Filled Nd_zFe_xCo_{4-x}Sb_{12-y}Ge_y skutterudites: processing and thermoelectric properties

Jon Mackey

Materials Science and Engineering, Case Western Reserve University

Alp Sehirlioglu

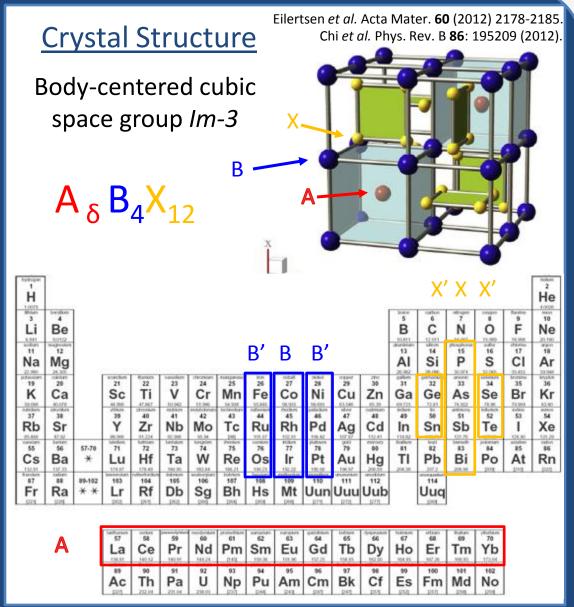
Materials Science and Engineering, Case Western Reserve University

Fred Dynys

NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A NASA/USRA Contract: 04555-004

think beyond the possible



Processing

Properties

System Background

- Skutterudites are based on CoAs₃ mineral; first mined in Skutterud, Norway.
- Exhibit a high figure of merit for n-type systems (ZT=1.7).
- Relatively low cost system.
- Introduce a range of fillers (A) to scatter various phonon wavelengths.
- Introduce disorder on pnictogen ring sites (X).
 - Dominate heat carrying modes are associated with pnictogen vibration.
- Tune electronic properties
 (A,B,X) for optimal thermoelectric power factor .

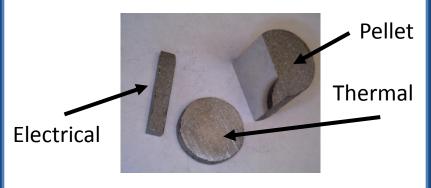
Filled Nd_zFe_xCo_{4-x}Sb_{12-y}Sn_y Skutterudites

Processing

Properties

Skutterudite System Investigated

- Nd filled, Ge doped Fe_xCo_{4-x}Sb₁₂ skutterudite, Nd_zFe_xCo_{4-x}Sb_{12-y}Ge_y.
- •Zhang *et al.* has previously investigated Nd_{0.6}Fe₂Co₂Sb_{12-v}Ge_v system.
 - •Reported peak p-type ZT 1.1 for y=0.15.
 - Reported formation of a nanostructured precipitate, reported to lower thermal conductivity and cause high ZT.
- Interested to expand the parameter space of Zhang's work.
 - •Nd level z = {0 0.8}
 - •Fe level x ={1,2,3}
 - •Ge level y ={0,0.15}


Zhang et al. J. Appl. Phys. 114 (2013).

<u>Objectives</u>

- Focus on finding a p-type skutterudite with improved ZT.
- •Study thermoelectric behavior of the skutterudite

Nd_zFe_xCo_{4-x}Sb_{12-y}Ge_y.

- Study processing conditions.
- Study effect of composition on properties.
- Samples created from a melt/mill/hot press procedure.

Processing

Properties

Processing Conditions

- Ingots were fabricated by solidification.
 - 1100°C for 1 hour
 - •10°C/min cooling rate
 - Ingot dimensions 1" diameter, 2" height
 - •He atmosphere
 - Carbon crucibles
- Ingots crushed in mortar and pestle then milled.
 - Planetary ball mill
 - •WC milling jar and media
 - •500 rpm for 3-6 hours
- Powder was consolidated in a hot press.
 - •520-575°C with 62 MPa for ½ hour
 - •1.5°C/min cooling rate
 - •½" graphite die, lined with grafoil
- •All compositions were processed with identical conditions.

