STELLAR ORIGINS OF 13C- AND 15N-ENRICHED PRESOLAR SIC GRAINS

Nan Liu¹, Larry R. Nittler¹, Conel M. O'D. Alexander¹, Jianhua Wang¹, Marco Pignatari^{2,3}, Jordi Josè⁴ & Ann Nguyen⁵

- ¹ Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC, USA;
- ² E. A. Milne Centre for Astrophysics, Department of Physics & Mathematics, University of Hull, UK;
- ³ Konkoly Observatory, Hungarian Academy of Science, Budapest, Hungary;
- ⁴ Department de Fisica, EUETIB, Universitat Politècnica de Catalunva, Barcelona, Spain;
- ⁵ Jacobs, NASA Johnson Space Center, Houston, TX, USA.

Extreme excesses of ¹³C (¹²C/¹³C<10) and ¹⁵N (¹⁴N/¹⁵N<20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae [1], though an origin in core-collapse supernovae (CCSNe) has also been proposed [2]. We report multi-element isotopic data for 19 ¹³C- and ¹⁵N-enriched presolar SiC grains (12C/13C<16 and 14N/15N<~150) from an acid-resistant residue of the Murchison meteorite. These grains are enriched in ¹³C and ¹⁵N, but with quite diverse Si isotopic signatures. Four grains with ^{29,30}Si excesses similar to those of type C SiC grains likely came from CCSNe that experienced explosive H burning occurred during their explosions [3]. The independent coexistence of proton- and neutroncapture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in at least some pre-supernova massive stars. Also, we found that seven ¹⁵N-enriched AB grains (~25<¹⁴N/¹⁵N<~150) have distinctive isotopic signatures compared to eight putative nova grains with 30Si excesses and ²⁹Si depletions, such as higher ¹⁴N/¹⁵N, lower ²⁶Al/²⁷Al, and lack of ³⁰Si excess, indicating weaker proton-capture nucleosynthetic environments. Interestingly, two of the eight putative nova grains and four of the seven ¹⁵N-enriched AB grains show lower-than-solar 34S/32S ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario.

- [1] S. Amari et al., ApJ **551**, 1065 (2001).
- [2] L. R. Nittler & P. Hoppe, ApJ **631**, L89 (2005).
- [3] M. Pignatari et al., ApJ 808, L43 (2015).