National Aeronautics and Space Administration

Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

Jacob Englander 3-14-2016

NAVIGATION & MISSION DESIGN BRANCH NASA GSFC

www.nasa.gov

EMTG: The Team

- NASA Goddard Space Flight Center
 - Jacob Englander
 - Jeremy Knittel
- a.i. solutions
 - Matthew Vavrina
- University of Illinois at Urbana-Champaign
 - Donald Ellison
 - Ryne Beeson
 - Dr. Alexander Ghosh
 - Professor Bruce Conway
- University of Vermont
 - David Hinckley
- FBCM
 - Arnold Englander

Why an automated design tool?

- Interplanetary mission design is highly complex. Analysts must design maneuvers and choose launch dates, flight times, encounter epochs, and in many cases a flyby sequence or even a set of science targets.
- This process is even more complex for missions employing low-thrust electric propulsion because each possible spacecraft design dramatically affects the trajectory.
- Designing even a single interplanetary trajectory is an expensive process. It is even more expensive to explore a broad trade space of missions to find the relationship between science return, cost, and risk.
- An automated tool shifts much of the work from the analyst to a computer, allowing the analyst to spend more time collaborating with the science team and better understand their needs.

EMTG Design Capabilities

Propulsion Types

- High-thrust chemical
- Low-thrust electric

Mission Components

- Deep-space maneuvers
- Gravity Assists
- Asteroid Rendezvous/Flyby
- Sample Return/Planetary Landing
- Launch Vehicle selection

Spacecraft Systems

- Power system sizing
- Propulsion system sizing

Mission Objectives

- Maximize science payload
- Minimize flight time
- Visit as many diverse bodies as possible
- Maximize encounter energy (for planetary defense)

Operational and Science Constraints

- Atmospheric entry
- Solar distance
- Any other constraints on final orbit

Mission and Systems Design via Hybrid Optimal Control

- The interplanetary mission design problem has two types of variables:
 - Discrete variables encoding the mission sequence and choice of spacecraft systems (launch vehicle, power, propulsion)
 - Continuous variables defining the trajectory
- In Hybrid Optimal Control, the problem is divided into two nested loops.
 - The *outer-loop* solves the discrete problem and identifies candidate missions.
 - The continuous *inner-loop* then finds the optimal trajectory for each candidate mission.
- But in this tutorial, due to time constraints, we will focus solely on the inner-loop solver

Discrete Optimization of the Mission Sequence and Spacecraft Systems

- EMTG's outer-loop finds the non-dominated set of missions, those which are not strictly better or worse than other missions in the set based on all of the analyst's chosen objective functions
- EMTG uses a version of the Non-Dominated Sorting Genetic Algorithm II (NSGAII) which can evolve to the final non-dominated trade front despite starting from complete randomness. No *a priori* knowledge of the solution is required.

Trajectory Optimization via Monotonic Basin Hopping and Nonlinear Programming

- EMTG's inner-loop finds the optimal trajectory using a stochastic global search method called Monotonic Basin Hopping (MBH) coupled with a gradient-based local search supplied by the third-party Sparse Nonlinear Optimizer (SNOPT).
- EMTG does not require an initial guess and can find the global optimum autonomously.

 x_1

Some nuts and bolts

- EMTG is available open-source at <u>https://sourceforge.net/projects/emtg/</u>
- EMTG is written in C++ and the user interface, PyEMTG, is written in Python 2.7
 - Why Python 2.7? That's what I started with. We welcome collaborators who want to take on the challenge of migrating us to Python 3!
- EMTG is script-driven; all PyEMTG does is write scripts and read output files
- To compile EMTG, one also needs the Boost C++ extensions, the CSPICE ephemeris library, and most importantly SNOPT.
- PyEMTG depends on wxPython
- If one is using the outer-loop, it is possible to link EMTG to MPI for parallel processing. The inner-loop is serial.
- EMTG is happily cross-platform and is used operationally on OSX, Windows, and Linux.

Let's play with EMTG...

- Today we are going to design two missions in EMTG
 - OSIRIS-REx
 - A New Frontiers class mission to acquire a sample from near-Earth asteroid Bennu and return it to Earth
 - LowSIRIS-REx
 - Academic problem which is very similar to OSIRIS-REx but uses low-thrust electric propulsion
- In the next several slides, we will walk you through how to create these missions in EMTG
- Start your PyEMTG...

Configuring PyEMTG

- Edit your PyEMTG.options to ensure that PyEMTG has paths to:
 - EMTG executable
 - Universe folder (where all ephemeris-related things live)
 - Your small bodies file (optional file for searching for targets of opportunity)

EMTG_path D:\Projects\EMTGv8_sourceforge\branch\Jacob_MGANDSM_and_GMAT\bin\emtg.exe default_universe_path D:\Projects\EMTGv8_sourceforge\EMTG_libraries\Universe default_small_bodies_file D:\Projects\EMTGv8_sourceforge\EMTG_libraries\Universe\ephemeris_files\AllAsteroids.SmallBody

Chemical Mission Modeling in EMTG

OSIRIS-REx Step 1a: Acquire body ephemeris data

- EMTG is most accurate when a SPICE kernel is provided for each body of interest
- You can create a SPICE kernel for any body in the HORIZONS database at: <u>http://ssd.jpl.nasa.gov/x/spk.html</u>
 - Place SPICE kernels in your 'EMTG_root/Universe/ephemeris_files/' directory
- Alternatively you may specify Keplerian orbit elements. This results in faster EMTG execution but less accuracy.