Solidified Ingot

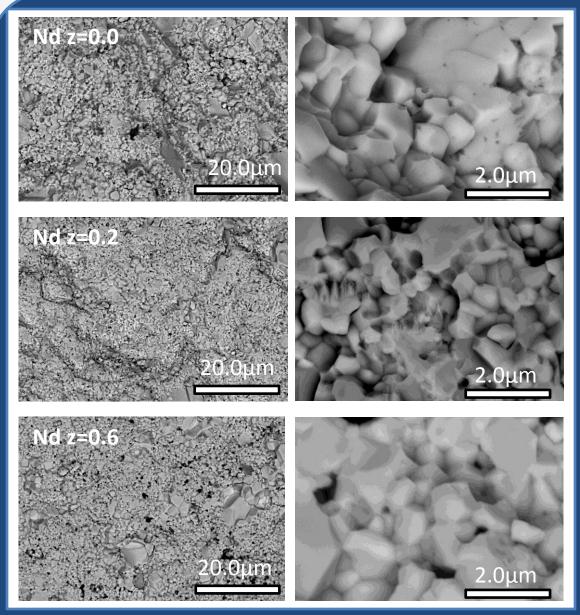
Hot Pressed Pellet

Processing

Properties

X-Ray Diffraction

- Powder XRD of crushed pellets was evaluated with Rietveld refinement.
- Main phase is SKD structure, secondary phases include FeSb₂ and Sb.
- SKD phase purity decreases significantly for Nd<0.5 and Fe>2, no major impact from Ge.
- Filler occupancy increases with Nd level from 0 to 0.6 then levels off with maximum around 0.6.


X-Ray Diffraction Summary

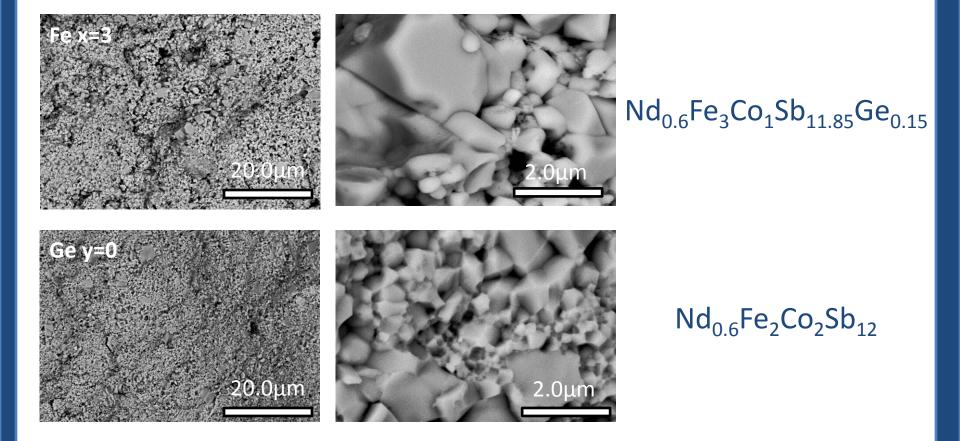
Nd Level (z)	Fe Level (x)	Ge Level (y)	SKD Phase (wt%)	Filler Occupancy
0.0	2	0.15	57	0.00
0.2	2	0.15	62	0.16
0.4	2	0.15	66	0.23
0.5	2	0.15	87	0.45
0.6	2	0.15	100	0.62
0.7	2	0.15	95	0.52
0.8	2	0.15	96	0.60
0.6	3	0.15	57	0.67
0.6	2	0.15	100	0.62
0.6	1	0.15	100	0.27
0.6	2	0.00	90	0.43
0.6	2	0.15	100	0.62
		J		

Nominal Composition

Processing

Properties

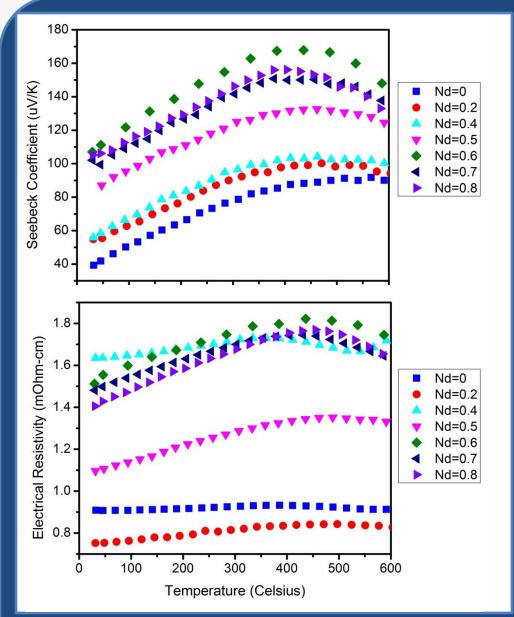
Nd₇Fe₂Co₂Sb_{11.85}Ge_{0.15}


Microstructure

- Similar microstructures for all hot pressed samples, no clear trends for composition.
- Grain size is bimodal with majority of grains 1-2μm, and others as large as 15μm.
- •All samples had similar density (>96%) except for the sample with Fe content of 3 (90%).

