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Abstract 

In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the 
General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at 
acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor 
stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost 
of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be 
used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during 
stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling 
Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling 
RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a 
Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The 
prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through 
further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn 
with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly 
smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is 
designed to activate and remove heat from the GPHS during stoppage with a small temperature increase 
from the nominal vapor temperature. This small temperature increase from nominal is low enough to 
avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP 
passively allows the Stirling convertor to be turned off multiple times during a mission with potentially 
unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and 
reduces vibrations on the platform during sensitive measurements or procedures. This paper presents the 
design of the VCHP and its test results with a Stirling convertor at Glenn. Tests were carried for multiple 
on and off cycles to demonstrate repeatability. The impacts associated with the addition of the VCHP to the 
system are also addressed in terms of mass and additional heat losses due to the presence of the VCHP. 
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Introduction 

Advanced Stirling Radioisotope Generator (ASRG) is an attractive energy system for select space 
missions, and with the addition of a variable conductance heat pipe (VCHP), it becomes even more 
versatile. The ASRG is powered through thermal energy from decaying radioisotopes acting as General 
Purpose Heat Sources (GPHSs). A Stirling engine converts the thermal energy to electrical energy and 
cools the GPHS (Ref. 1). The Stirling convertor must operate continuously to maintain acceptable 
temperatures of the GPHS and protect their cladding. The addition of alkali-metal VCHP allows the 
Stirling to cycle on and off during a mission and can be used as a backup cooling system. The benefits of 
being able to turn the Stirling off are allowing for a restart of the Stirling and reducing vibrations for 
sensitive measurements.  

Concept Introduction 

The conceptual VCHP for a Stirling convertor has four critical components: an evaporator, a first 
condenser, a second condenser, and a noncondensable gas (NCG) reservoir as shown in Figure 1(a). The 
VCHP is atypical because of the presence of two condensers. The working fluid is sodium and is shown 
in red (Fig. 1) starting at the GPHS and ending at the NCG front. The NCG is shown in blue (Fig. 1) 
starting at the front and ending in the reservoir. The VCHP evaporator interfaces with the GPHS modules 
and transfers thermal energy to one of the condensers. The first condenser is located at the Stirling’s 
heater head and is active only if the Stirling convertor is operating. The second condenser is a radiator 
between the heater head and the NCG reservoir that is active when the Stirling is off, as shown in 
Figure 1(b). The radiator rejects the heat generated by the GPHS to the cold-side adaptor flange (CSAF). 
The NCG reservoir is located after the second condenser. The VCHP was tested as a backup cooling 
system for the Stirling (Ref. 2). The details of how the VCHP operates are described below.  

  

(a) (b)

Figure 1.—Advanced Stirling Radioisotope Generator (ASRG) backup cooling concept. The front location is depicted 
for an operating convertor (a) and a nonoperating convertor (b) (Ref. 3).  
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ASRG Backup Cooling System 

The VCHP acting as a backup cooling system has two heat rejection or condenser locations, 
depending on whether the Stirling is on or off. The two condenser locations are shown in Figures 1(a) and 
(b); the VCHP is shown in red and blue; the red depicts the hot sodium vapor; and the blue represents the 
colder NCG. The VCHP wraps annularly around the heat collector attached to the Stirling heater head. 
The predicted location of the front is shown in Figure 1 for each stage. Heat is input to the Stirling when 
it is operational and the front is before the VCHP radiator (second condenser) as shown on the left in 
Figure 1(a). When the Stirling is turned off, the sodium vapor temperature will rise slightly and sweep the 
NCG out of the second condenser for utilization as a radiator. In the ASRG backup cooling concept, the 
CSAF would be used as the heat sink. The front will recede when the Stirling is turned back on and the 
vapor temperature will drop returning the system to the initial state. The Stirling is cycled on and off to 
demonstrate repeatability and the recovery of the system parameters. The Stirling convertor as tested has 
the heat collector up and not down as shown in the illustrations. 

Stirling Convertor 

The Stirling convertor used for this test was an Advanced Stirling Convertor (ASC–1HS #2) 
developed by Sunpower, Inc., under contract with NASA Glenn Research Center as a technology 
development project. The 80-We-class ASC–1 HS #2 arrived at Glenn in November 2007 and has 
accumulated over 6,500 hr of operation in Glenn’s Stirling Research Lab. It is a hermetically sealed unit, 
with the exception of the helium fill tube, that can reach 850 °C with a high-strength cast superalloy 
247LC heater head that allows for higher hot-end temperatures. The convertor is shown in Figure 2 in the 
vertical (heater head up) test position.  