OSIRIS-REx Step 1b: Create a Universe file to teach EMTG about your body(ies)

- Users make EMTG aware of a body by putting entering it into a "Universe" file
- Every journey in an EMTG mission can have a different Universe file if you so desire but you can use on Universe file for the whole mission.
- Create a body and tell EMTG your new body's SPICE ID and name. If you are using SPICE, all you need to enter is name, shortname, and SPICE_ID.

Universe Properties Universe Body Prop	verse Properties Universe Body Properties		Universe Properties Universe Body Properties					
		Earth	name	Bennu				
Universe name	Sun	Mars Jupiter	shortname	Bennu				
Central body SPICE ID	10	Saturn	SPICE_ID	2101955				
Central body radius (km)	4379000.0	Neptune =	minimum flyby altitude	-1				
		Pluto	mass	1000.0				
mu (km^3/s^2)	1.32712440018e+11	Ceres	radius	1000.0				
characteristic length unit (km)	149597870.691	Bennu	ephemeris_epoch	51544				
sphere of influence radius (km)	747000252500	Add new body	alpha0 (deg)	0.0				
sphere of influence radius (km)	/4/989353500	Remove body	alphadot (deg/century)	0.0				
minimum safe distance from origin (km)	2000000.0	Move body up	delta0 (deg)	0.0				
alpha0	-90.0	Move body down	deltadot (deg/century)	0.0				
			W (deg)	0.0				
alphadot	0		Wdot (deg/century)	0.0				
delta0	66.56070900000003		SMA (km)	150000000.0				
deltadot	0		ECC	0.0				
	0		INC (deg)	1e-06				
WO	84.176		RAAN (deg)	1e-06				
Wdot	14.1844000		AOP (deg)	1e-06				
Peference frame for body orbit elements			MA (deg)	0.0				
Reference indine for body orbit elements	ICRF 🗸	I						

OSIRIS-REx Step 2: The Global Options Tab

EMTG Python Interface	1.0	Control Control and Property and	40 York 10000		
ile					
Global Mission Options Spacecraft Opti	ions Journey Options	Solver Options Physics Options	Output Options		
Global mission options			Global mission constraints		
Mission Name	OSIRISREx		DLA bounds (degrees)	-28.5	28.5
Mission Type	MGA-nDSM-s	•	Enable mission time bounds	\checkmark	
Maximum number of DSMs per phase	1		Global flight time bounds (days)	0.0	2556.75
Dbjective function	14: maximize log_10	(final mass)	Forced post-launch coast duration (days	s) 0.0	
Maximum number of phases per journey	8		Forced pre-flyby coast duration (days)	0.0	
aunch window open date	57388.0	January 2016	Forced post-flyby coast duration (days)	0.0	
	Sup	January, 2010	Enable fixed final mass?		
	27	28 29 30 31 1 2	Enable minimum dry mass?		
	3	4 5 6 7 8 9 11 12 13 14 15 16	Enable fixed dry mass?		
	17	18 19 20 21 22 23			
	24	25 26 27 28 29 30			
		1 2 3 4 3 0			

Number of time-steps

- We recommend the MGAnDSMs transcription for chemical missions
- There are many objective functions. Log10(final mass) works very well for chemical missions.
- PyEMTG does math! You can, for example, write "365.25 * 7" in the flight time bounds field.
- For chemical missions, the "number of time-steps" field only affects the resolution of the final trajectory plot and not the solution itself.

40

OSIRIS-REx Step 3: The Physics Options Tab

👫 EMTG Python Interface	terten Mer jedampeletraspr falles	
File		
Global Mission Options Spacecraft Options Journey Options Solver Options	Physics Options Output Options	
Ephemeris settings Ephemeris Source	SPICE -	Perturbation settings Enable SRP
Leap seconds kernel	naif0011.tls	Enable third body
Frame kernel	pck00010.tpc	
Universe folder	D:\Projects\EMTGv8_sourceforge\EMTG_libraries\Un Default	
Spiral settings Spiral model type Edelbaum Number of spiral segments 10 Lambert settings		
Lambert solver type Arora-Russell		
Flyby settings MGADSM/MDAnDSMk Flyby transcription single beta angle –		

Propagator type for MGAnDSMs Keplerian -

- Make sure your script points to the correct Universe folder or else nothing will work. If you configured PyEMTG.options correctly you can just click the "Default" button.
- Third body and solar radiation pressure perturbations only work if your propagator is set to "Integrator." This is very slow and unnecessary for this stage of design.

