

Investigation of Sampling Low-Altitude Wind Profiles for Space Vehicle Applications

BJ Barbré Jacobs ESSSA Group MSFC Natural Environments March 2, 2016

Presentation to the Natural Environments Day of Launch Working Group

Background

- Eastern Range (ER) and Western Range (WR) 915-MHz Doppler Radar Wind Profilers (D915s) are aging and their performance has been degrading.
- MSFC Natural Environments (NE) is investigating if there exists a better option to supplement the D50 (i.e., replace the D915s with something else).
- Based on known requirements for NASA's Space Launch System and for MSFC NE climatology development, the following is desired:
 - Lowest reliable measurement altitude of at most 300 m.
 - Continuous temporal sampling at least once every 5 minutes.
 - Vertical sampling interval of at most 150 m.
 - Maximum reliable measurement altitude of at least 3 km. *
 - Cost efficient.
 - Others?

Current Status

• Different sources to supplement the D50:

Balloons	 Miss temporal wind change over short (e.g., sub-hourly) time intervals. Sample size of archive does not produce a robust climatology.
D915	Do newer systems perform better than the current systems?
D449	 Good max altitude, altitude interval, and time interval. Min altitude is higher than desired.
Lidar	 Highly configurable: Could be used to supplement a D449 / D50 combo, or the D50 alone. Need to examine performance in cloudy conditions and feasibility of continuous operation.
Sodar	 Could be used for altitudes below the D449. Need to examine for altitude coverage and data availability.

3

- Examples of Technology advances
 - High Altitude Lidar for Atmospheric Sensing (HALAS)
 - National Center for Atmospheric Research Modular Profiler Network (https://www.eol.ucar.edu/node/156).

JACOBS

* Max altitudes of Sodar, Lidar, D915, and D449 greatly depend on a variety of factors.

Forward Work

- Soliciting feedback from the Ranges and launch vehicle programs.
 - Understanding requirements.
 - Knowledge of instrumentation and costs.
 - Timeline for replacing the D915s.
- MSFC NE intends to provide an update at the Autumn 2016 NEDOLWG.

Introduction to the D449

- Traditional systems have an aperture of ~28 m².
- Detects signal through Bragg Scattering.
 - Turbulent fluctuations in the atmosphere of scales roughly half the radar's wavelength.
 - Wavelengths: D50, 6 m; D449: 0.7 m, D915: 0.3 m.
- Signal retrieval traits allow for the following versus the D915:
 - Greater penetration through the atmosphere.
 - Similar minimum reporting altitude.
- Plot from heritage D449 at Ft. Huachuca (near Sierra Vista, AZ).
 - Sampling interval of 100 m.
 - 15-min average wind profiles, updated every 5-min.

JACOBS

Image and plot from http://www.esrl.noaa.gov/psd/technology/tars/

D449 vs D915 Data Availability

- Top plot shows % data availability from:
 - NOAA Profiler Network (NPN), containing 35 D404s and D449s in the Central US.
 - PLTC2, an individual D449 located in Platteville, CO.
 - Period of record 2/1/04 4/30/04
- NPN low-mode availability is at least 90% from ~0.5-6.0 km.
 - Overlaps D50 from 2-6 km.
 - Redundant measurement capability.
- Bottom plot shows results from the same analysis using the KSC D915 archive.
 - Same scale.
 - 90% data availability from ~0.5-1.5 km.

JACOBS

Top plot from DeTect, Inc.: 2009. White Paper: Radar Wind Profiler Specifications Explained. Document number 9000190.

The NCAR Modular Profiling Network

- Developers
 - National Centers for Atmospheric Research (NCAR) / Earth Observing Lab (EOL)
 - University of Oklahoma's Atmospheric Radar Research Center (ARRC)
- Modular D449 with multiple module configuration options.
 - Each module has its own transmitter, receiver, and processing unit.
 - Arrangements consist of using one, three, or seven modules. Developers propose to use up to 19 modules.
- Modular Profiling Network (MPN) includes a mini-Lidar for low-level wind data collection.
- Working to improve lowest altitude and height resolution (currently 300 m and 150 m, respectively).

JACOBS

Requirements versus System

	Balloon	D915	D449	Lidar	Sodar	Other?
Minimum Altitude	Yes	Yes	?	Yes	Yes	?
Altitude Interval	Yes	Yes	Yes	Yes	Yes	?
Maximum Altitude	Yes	?	Yes	?	?	?
Temporal Interval	No	Yes	Yes	?	?	?
Qualitative Cost	?	?	?	?	?	?
Other?	?	?	?	?	?	?

