local time range records
015-045 873601-1102920
045-075 1102921-1332240
075-105 1332241-1561560
105-135 1561561-1790880
135-165 1790881-2020200
165-195 2020201-2249520
195-225 2249521-2478840
225-255 2478841-2708160
255-285 2708161-2937480
285-315 2937481-3166800
315-345 3166801-3396120
345-015 3396121-3625440

C-3

What is in a record?
A record contains record #, range (Rj), latitude (degrees), West-longitude(degrees), L,
Bspacecraft (Gauss), Bequator (Gauss), trash and 17 electron fluxes (fe#), 17 proton fluxes (fp#)
for energies. The 17 energies are in bins at mega electron volt levels of 0.10, 0.20, 0.30, 0.50,
1.00, 2.00, 3.00, 5.00, 10.00, 20.00, 30.00, 50.00, 100.00, 200.00, 300.00, 500.00, and 1000.00).

The quantity labeled “trash” was supposed to be zmap (from Khurana, Ref. 3), but the wrong
column was selected—zmap is not used by Grid2, just used to produce the local time shells. It is
worthless for including in the grid, and trash can be later eliminated later – saving 36 MB in the
file. Range, Latitude, Wlong, L, Bsc, Beq are also not needed for fluences calculations, the first
three can be found by the program and the last were left in for other work. Eliminating these
would also save an additional 250 MB.

Record # Range(RJ) Latitude(d) Wlong(d) L Bsc Beq
Trash fe1 fe2 fe3 fe4 fe5 fe6
fe7 fe8 fe9 fe10 fe11 fe12 fe13
fe14 fe15 fe16 fe17 fp1 fp2 fp3
fp4 fp5 fp6 fp7 fp8 fp9 fp10
fp11 fp12 fp13 fp14 fp15 fp16 fp17

Read a record with (RECL=418)
 read(12,REC=irec(i))line

Then read off quantities within a record with
 read(line,11) ict(i),ry(i),alay(i),wly(i),by(i),beqy(i),aly(i)
 + ,blaty(i),(ay(i,j),j=1,34)
11 format(i8,41(1x,e9.3))

 1058 0.103E+01 -.740E+02 0.294E+03 0.828E+01 0.235E-02 0.103E+02
0.900E+02 0.179E+09 0.111E+09 0.812E+08 0.522E+08 0.257E+08 0.107E+08
0.588E+07 0.248E+07 0.640E+06 0.139E+06 0.535E+05 0.154E+05 0.271E+04
0.462E+03 0.162E+03 0.424E+02 0.604E+01 0.144E+09 0.114E+08 0.260E+07
0.405E+06 0.337E+05 0.318E+04 0.921E+03 0.244E+03 0.594E+02 0.177E+02
0.829E+01 0.280E+01 0.553E+00 0.105E+00 0.397E-01 0.116E-01 0.219E-02

 D-1

D. Acronyms and Abbreviations
ΔT difference in time

Alat spacecraft latitude (deg)
ASCII American Standard Code for Information Interchange
B Magnetic field parameter in McIlwain B-L magnetic coordinate system

Date date in NAIF/SPICE format YYYY MMM DD hh:mm:ss
 Example: 2024 JAN 02 00:00:00.0000

et ephemeris time based on J2000 (in seconds)
etx ephemeris time J2000 (in seconds)

GIRE Galileo Interim Radiation Electron model [original version]
GIRE2 Galileo Interim Radiation Electron model 2 [latest version]
Grid original grid array model (there was no Grid1)
Grid2 current upgraded grid array model

ial index associated with latitude

J2000 international standard for starting time referencing noon, Jan. 1, 2000
jfluence Grid2 output file for Jupiter fluence
JPL Jet Propulsion Laboratory

L dipole shell parameter for the McIlwain B-L magnetic coordinate system

MeV mega electron volt

NAIF (NASA) Navigation and Ancillary Information Facility (established at the Jet
Propulsion Laboratory to lead the design and implementation of the "SPICE"
ancillary information system)

NASA National Aeronautics and Space Administration
NOVICE (radiation transport shielding code from Experimental and Mathematical Physics

Consultants)

R spacecraft range from Jupiter
Rj spacecraft range in Jovian diametersradii

SPICE Spacecraft Planets Instrument C-Matrix Events

Wlong spacecraft West longitude (deg)

 REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden
estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters
Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should
be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number.
 PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

 01-01-2014
2. REPORT TYPE

 JPL Publication

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Grid2: A Program for Rapid Estimation of the Jovian Radiation
Environment

5a. CONTRACT NUMBER

 NNN12AA01C
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

R. W. Evans
D. E. Brinza

5d. PROJECT NUMBER

105473
5e. TASK NUMBER

03.13.01
5f. WORK UNIT NUMBER

105473-03.13.01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91009

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 JPL Pub 14-8

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 10. SPONSORING/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
 REPORT NUMBER

JPL Pub 14-8

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified—Unlimited
Subject Category: Space Radiation

Availability: NASA CASI (757) 864-9658 Distribution: Nonstandard
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Grid2 is a program that utilizes the Galileo Interim Radiation Electron model 2 (GIRE2) Jovian radiation model to
compute fluences and doses for Jupiter missions. (Note: The iterations of these two softwares have been GIRE and
GIRE2; likewise Grid and Grid2.) While GIRE2 is an important improvement over the original GIRE radiation model,
the GIRE2 model can take as long as a day or more to compute these quantities for a complete mission. Grid2 fits
the results of the detailed GIRE2 code with a set of grids in local time and position thereby greatly speeding up the
execution of the model—minutes as opposed to days. The Grid2 model covers the time period from 1971 to 2050
and distances of 1.03 to 30 Jovian diameters (Rj). It is available as a direct-access database through a FORTRAN
interface program. The new database is only slightly larger than the original grid version: 1.5 gigabytes (GB) versus
1.2 GB.
15. SUBJECT TERMS

Jovian radiation, Europa, flyby mission,

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
 OF ABSTRACT

 UU

18. NUMBER OF
 PAGES

30

19a. NAME OF RESPONSIBLE PERSON

HQ-STI-INFODESK at hq-sti-
infodesk@mail.nasa.gov

a. REPORT

 U
b. ABSTRACT

 U
c. THIS PAGE

 U
19b. TELEPHONE NUMBER (Include area code)

757-864-9658

	1. Summary
	2. Introduction
	3. Implementation
	4. Results
	5. Use of the FORTRAN Program
	6. Conclusions
	7. References
	8. Appendices
	A. Epicycles on Epicycles
	B. Gridgire2.f—FORTRAN Listing
	C. Sample Record in jfluence
	D. Acronyms and Abbreviations