OSIRIS-REx Step 4: The Spacecraft Options Tab

EMTG Python Interface	reference Mile	100.00	CONT. A. HU	ACCORPORATION OF THE OWNER			
File							
Global Mission Options Spacecraft	ft Options Jou	Irney Options	Solver Options	Physics Options	Output Options		
Spacecraft and Launch Vehicle of	otions		Ma	rgins and Constra	aints		
Maximum mass (kg)	10000.0		Pro	pellant margin (fra	action)	_	0
Allow initial mass to vary			lau	ınch vehicle margi	n (fraction)		0.0
Launch vehicle type	2: Atlas V (411)) NLSII	⊤ ina	ble maximum pro	pellant constraint	?	
Launch vehicle adapter mass (kg)	0.0		lina	ble chemical prop	oulsion propellant	tank constraint?	
Propulsion options							
Chemical Isp (s) 230.0							

- In this case we are optimizing mass, not Δv, so a suitable launch vehicle model and chemical thruster I_{sp} must be chosen. EMTG will trade between the thruster and the launch vehicle to deliver the most mass to the target.
- The "maximum mass" field in this case just scales the optimization problem; the actual launch mass is limited to whatever the launch vehicle can carry to the C3 that the optimizer chooses.

OSIRIS-REx Step 5a: The Journey Options Tab (Journey 1)

MTG Python Interface				2,007		Prosent Contractor
File		2				
Global Mission Options Spacecraft Option	ons Journey Options	Solver Options Phys	ics Options	Output Options		
Earth_to_Bennu	New Journey					
Bennu_to_Earth	Delete Journey					
	Move Journey Up					
	Move Journey Dowr	1				
Journey name	Earth_	to_Bennu				
Central body	SunO:	SIRIS				
Destination list	[3, 10]					
Starting mass increment (kg)	0.0					
Variable mass increment						
Wait time bounds (days)	0.0	365.25]			
Journey time bounds	unbou	inded	-			
Journey initial impulse bounds (km/s)	1e-08	5.4101755978				
Journey departure type	0: laur	ch or direct insertion	-		J	
Enable journey DSM magnitude constrain	nt?					
Journey arrival type	1: rend	dezvous (use chemical	Isp)			•
Constrain the spacecrait-target-sun angi	e at arrivar:					
Constrain the spacecraft-sun-Earth angle	at departure? 🔲					
Constrain the spacecraft-sun-Earth angle	at flybys?					
Constrain the spacecraft-sun-Earth angle	at arrival?					
Constrain the spacecraft-sun-Earth angle	at DSMs?					
Constrain true anomaly at departure?						
Constrain true anomaly at arrival?						
Journev-end delta-v (km/s)	0.0					
Flyby sequence	[[3, 0,	0, 0, 0, 0, 0, 0]]	*			
			-			
Powered flyby flags	[0, 0, 0	D, O, O, O, O, O]	*			

- Each "journey" represents a set of events with user-defined boundary conditions – in this case launch from Earth and arrival at Bennu.
- There are many types of journey departure and arrival conditions. The ones shown here are appropriate for a small body rendezvous.
- Each journey can contain any number of phases. If a journey has more than one phase, they are separated by planetary flybys. In this case we have selected an Earth flyby.

OSIRIS-REx Step 5b: The Journey Options Tab (Journey 2)

ourney name	Bennu to Fa	rth				
Central body	SunOSIRIS					
Destination list	[10, 3]					
Starting mass increment (kg)	0.0					
Variable mass increment						
Wait time bounds (days)	365.25	730.5				
Bounded journey departure date?						
Journey time bounds	unbounded	~				
ourney initial impulse bounds (km/s)	1e-08	10.0				
Journey departure type	0: launch or c	lirect insertion 👻				
Enable journey DSM magnitude constraint?						
Journey arrival type	2: intercept w	ith bounded V_infinity				
Forced pre-intercept coast (days)	0.0					
Journey final velocity bounds	0.0	10				
Apply arrival declination constraint?						
Apply arrival declination constraint? Atmospheric interface flight path angle (degrees)	-8.0					
Apply arrival declination constraint? Atmospheric interface flight path angle (degrees) Atmospheric entry interface radius (km)	-8.0 6503.0					
Apply arrival declination constraint? Atmospheric interface flight path angle (degrees) Atmospheric entry interface radius (km) Atmospheric entry latitude (degrees)	-8.0 6503.0 40.0					
Apply arrival declination constraint? Atmospheric interface flight path angle (degrees) Atmospheric entry interface radius (km) Atmospheric entry latitude (degrees) Apply atmospheric entry interface azimuth constraint?	-8.0 6503.0 40.0					
Apply arrival declination constraint? Atmospheric interface flight path angle (degrees) Atmospheric entry interface radius (km) Atmospheric entry latitude (degrees) Apply atmospheric entry interface azimuth constraint? Apply atmospheric entry interface sun angle constraint?	-8.0 6503.0 40.0					
Apply arrival declination constraint? Atmospheric interface flight path angle (degrees) Atmospheric entry interface radius (km) Atmospheric entry latitude (degrees) Apply atmospheric entry interface azimuth constraint? Apply atmospheric entry interface sun angle constraint? Apply atmospheric entry interface longitude constraint?	-8.0 6503.0 40.0					
Apply arrival declination constraint? Atmospheric interface flight path angle (degrees) Atmospheric entry interface radius (km) Atmospheric entry latitude (degrees) Apply atmospheric entry interface azimuth constraint? Apply atmospheric entry interface sun angle constraint? Apply atmospheric entry interface longitude constraint? Apply entry velocity with respect to rotating atmosphere constraint?	-8.0 6503.0 40.0					