Filled Nd_zFe_xCo_{4-x}Sb_{12-y}Sn_y Skutterudites

Processing

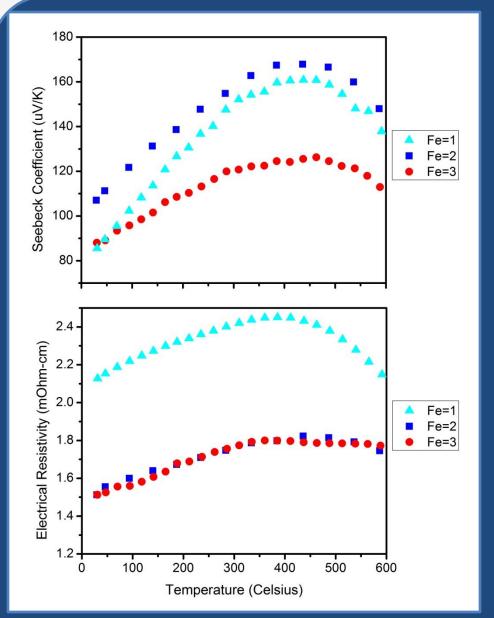

Properties

Filled Nd_zFe_xCo_{4-x}Sb_{12-y}Sn_y Skutterudites

Processing

Properties

$Nd_{z}Fe_{2}Co_{2}Sb_{11.85}Ge_{0.15}$


Seebeck and Resistivity

- Seebeck coefficient trends well with Nd content. Increases with increasing Nd content from 0 to 0.6 then decreases.
- Electrical resistivity does not trend well with Nd content. It trends more with SKD phase purity than Nd content, secondary phases are metallic.
- More phase pure samples

 (0.5<Nd<0.8) had higher
 electrical resistivity than the less
 phase pure samples.

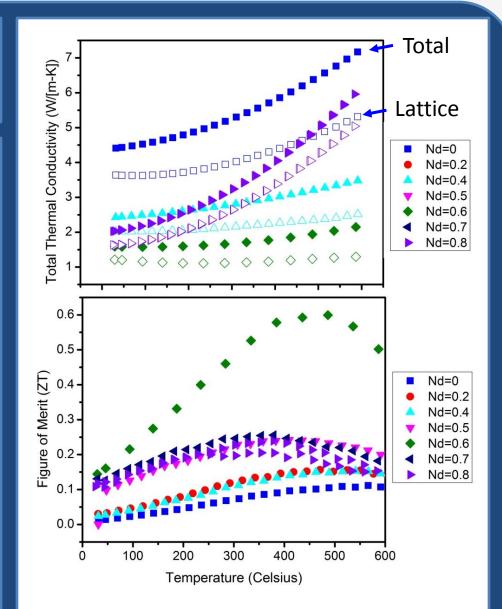
Processing

Properties

$$Nd_{0.6}Fe_{x}Co_{4-x}Sb_{11.85}Ge_{0.15}$$

Seebeck and Resistivity

- Seebeck coefficient is maximum for Fe content of 2, slightly lower for 1 and significantly lower for Fe 3.
- Electrical resistivity for Fe 1 is highest, with nearly identical resistivity for both Fe 2 and 3.
- In summary, Power factor is maximum for Fe content of 2 and lower for 1 and 3.


Processing

Properties

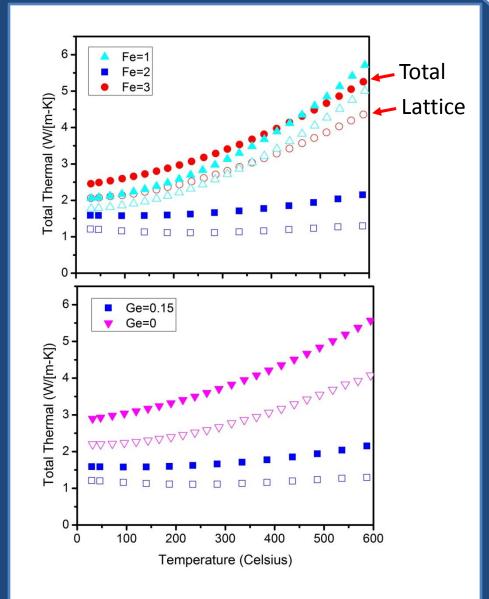
$Nd_{z}Fe_{2}Co_{2}Sb_{11.85}Ge_{0.15}$

Thermal and Figure of Merit

- •Lattice thermal conductivity (open symbols) is calculated using a single parabolic band model.
- •Only select samples are shown to avoid crowding the data.
- Lattice conductivity decreases with increasing Nd content up to 0.6.
- Highest ZT is obtained for the Nd 0.6 sample as a result of the low thermal conductivity.
 - •The same composition in Zhang's paper reported ZT peak 1.1.