The ASC heater head is covered by a brazed nickel 201 heat collector. Substantial effort for test 
preparation focused on obtaining an accurate fit between the outside diameter (OD) of the heat collector 
and the inside diameter (ID) of the VCHP. At Glenn, the OD of the convertor’s heat collector was 
reduced from 59.72 to 42.26 mm to allow for a smaller and lighter VCHP. Machining of the heat collector 
also reduced the contact surface roughness allowing for uniform gap between the Stirling and VCHP. 
After the OD of the heat collector was defined, the VCHP inner diameter was machined to at least 
42.72 mm (0.076 mm, –0.000 mm). A minimal gap between the VCHP and Stirling heat collector helped 
reduce the thermal contact resistance between the components. Boron nitride paste was used to coat the 
OD of the ASC heat collector and the ID of the VCHP to assist in thermal transfer between the two 
surfaces and to prevent galling during VCHP removal. 

 
 

 
Figure 2.—Stirling convertor used for evaluating the variable conductance heat pipe (VCHP) 

performance. CSAF is cold-side adaptor flange. 
 

Heat Collector CSAF Assembly 
with Radiated 

Surface 

 

Coolant Inlet 
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VCHP Prototype Layout and Design 

The VCHP was designed to slide over the Stirling’s heat collector as shown in the Figure 3 cross-
sectional view. The slip fit was selected to simulate the geometry of flight-ready hardware that could be 
brazed directly to the Stirling hot end without the need of a heat collector. Thermal power is supplied to the 
system by eight cartridge heaters embedded in the nickel heater cylinder shown (Fig. 3). The heater cylinder 
and VCHP are under a compressive load supplied by a spring assembly to decrease the contact resistance. 
The heater cylinder and spring compression assembly are commonly used by Glenn on this type of Stirling 
convertor and were suitable to use with the VCHP configuration with minimal modification. The heat 
supplied by the cartridge heaters is transferred to the upper surface of the VCHP where the sodium working 
fluid evaporates and condenses on the inner wall of the VCHP if the Stirling convertor is operating. If the 
Stirling is off, then the heat will be transferred to the radiator (that is not shown in Fig. 3).  

The VCHP installed on the Stirling convertor layout is shown in Figures 4 and 5. The VCHP annulus 
is shown connecting to the radiator with a 9.5-mm (0.38-in.) outer diameter tube that has a 90° downward 
bend. The tube connects to the radiator near the edge to allow for a larger distance from the radiator inlet 
to the radiator outlet. The larger distance between the radiator inlet and outlet is helpful in location of the 
VCHP front during operation and reducing heat leaks from the annulus to the radiator. The radiator 
geometry arcs around the CSAF to allow for a conformal configuration. There is an air gap between the 
radiator and the CSAF assembly as shown in Figure 6, the side view, to ensure radiation is the dominate 
mode of heat transfer from the radiator to the CSAF. Using radiation to transfer heat from the VCHP to 
the CSAF assembly helps reduce the heat leaks from the VCHP to the CSAF when the Stirling convertor 
is operating. The radiator is connected to the reservoir by a 6.35-mm (0.25-in.) tube that helps thermally 
isolate the reservoir from the hot radiator when it is active. However, the reservoir is cooled slightly by 
the CSAF through a copper shim between the bottom surface of the reservoir and upper surface of the 
CSAF assembly (shim is not shown in the figure) to maintain the reservoir’s temperature. The VCHP was 
charged with sodium and NCG through the vent valve, which was left on the test system to allow for 
dynamic modification of the NCG charge during testing. In a flight-ready system the valve would be 
removed and the VCHP would be hermetically sealed before flight. The valve is located outside of the 
insulation housing and goes through an existing slot in the insulation housing.  
 
 
 

 
Figure 3.—Cross section of the Stirling hot end, variable conductance heat pipe (VCHP) annulus, 

and heater cylinder after assembly. 
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Figure 4.—Variable conductance heat pipe (VCHP) installed on the Stirling convertor. 

 

 

  
Figure 5.—Variable conductance heat pipe (VCHP) layout side and top views. 

 

 
Figure 6.—Variable conductance heat pipe (VCHP) as constructed 

after heat cycling. 
 