- We constrain OSIRIS-REx to spend between 1 and 2 years at Bennu.
- OSIRIS-REx ends with a landing on Earth. EMTG can constrain – using a simplified geometric model – the conditions at which the spacecraft intersects the Earth's atmosphere.
- In this example, we constrain the velocity of the spacecraft relative to the rotating atmosphere at interface.
- We must specify flight path angle, altitude, and latitude.

OSIRIS-REx Step 6: The Solver Options Tab

H EMTG Python Interface	8,411,3
File	
Global Mission Options Spacecraft Options Journey Opti	ons Solver Options Physics Options Output Options
Inner Loop Solver Parameters	
Inner-loop Solver Mode	Monotonic Basin Hopping
NLP solver	SNOPT -
NLP solver mode	Optimize 🔻
Quiet NLP solver?	
Quiet MBH solver?	
Two-step MBH?	
Finite differencing step size	1.5e-08
Enable ACE feasible point finder?	
MBH Impatience	100000
Maximum number of innerloop trials	100000
Maximum run-time (s)	3600
MBH hop probability distribution	Pareto 🔻
MBH hop scale factor	1.0
MBH Pareto distribution alpha	1.4
Probability of MBH time hop	0.05
Feasibility tolerance	1e-05
SNOPT major iterations limit	8000
SNOPT maximum run time (s)	30
Derivative calculation method	Analytical all but time
Check derivatives via finite differencing?	
Seed MBH?	

- For this example we will use Monotonic Basin Hopping (MBH) with a Pareto distribution. For chemical missions we recommend setting the "Pareto alpha" to 1.4 or, if the problem has many local optima, 1.3.
- The ACE feasible point finder allows MBH to compare infeasible solutions and search for minimum infeasibility before it finds its first feasible solution and begins to search for optimality.
- EMTG has full analytical derivatives for the MGAnDSMs transcription. However we recommend that you run with time derivatives turned off because, since SPICE does not provide smooth derivatives and must be finite-differenced, the analytical time derivatives are not accurate unless SPICE is not used.

OSIRIS-REx Step 7 The Output Options Tab

🗍 EMTG Python Interface					8,077,00			
File								
Global Mission Options Spacecraft C	Options Journey O	ptions So	olver Options	Physics Options	Output Options			
Output journey entries for wait times at intermediate and final target? 🔲								
Create GMAT scripts								
Output units			km and	km/s ▼				
Generate initial guess file? (experiment	ntal!)							
Override working directory?								
Shorten output file names?								
Generate forward-integrated STK-cor								
Enable background mode								

- We don't need any of these right now.
- For the purpose of this tutorial it is sufficient to know that "background mode" means "close EMTG as soon as it is done executing." If you are running EMTG from PyEMTG then you should leave background mode off so that you can see your results more easily.

OSIRIS-REx Step 8: Run your mission!

EMIG Python Interface				E.A.T. JANTA, Takona para Praseltant		
New	•	aft Opt	ions Journey (ptions Solver Options Physics Options Output Options		
Open Save	Ctrl+o Ctrl+s		OCIDICDEN d	Global mission constraints	20 5	20 5
Run	Ctrl+r		MGA-nDSM-	Enable mission time bounds	-28.5	28.5
Open file in Editor	Ctrl+e	hase	1	Global flight time bounds (days)	0.0	2556.75
Exit	Ctrl+q	ノ	0: minimum	Forced post-launch coast duration (days)	0.0]
nclude initial impulse	in cost			Forced pre-flyby coast duration (days)	0.0	
laximum number of p	phases pe	r journe	у 8	Forced post-flyby coast duration (days)	0.0	
aunch window open o	date		57388.0	January, 2016 January, 2016 Enable fixed final mass? Enable minimum dry mass?		
				Sun Mon Tue Wed Thu Fri Sat 27 28 29 30 31 1 2 3 4 5 6 7 8 9		
				10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6		
umber of time-steps			40			

- PyEMTG will prompt you to save a ".emtgopt" options file.
- EMTG will then execute, create a new timestamped subdirectory for your results, and begin solving your problem.

OSIRIS-REx Step 9: Post-Process Your Mission

- PyEMTG can open ".emtg" options files.
- PyEMTG can create trajectory plots and systems summary plots.
- We will focus on the trajectory plot for this example.
- PyEMTG can also search for targets of opportunity along your trajectory. This is out of scope for the tutorial.

OSIRIS-REx Trajectory Plot

Interlude: What makes Low-Thrust Different?