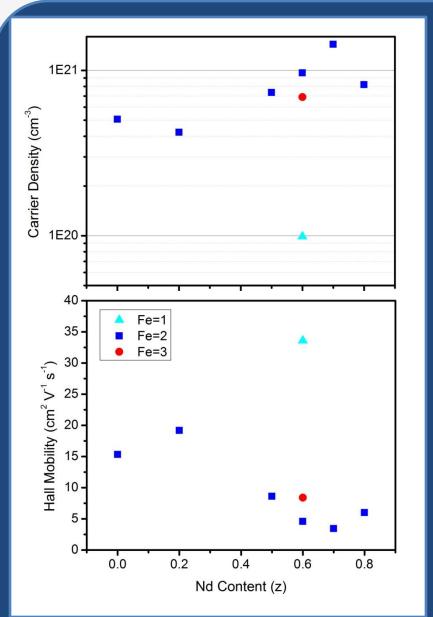
Filled Nd_zFe_xCo_{4-x}Sb_{12-v}Sn_v Skutterudites

Processing


Properties

 $Nd_{0.6}Fe_{x}Co_{4-x}Sb_{11.85}Ge_{0.15}$ $Nd_{0.6}Fe_{2}Co_{2}Sb_{12-y}Ge_{y}$

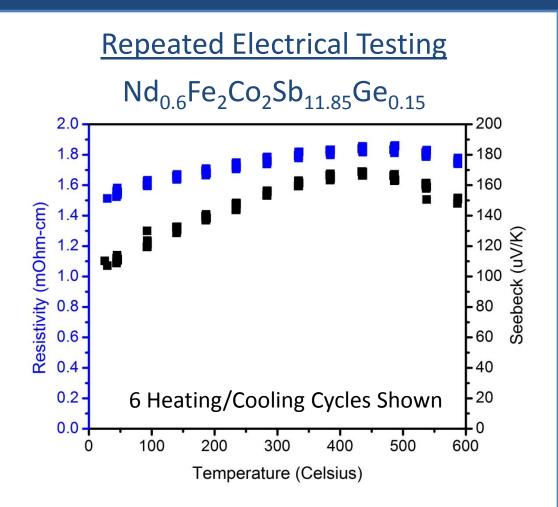
Thermal Conductivity


- Lattice thermal conductivity is minimized for Fe content of 2.
- Fe content of 1 and 3 have similar thermal conductivity.
 - Suggests phonon scattering from Fe-Co bond. Maximized for Fe content of 2.
- •Ge reduces lattice component of thermal conductivity.
 - Stronger scattering effect from Ge-Sb bond as Ge content is much lower than Fe content.

Chi et al. Phys. Rev. B 86: 195209 (2012).

Processing

Properties


$Nd_{z}Fe_{x}Co_{4\text{-}x}Sb_{11.85}Ge_{0.15}$

Room Temperature Hall

- Carrier density increases with Nd content up to 0.7, while hall mobility decreases.
- Carrier density and hall mobility show strongest change as a result of Fe content.
 - Hall mobility is minimized and carrier density maximized for Fe content of 2.
 - Fe content of 1 produces the lowest carrier density and highest mobility.
- SPB modeling on the system shows optimal ZT around 2x10¹⁹ cm⁻³.

Processing

Properties

Property Stability

- Electrical properties were tested on slow repeating loops, to investigate phase stability.
- Samples were measured from 25 to 600°C, on 18 hour loops.
- No change observed after 6 cycles.
- •XRD of samples annealed at 650°C for 72 hours in N₂ atmosphere showed no change in phase content.

Properties

<u>Conclusions</u>

- Fe and Nd content are critical in phase purity of the skutterudite phase, while Ge plays a lesser role.
- Microstructures of hot pressed samples are composed primarily of 1-2 μ m grains of SKD with FeSb₂ and Sb phases.
- Electrical and thermal properties are dependent on Nd, Fe, and Ge level.
 - Highest figure of merit was achieved for Nd_{0.6}Fe₂Co₂Sb_{11.85}Ge_{0.15} peak ZT 0.6.
 - Published literature reported ZT 1.1 for the same composition.
 - 45% discrepancy may be partially attributed to experimental uncertainty, but not totally.
- Electrical properties and XRD phase are thermally stable.

Acknowledgements

- Tom Sabo, Ben Kowalski Case Western Reserve University Bethany Hudak, Dr. Beth Guiton University of Kentucky Dr. Sabah Bux, Dr. Jean-Pierre Fleurial
 - NASA JPL

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004