The VCHP as built is shown in Figure 6. The VCHP was welded together out of nickel 201 and 
stainless steel. The VCHP annulus is entirely nickel 201 to match the coefficient of thermal expansion 
(CTE) of the Stirling’s heat collector. The connecting tubes are stainless steel as are the upper surface of 
the radiator and the entire reservoir. The lower face of the radiator is nickel 201, which was selected for 
its high thermal conductivity and acceptable strength in the working temperature range. The VCHP wall 
thicknesses were designed with a minimum factor of safety (FoS) of 2 against yielding to maintain a 
reasonably light but robust prototype. The VCHP mass as built is 358 g (0.79 lb) including the sodium 
charge and screen. 

Side View 
Top View 
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Experimental Configuration 

The testing setup is shown in Figure 7 with the VCHP and Stirling convertor assembled. The VCHP 
mounts on the Stirling heat collector after which the heater cylinder, heater hardware, insulation, and 
insulation housing are installed. The test position is vertical with the heater head up to accommodate the 
fixture of the Stirling convertor. The final test configuration with insulation and thermocouples (TCs) 
connected is shown in Figure 7(b). 

The TC map for the VCHP is shown in Figure 8. There are 4 TCs on the annulus, 5 on the tube that 
connect the annulus to the radiator, 4 on the top of the radiator, 4 on the tube that connects the radiator to 
the NCG reservoir, and 2 on the NCG reservoir for a total of 18 TCs on the VCHP. However, TC 102 
located on the annulus became detached prior to testing and its readings were not relevant. The TCs are 
spot welded onto the surface and used to record the VCHP temperature and locate the NCG front during 
operation. Additional TCs are located on the significant components of the system including TC 101—a 
probe in the heater block, TC 121—an adhesive TC located on the aluminum flange below the radiated 
surface, and TC 122—an adhesive TC located in the copper section of the CSAF assembly. Additional 
measurements were recorded by NASA Glenn’s system including the heat collector temperature, coolant 
inlet and outlet temperatures, and the insulation housing temperature.  
 

 
(a) (b) 

Figure 7.—Testing setup with variable conductance heat pipe (VCHP) 
and Stirling convertor assembled. (a) VCHP installed on Stirling 
convertor. (b) VCHP and insulation housing installed on the Stirling 
convertor. 

 
Figure 8.—Variable conductance heat pipe (VCHP) thermocouple (TC) map. 
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Figure 9.—Theoretical heat pipe capacity limits. 

Modeling 

Modeling of the VCHP consists of two parts: modeling of the heat pipe performance and modeling of 
the gas charge behavior. Modeling the heat pipe performance consisted of optimizing the heat pipe’s 
geometry to carry the desired power with a reasonable FoS. To optimize the heat pipe’s performance the 
screen mesh count was optimized based on capillary performance for the heat pipe. Then the heat pipe 
was evaluated for the capillary, entrainment, and sonic limits. These limits are represented in Figure 9 as a 
function of temperature. Entrainment and sonic limits have a FoS of 2 and the capillary limit has a FoS of 
1.33. The desired carrying capacity of the heat pipe was 250 W in the temperature range of 750 to 
850 °C. As shown the heat pipe had a FoS of over 2 in the working temperature range.  

The VHCP model was developed during a prior project for NASA Glenn and assumed a flat front 
between the NCG and sodium vapor. The model evaluates the required temperature increase in the 
sodium vapor to compress the NCG and activate the radiator for the given VCHP geometry when the 
Stirling convertor is turned off. Modeling of the VCHP consisted primarily of iterating the reservoir’s 
geometry and reducing the radiator’s internal volume to maintain a temperature increase to activate the 
radiator on the order of 35 °C. 

Experimental Results 

The following three main experiments were carried out at NASA Glenn:  
 

1. Heat losses determination—to properly evaluate the amount of heat that is transferred through the 
heat collector. 

2. Long-duration stoppage—to evaluate the VCHP—Stirling convertor interaction during an 
indefinite period of stoppage. 

3. Multiple short-duration stoppages—to evaluate the capacity of the system to return to nominal 
temperatures after each stoppage during a multiple stoppage regime.  

  

1500 
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Heat Losses Determination 

Heat losses through the insulation were determined by incrementally applying power to the heaters 
just enough to maintain the vapor in the VCHP at the nominal temperature of 780 °C. The actual value of 
the heat losses was 123 W. As a result, the total electrical power applied to the heaters was 348 W, to 
ensure that the heat collector will accept ~225 W. 