- Low-thrust electric propulsion is characterized by high power requirements but also very high specific impulse (I_{sp}), leading to very good mass fractions
- Low-thrust trajectory design is a very different process from chemical trajectory design
 - Like chemical design, must find the optimal launch date, flight time, and dates of each flyby (if applicable)
 - Unlike chemical design, must find a time-history of thrust control for the entire mission
- Low-thrust electric propulsion mission design requires accurate modeling of propulsion and power systems. Every spacecraft design drives a unique trajectory design!
- Audience members who are familiar with ESA's PaGMO will see many similarities between it and EMTG. This is intentional. EMTG's inner-loop was very much inspired by PaGMO although EMTG models a much wider range of mission types. If there are any PaGMO team members in the audience, we greatly appreciate you and cite you as often as we can!

Low-Thrust Modeling in EMTG Transcription

- Break mission into phases. Each phase starts and ends at a body.
- Sims-Flanagan Transcription
 - Break phases into time steps
 - Insert a small impulse in the center of each time step, with bounded magnitude
 - Optimizer Chooses:
 - Launch date
 - For each phase:
 - Initial velocity vector
 - Flight time
 - Thrust-impulse vector at each time step
 - Mass at the end of the phase
 - Terminal velocity vector
- Assume two-body force model; propagate by solving Kepler's problem
- Propagate forward and backward from phase endpoints to a "match point"
- Enforce nonlinear state continuity constraints at match point
- Enforce nonlinear velocity magnitude and altitude constraints at flyby

J. Englander, D. Ellison, and B.Conway, "Global Optimization of Low-Thrust, Multiple-Flyby Trajectories at Medium and Medium-High Fidelity," AAS Space Flight Mechanics Meeting, Santa Fe, NM, January 2014.

patch point

 \triangleright burn point

Low-Thrust Modeling in EMTG Spacecraft and Launch Vehicle Models

- · Medium-fidelity mission design requires accurate hardware modeling
- Launch vehicles are modeled using a polynomial fit

 $m_{delivered} = (1 - \sigma_{LV}) \left(a_{LV} C_3^5 + b_{LV} C_3^4 + c_{LV} C_3^3 + d_{LV} C_3^2 + e_{LV} C_3 + f_{LV} \right)$

where σ_{LV} is launch vehicle margin and C_3 is hyperbolic excess velocity

• Thrusters are modeled using either a polynomial fit to published thrust and mass flow rate data

$$\dot{m} = a_F P^4 + b_F P^3 + c_F P^2 + d_F P + e_F T = a_T P^4 + b_T P^3 + c_T P^2 + d_T P + e_T$$

or, when detailed performance data is unavailable

$$T = \frac{2 \eta P}{I_{sp} g_0}$$

• Power is modeled by a standard polynomial model

$$\frac{P_0}{r^2} \left(\frac{\gamma_0 + \frac{\gamma_1}{r} + \frac{\gamma_2}{r^2}}{1 + \gamma_3 r + \gamma_4 r^2} \right) (1 - \tau)^t$$

where P_0 is the power at beginning of life at 1 AU and τ is the solar array degradation constant

LowSIRIS-REx Step 1: **The Global Options Tab**

EMTG Python Interface							
File							
Global Mission Options Spacecraft Opti	ons Journey Op	otions Solver Options	Physics Options	Output Opt	ions		
Clobal mission options					Global mission constraints		
Mission Name	LowSIRISREx				DLA bounds (degrees)	-28.5	28.5
Mission Type	MGA-LT 👻				Enable mission time bounds	v	
Objective function	2: maximum fin	inal mass 🔹			Global flight time bounds (days)	0.0	2556.75
Maximum number of phases per journey	8			C	Forced post-launch coast duration (days	60.0	
Launch window open date	57388.0	4			Forced pre-flyby coast duration (days)	0.0	
		Sun Mon Tue Wed Th	o F nu Fri Sat		Forced post-flyby coast duration (days)	0.0	
		27 28 29 30 3	1 1 2		Enable fixed final mass?		
		3 4 5 6 10 11 12 13 1	/ 8 9 4 15 16		Enable minimum dry mass?		
		17 18 19 20 2	1 22 23		Enable fixed dry mass?		
		24 25 26 27 2 31 1 2 3	28 29 30 4 5 6				
Number of time-steps	40						
Control coordinate system	Cartesian 🔻						

- Change the transcription to MGALT
- Change the objective function to "maximum final mass"

Cartesian 🔻

Add a forced coast of 60 days after launch before the electric thrusters can used to maneuver. This period is used for spacecraft testing and is standard for NASA preliminary design.

LowSIRIS-REx Step 2: The Physics Options Tab

HTG Python Interface	EAT (MTS, Several ppts - Readings		
File			
Global Mission Options Spacecraft Options Journey Options Solver Options	s Physics Options Output Options		
Ephemeris settings		Perturbation settings	
Ephemeris Source	SPICE -	Enable SRP	
Leap seconds kernel	naif0011.tls	Enable third body	
Frame kernel	pck00010.tpc		
Universe folder	D:\Projects\EMTGv8_sourceforge\EMTG_libraries\Un Default		
Spiral settingsSpiral model typeNumber of spiral segments10			
Lambert settings Lambert solver type Arora-Russell			
Flyby settings MGADSM/MDAnDSMk Flyby transcription single beta angle			

• No changes here.

