

Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

5 January, 2016

Andrew J. Herron, William A. Crosby, and Darren K. Reed NASA/George C. Marshall Space Flight Center 54th AIAA Aerospace Sciences Meeting 4-8 January, 2016 San Diego, California

- Objectives
- Test Models
- Instrumentation
- Test Details
- Data Analysis
- Results
- Conclusions

Objectives

Primary Objective

 Collect sufficient high frequency fluctuating pressure time histories for baseline SLS Block 1 and 1B models to determine ascent aeroacoustic external environments

Secondary Objectives

- Collect surface static pressure measurements
 - Compartment venting
 - Protuberance airloads
 - CFD substantiation
 - MPCV flush air data system calibration
- Study alternate booster nose caps (NASA Engineering and Safety Center)
- Determine buffet and acoustic mitigation option (BMO and AMO) effectiveness

Test Models

- 2.5% Full Stack
 - Block 1 SLS-10003 OML with updates for -10004 OML
 - Block 1B SLS-27000 (cargo) OML
 - Five NESC nose caps, 21 BMO and AMO
- 4% Forebody (truncated at SRB tip)
 - Block 1 SLS-10003 OML with updates for -10004 OML
 - Block 1B SLS-28000 (crew) OML

NESC Booster Nose Caps

AMO and BMOs

Full Stack Protuberances

Full Stack Protuberances

Forebody Protuberances

Instrumentation

• Dynamic Transducers

- Kulite Semiconductor Inc. XCL-072-5D and -15D ultra-miniature high frequency pressure transducer
- Included individual temperature compensation modules and Omnetics connectors
- Mounted via individually contoured holders
- Five cross-correlation patches
- Primarily newly purchased with additional needs met using salvaged transducers
- ARC provided custom-built amplifiers located in sting
- Static Measurements
 - Mounted via individual contoured holders
 - Two 64-channel electronically scanned pressure (ESP) transducer modules with temperature compensation

Model	Dynamic Transducers	Static Measurements
SLS-10003, 2.5%	161	39
SRB, 2.5%	60	23
SLS-27000, 2.5%	177	60
SLS-10003, 4%	65	62 + 9 FADS
SLS-28000, 4%	80	58 + 9 FADS

- Test Facility: NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT)
 - 11' Transonic Wind Tunnel (TWT) : Mach = 0.70 1.40
 - 9'x7' Supersonic Wind Tunnel (SWT): Mach = 1.55 2.50
- Facility Test Number: T11-0265, T97-0266, T11-0273, T97-0274
- Test Dates
 - First Campaign: August 19th September 5th, 2013
 - Second Campaign: December 16th, 2013 January 8th, 2014
- Angle of Attack/Side Slip Angle: α/β = 0°, ±1°, ±2°, ±2.83°, ±4°, ±6°
- Mach Sweep: At $\alpha/\beta = 0^\circ$ with full stack Block 1 model
- Reynolds Number:
 - Primary: 3-million/foot
 - Sensitivity study: 5-million/foot
- Sample Rates/Dwell Times Per Condition:
 - 2.5% High Frequency: 153.6 kHz/2.7 seconds, Low Frequency 9.6 kHz/22 seconds
 - 4.0% High Frequency: 102.4 kHz/4 seconds, Low Frequency 6.4 kHz/11.5 seconds
- High Speed Data Acquisition: National Instruments PXI based hardware
 - 24-bit A/D cards
 - 204 ksps
 - DC coupled
 - Manufacturer provided transducer calibration data used
- Visualization
 - Shadowgraph photographs and video
 - Retro-reflective background oriented schlieren (RBOS)

• Amplitude

• Assume: $|\Delta C'_p|_{flight} = |\Delta C'_p|_{tunnel}$ where $\Delta C'_p = \frac{p'_{rms}}{q_{\infty}}$

• Therefore:
$$FPL_{flight} = FPL_{tunnel} + 20log_{10}\left(\frac{q_{\infty,flight}}{q_{\infty,tunnel}}\right)$$

• Frequency

• Assume: $|St|_{flight} = |St|_{tunnel}$ where $St = {}^{fl}/_{U}$

• Therefore:
$$f_{flight} = f_{tunnel} \left(\frac{l_{tunnel}}{l_{flight}} \right) \sqrt{\frac{T_{flight}}{T_{tunnel}}}$$

- Data shown for baseline configurations
 - Standard SRB nose caps
 - No AMO or BMO
- Full bandwidth zonal overall fluctuating pressure levels (OAFPL) as function of vehicle station (10-2000 Hz full scale)
 - TWT Data: Mach = 0.7 1.4
 - SWT Data: Mach = 1.55 2.5
 - α ≤ 4.47°
- Protuberance environments shown in the paper

General Acreage Environments

- All primary and secondary test objectives were accomplished with minimal transducer loss
- Primary Objective: Data have been used to successfully develop ascent aeroacoustic environments
 - SLS-10005 Block 1 design environments released July 2014
 - SLS-27004, SLS-27502, and SLS-28004 preliminary environments released August 2015
- Secondary Objectives: Data are being used for compartment venting environment determination, static CFD substantiation, unsteady CFD development
- Data are advancing the understanding of complex multi-body flow fields