Long-Duration Stoppage of the Stirling Convertor 

The experimental results for the long-duration stoppage experiment are shown in Figure 10 for a 
single off cycle of the Stirling convertor where steady state was achieved in each stage. The data shown is 
the raw data collected except for the input power that was held constant during the experiment at 348 W 
moderated by a proportional integral derivate (PID) controller. The Stirling is on during stage 1 (1,100 to 
15,360 s) and the VCHP radiator temperatures are reasonably low at an average of 210 °C. Both sodium 
vapor and heater reach steady-state values of 779 and 886 °C, respectively, while the Stirling heat 
collector has a steady-state temperature of 694 °C given the thermal resistance across the gap between the 
VCHP and Stirling. The Stirling convertor is turned off at approximately 15,360 s starting stage 2 (15,360 
to 20,594 s). When the Stirling convertor is off the VCHP temperature and sodium vapor pressure rise 
rapidly, compressing the NCG in the reservoir and activating the radiator. There is a temperature gradient 
present in the radiator as it is slightly oversized and the sodium vapor does not need to occupy the entire 
radiator to reject the bypass heat. The Stirling is cycled back on at 20,594 s starting the nominal system 
recovery, stage 3 (20,594 to 29,600 s). The radiator temperatures drop rapidly as the front is retracted out 
of the radiator until it settles back into the annulus. As seen during stage 3, all the temperatures return to 
their initial values prior to the Stirling shutdown.  
 

 
Figure 10.—Experimental results for the long-duration stoppage test where steady states are achieved. 
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The steady-state temperature distribution of the VCHP with the Stirling on (stage 1) is shown in 
Figure 11. The evaporator is approximately isothermal and the temperature drops rapidly down the heat 
pipe due to the NCG front in the 9.53-mm (0.38-in.) connecting tube. The reservoir temperature is only 
slightly hotter than the aluminum or copper flange portions of the CSAF assembly. Figure 12 shows the 
steady-state temperature distribution during stage 2, when the Stirling convertor is off. The connecting 
tube and radiator are significantly hotter as the front was pushed out into the radiator to facilitate heat 
rejection. The evaporator temperature increased to 822 °C from approximately 779 °C to provide the 
necessary pressure to compress the NCG into the reservoir. However, the temperature increase of the 
reservoir is minimal. Given the evaporator’s temperature rise, the heat source (heater) also experienced a 
similar temperature increase. The temperature of the Stirling convertor’s heat collector rose to 815 °C as 
it became an adiabatic component surrounded by the evaporator. Overall, the temperature profiles match 
the generally expected performance of the VCHP. 

 

 
Figure 11.—Steady-state temperature profile during stage 1 (at 29,794 s) when 

Stirling convertor is on. 
 

 
Figure 12.—Steady-state temperature profile during stage 2 (at 20,574 s) when 

Stirling convertor is off. 
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Figure 13.—Experimental results for the multiple short-duration stoppages testing of the Stirling convertor with 

variable conductance heat pipe (VCHP). 

Multiple Short-Duration Stoppages of the Stirling Convertor 

The experimental results for the multiple short-duration stoppages testing are shown in Figure 13 
where the Stirling convertor was cycled off three times demonstrating the repeatability of the VCHP 
behavior. The time between each stage is approximately 50 min. to show the general trend towards a 
steady-state event though it is not reached. Overall, the testing results show that the VCHP can assist 
Stirling convertor’s on and off regime reliably and with full repeatability.  

Conclusion 

The optimized variable conductance heat pipe (VCHP) was successfully tested with the Stirling 
convertor and achieved the test objectives. Acting as a backup cooling system the VCHP was able to 
bypass the input heat when the Stirling was shut off without exceeding the maximum allowable heat 
collector temperature and return to the initial state when the Stirling convertor was restarted. Additional 
objectives with the testing and design were to minimize the VCHP mass and heat leaks associated with 
the addition of the VCHP. The VCHP was reasonably light at 358 g (0.79 lb), but could be further 
optimized by using super alloys and specific geometries. The heat leak associated with the addition of the 
VCHP were minimal at 5 W; however, it could be further reduced by increasing the length of the 
connecting tube to the radiator as well as by using specific geometries, consistent with mass reduction. 
The heat leak associated with the addition of the VCHP was tested by using a solid annulus of nickel that 
represented the VCHP annulus but did not have the connecting tubes, radiator, or reservoir. Overall the 
VCHP can be introduced into Stirling convertor-powered configurations with a feasible projected weight 
and heat loss cost. 
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