LowSIRIS-REx Step 3: The Spacecraft Options Tab

FINTG Python Interface						EXIT, 2011, Natural 2010 - Reasonnait
File						
Global Mission Options Spacecraf	Options Jou	rney Optior	ns Solver Opti	ons Physics C	Options Output	t Options
Spacecraft and Launch Vehicle op	tions					Margins and Constraints
Maximum mass (kg)	.0000.0					Propellant margin (fraction) 0.1
Allow initial mass to vary						Power margin (fraction) 0.15
Launch vehicle type	: Atlas V (411)	NLSII	•			Launch vehicle margin (fraction) 0.0
Launch vehicle adapter mass (kg)).0					Enable maximum propellant constraint?
Propulsion options						Enable electric propulsion propellant tank constraint?
Chemical Isp (3) 10000.0						Enable chemical propulsion propellant tank constraint?
Engine type 24: NEXT TT1:	L High-Isp				-	
Number of thrusters 2						I he choice of propulsion and power
Throttle logic mode maximum nu	mber of thrust	ters 💌				model drastically affects the solution.
Throttle sharpness 100.0						The real challenge in designing low-
Thruster duty cycle 0.9						thrust missions is understanding the
Power options						
Power at BOL, 1 AU (kW)	15.0					appropriate spacecraft propulsion and
Power source type	0: solar	•				power choices. This is more difficult
Solar power coefficients	1.0	0.0	0.0	0.0	0.0	then learning EMTC
Spacecraft power model type	0: P_sc = A +	+ B/r + C/r′	2	-		than learning Elvir G.
Spacecraft power coefficients (kW)	0.8	0.0	0.0			• In this example we apply a 90% duty
Power decay rate (fraction per year	0.0					cycle, 10% propellant margin, and 15%
						power margin which are standard for

NASA preliminary design.

LowSIRIS-REx Step 4a: The Journey Options Tab

EMTG Python Interface	Eart parts, have again the advantage of the second s
File	
Global Mission Options Spacecraft Options Jo	ourney Options Solver Options Physics Options Output Options
Earth_to_Bennu	New Journey
Bennu_to_Earth	elete Journey
Mo	ve Journey Up
Move	e Journey Down
lourney name	Earth_to_Bennu
Central body	SunOSIRIS
Destination list	[3 10]
Starting mass increment (kg)	[0, 20]
Starting mass increment (kg)	0.0
Variable mass increment	
Wait time bounds (days)	0.0 365.25
lourney time bounds	unbounded 🗸
Journey initial impulse bounds (km/s)	1e-08 10.0
Journey departure type	O: Jaunch or direct insertion
Journey arrival type	3: low-thrust rendezvous (does not work if terminal phase is not low-thrust)
Constrain the spacecraft-sun-Earth angle at dep	parture?
Constrain the spacecraft-sun-Earth angle at flyb	bys?
Constrain the spacecraft-sun-Earth angle at arri	ival?
Constrain the spacecraft-sun-Earth angle at DSI	Ms?
Constrain true anomaly at departure?	
Constrain true anomaly at arrival?	
lourney-end delta-v (km/s)	0.0
Flyby sequence	[[0, 0, 0, 0, 0, 0, 0, 0]]
Powered flyby flags	
, ,	
reeze this journey's decision variables?	

- Change the arrival type from chemical rendezvous to low-thrust rendezvous.
- For LowSIRIS-REx, an Earth flyby is not optimal and so this is a direct mission.
- EMTG can determine the optimal flyby sequence for you by using the outerloop solver, but that is not part of this tutorial.

LowSIRIS-REx Step 4b: The Journey Options Tab

EMTG Python Interface				R.M.T. Dari	Characteria (1995)	Care Provide	
File							
Global Mission Options Spacecraft Op	tions Journey Options Solver Options	Physics Optic	ons Output O	ptions			
Earth_to_Bennu Bennu to Earth	New Journey						
bennd_to_Lantn	Delete Journey						
	Move Journey Up						
	Move Journey Down						
lournov pamo		Dennes to For	41-				
		Bennu_to_Ear	th				
Central body		SunOSIRIS					
Destination list		[10, 3]					
Starting mass increment (kg)		0.0					
Variable mass increment							
Wait time bounds (days)		365.25	730.5				
Bounded journey departure date?							
Journey time bounds		unbounded		•			
Journey departure type		2: free direct of	departure	•			
Journey arrival type		2: intercent w	ith bounded V	infinity			•
Forced pre-intercept coast (days)		90.0]				
Journey final velocity bounds		0.0	10.0				
Apply arrival declination constraint?							
Atmospheric interface flight path angle	(degrees)	-8.0					
Atmospheric entry interface radius (km))	6503.0					
Atmospheric entry latitude (degrees)		40.0					
Apply atmospheric entry interface azim	uth constraint?						
Apply atmospheric entry interface sun a	angle constraint?						
Apply atmospheric entry interface longi	itude constraint?						
Apply entry velocity with respect to rota	ating atmosphere constraint?	V					
Bounds on entry interface velocity with	respect to rotating atmosphere (km/s)	0.0	12.4				

 A forced coast of 90 days is inserted prior to Earth return. The spacecraft can make small adjustments using chemical thrusters during that time but the electric propulsion system will not be used.

LowSIRIS-REx Step 5: The Solver Options Tab

EMTG Python Interface	2.47
File	
Global Mission Options Spacecraft Options Jour	rney Options Solver Options Physics Options Output Options
Inner-Loop Solver Parameters	
Inner-loop Solver Mode	Monotonic Basin Hopping
NLP solver	SNOPT -
NLP solver mode	Optimize 🔻
Quiet NLP solver?	
Quiet MBH solver?	
Two-step MBH?	
Finite differencing step size	1.5e-08
Enable ACE feasible point finder?	
MBH Impatience	100000
Maximum number of innerloop trials	100000
Maximum run-time (s)	3600
MBH hop probability distribution	Pareto 💌
MBH hop scale factor	1.0
MBH Pareto distribution alpha	1.4
Probability of MBH time hop	0.05
Feasibility tolerance	1e-05
SNOPT major iterations limit	8000
SNOPT maximum run time (s)	30
Derivative calculation method	Analytical all but time 🗸
Check derivatives via finite differencing?	
Seed MBH?	

 No changes here, although in general a higher value of Pareto alpha – 1.4 or 1.5, is appropriate for low-thrust missions.

LowSIRIS-REx Step 6 The Output Options Tab

A EMTG Python Interface					8,017,00
File					
Global Mission Options	Spacecraft Options	Journey Options	Solver Options	Physics Options	Output Options
Output journey entries for	or wait times at inter	mediate and final	target? 🔲		
Create GMAT scripts					
Output units			km and	km/s 🔹	
Generate initial guess file	e? (experimental!)				
Override working directo	ory?				
Shorten output file name	es?				
Generate forward-integr	ated STK-compatible	e ephemeris			
Enable background mod	le				

• No changes here.

LowSIRIS-REx Step 7: Run your mission!

FINTG Python Interface			EARL D	MTG, Tumoral ages - Property and		
File						
New	🕨 aft 🗘 p	otions Journey O	ptions Solver Options Physics Options Output Options			
Open	Ctrl+o		Globa	I mission constraints		
Save	Ctrl+s	LowSIRISREx_	FBLT DLA b	oounds (degrees)	-28.5	28.5
Run	Ctrl+r	FBLT	✓ Enable	e mission time bounds	v	
Open file in Editor	Ctrl+e	2: maximum f	nal mass	l flight time bounds (days)	0.0	2556.75
Exit Maximum number of pn	Ctrl+q lases per journe	ey 8	Forced	d post-launch coast duration (days)	60.0	
Launch window open da	to	57388.0	Forcec	d pre-flyby coast duration (days)	0.0	
			Sun Mon Tue Wed Thu Fri Sat	d post-flyby coast duration (days)	0.0	
			27 28 29 30 31 1 2 Enable	e fixed final mass?		
			10 11 12 13 14 15 16 Enable	e minimum dry mass?		
			17 18 19 20 21 22 23 Enable	e fixed dry mass?		
			31 1 2 3 4 5 6			
Number of time-steps		80				
Step size distribution		Uniform 🔻				
Control coordinate syste	em	Cartesian 🔻				

LowSIRIS-REx Step 8: Post-Process Your Mission

EMTG Python Interface		
File		
Choose a journey	Data Plots	
Earth_to_Bennu	distance from central body	velocity magnitude with respect to central body
Bennu_to_Earth	☑ applied thrust (N)	specific impulse (s)
All Journeys	mass flow rate (kg/s)	propulsion system efficiency
	throttle	power produced by spacecraft (kW)
Show boundary orbits	in-plane control angle (degrees)	out-of-plane control angle (degrees)
Show thust vectors	central body - thrust vector angle	mass (kg)
Show text descriptions	number of active thrusters	power used by propulsion system (kW)
Number event labels	propulsion system waste heat (kW)	mark critical events
Plot trajectory	distance from Earth	Sun-Earth-Spacecraft angle
	Generate plot	
Output STK Ephemeris	Generate plot	
	Common plot options	
	Font size 20 🚖	
Targets of Opportunity Bubble Searc	ch	
Bubble search file	D:\Projects\EMTGv8_sourceforge\EMTG_librarie	s\Universe\ephemeris_files\AllAsteroids.Sl
Length unit (km)	149597870.691	
mu (km \2/c\2)	1 22712440010	
ma (km 5/3 2)	1.32712440018	
Relative position filter (km)	14959787.0691	
Relative velocity filter (km/s)	2.0	
Maximum Absolute Magnitude	14.0	
Check for encounters after mission end	?	
Perform bubble search		
Throttle table matching		
Throttle table file Thro	ttleTable	
Generate throttle report Gen	nerate throttle histogram	
Output window		
		A

- In addition to trajectory plots, PyEMTG can create plots of systems parameters, such as power, propulsion, and distance from the Sun and Earth.
- Plotting distance from the Earth requires installing the "jplephem" and "de423" Python packages.
- PyEMTG can also map the continuous low-thrust model to a discrete throttle table if you have one. Unfortunately we can't distribute those.

LowSIRIS-REx Trajectory Plot

LowSIRIS-REx Systems Plot

NAVIGATION & MISSION DESIGN BRANCH, CODE 595 NASA GSFC

LowSIRIS-REx in Medium-High Fidelity

- The MGALT transcription is not adequate for detailed design work because it approximates the true low-thrust trajectory with a sequence of conic arcs and bounded impulses
- For a more accurate representation of the trajectory, we migrate to the "Finite-Burn Low-Thrust" (FBLT) transcription which uses a numerical integrator and the true low-thrust equations of motion
- FBLT can support perturbing terms like third body gravity and solar radiation pressure (SRP)
- However the body encounters are still patched-conic
- FBLT is a good intermediate step between the speed of MGALT and the accuracy of GMAT
- Integrated trajectory, accurate force model but flybys are still patchedconic
 J. Englander, D. Ellison, and B.Conway, "Global Optimization of Low-Thrue

J. Englander, D. Ellison, and B.Conway, "Global Optimization of Low-Thrust, Multiple-Flyby Trajectories at Medium and Medium-High Fidelity," AAS Space Flight Mechanics Meeting, Santa Fe, NM, January 2014.

LowSIRIS-REx in Medium-High Fidelity Step 1: The Global Options Panel

EMTG Python Interface					
File					
Global Mission Options Spacecraft Option	ons Journey Op	ptions Solver Options Physics Options Output Opti	ons		
Global mission options			Global mission constraints		
Mission Name	LowSIRISREx_F	FBLT	DLA bounds (degrees)	-28.5	28.5
Mission Type	FBLT	•	Enable mission time bounds		
Objective function	2: maximum fi	inal mass 🔹	Global flight time bounds (days)	0.0	2556.75
Maximum number of phases per journey	8		Forced post-launch coast duration (days)	60.0	
Launch window open date	57388.0	4 January 2016	Forced pre-flyby coast duration (days)	0.0	
		Sun Mon Tue Wed Thu Fri Sat	Forced post-flyby coast duration (days)	0.0	
		27 28 29 30 31 1 2	Enable fixed final mass?		
		3 4 5 6 7 8 9 10 11 12 13 14 15 16	Enable minimum dry mass?		
		17 18 19 20 21 22 23	Enable fixed dry mass?		
		24 25 26 27 28 29 30	-		
lumber of times store		51 1 2 5 4 5 0			
Number of time-steps	80				
Control coordinate system	Cartesian 🔻				

- Change the transcription to FBLT
- We want our detailed trajectory in higher resolution, *i.e.* more opportunities to change the control, so increase the number of time-steps to 80.

LowSIRIS-REx in Medium-High Fidelity Step 2: The Solver Options Panel

olver Options Physics Options Output Op with initial guess
olver Options Physics Options Output Op with initial guess
with initial guess
with initial guess
PT 🔹
nize 🔻
08
-08
.e-05
3000
500
nalytical all but time
]
•
artesian 💌
]
0

Since we already have a solution in MGALT, we do not need to run MBH. Instead we will run our NLP solver (SNOPT) directly with the previous solution as an initial guess.

- We can tell EMTG to seed from a previous solution by clicking "…" and selecting the previous .emtg results
 file.
- The previous solution had only 40 time steps so we have to tell EMTG to interpolate it.
- FBLT is very slow. Let's give SNOPT 10 minutes to chew on the problem.

LowSIRIS-REx in Medium-High Fidelity Trajectory Plot

LowSIRIS-REx in Medium-High Fidelity Systems Plot

Some of the many things that we did not cover...

- EMTG's outer-loop solver
 - Can choose planetary flyby sequence
 - For small-bodies missions, can choose both the number and the identity of the targets
 - Can design the propulsion and power system for the spacecraft
 - Finds the Pareto-optimal non-dominated front between mission and systems objective functions of the user's choice
- Operational constraints
 - Distance from the sun and other bodies
 - Visibility angles at arrival and departure
- Powered gravity assist
- Low-thrust departure and arrival spirals
- Non-body boundary conditions
- Central bodies other than the sun (EMTG is central body agnostic)
- Automated export to GMAT

Conclusion

- EMTG is a flexible, automated tool for preliminary design of interplanetary trajectories that can find optimal solutions without requiring an initial guess.
- EMTG can design both missions with chemical propulsion and/or lowthrust electric propulsion.
- When operated in hybrid optimal control mode, EMTG can autonomously explore the design space for a mission and can be left to run independently for days while analysts do other work.
- Mission design mathematics may easily be automated. Communication and understanding cannot be. EMTG's automation allows analysts to focus their attention on understanding the needs of the customers (scientists) and the capabilities of the spacecraft while leaving the repetitive work to the computer.

EMTG is available open-source at https://sourceforge.net/projects/emtg/

