

ASA

Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

Susana Tapia Harper

Alfredo Juarez, Horacio Perez III, David B. Hirsch, & Harold D. Beeson

The Partial Pressure Question

- Assuming an Ideal gas mixture 21% volume O_2 = 21 mole % O_2 $(v_{O2}/V) = p_{O2}/P$ $p_{O2} = (v_{O2}/V)^* P$
- If the available oxidizer is the driver for combustion then should flammability for.....

30% O₂,10.2 psi (3.1pp) = 100% O₂,3.1psi (3.1pp)

Test Method and Environmental Conditions

- Flammability Data Examined
 - Primarily NASA-STD-6001 Test 1 Maximum Oxygen Concentration self-extinguishment thresholds
 - 6" Self Extinguishment Criteria
 - Vary Oxygen Concentration until a threshold is identified for Self Extinguishment to occur.
 - Threshold allows performance comparisons across environments of equivalent O2 PP
 - Material ignition susceptibility
 - Burn Rates

Max O₂ Concentration Self Extinguishment Thresholds & Equivalent Normoxic O₂ Concentrations (NASA 6001 Flamm)

Max O₂ Total Pressures Self Extinguishment Thresholds & Equivalent Partial Pressures (NASA 6001 Flamm)

Total Pressure Dependencies

- For pressures above 41 kPa (6 psia)
 - All show a strong dependence on oxygen concentration with little relation to total pressures
- Below 41 kPa (6 psia)

- MOCs and required oxygen partial pressures show increased dependence on total pressure.
- Power equation models fit trends precisely across
 - Pressure ranges spanning 2.8–119.3 kPa (0.4–17.3 psia)
 - Both MOC and partial pressure against total pressures.
- Required O₂ partial pressure necessary to sustain propagation decreases with decreased total pressures.
 - Increased flammability risk at lower total pressure conditions despite equivalent partial pressure
 - Conversely, oxygen concentration primary driver despite equivalent partial pressure

Application of Findings

 Lower O₂% / higher P data <u>cannot</u> be conservatively applied to higher O₂% /lower P environments despite equivalent partial pressures.

21
$$O_2$$
%,14.7psi(3.1pp) \rightarrow 30 O_2 %,10.2 psi(3.1pp)

 Higher O₂% /lower P data <u>can</u> be conservatively applied to evaluate the risk of lower O₂% higher P equivalent PP environments

30 O₂%,10.2 psi(3.1pp)

SA!

21 O₂%,14.7psi(3.1pp)

WHITE SANDS TEST FACILITY Other Supporting Research

• Flame spread rate testing (Olson and Miller)

- Performed along normoxic curve (18-100 O₂%)
- Flame spread rate increased with higher O₂% despite O₂ pp remaining constant
- Burn Rates (Yang, Hamins, and Donneley)
 - Polymethyl methacrylate (PMMA) spheres
 - Burn rates increased significantly as O₂% was increased (19.9-30 O₂%)
 - little effect was observed with increased pressures from 50.0–150 kPa (7.25–21.75 psia).

Increased Pressure Dependencies

- Certain materials exhibited higher dependencies on total pressure
 - Kel-F (CF₂CCIF)n, PTFE (C₂F₄)n, Zotek F30 (C₂H₂F₂)n,
 - highly halogenated
 - Armalon TG4060
 - fluorocarbon fiberglass composite, saturated chains of highly electronegative halogenated molecules (F, CI)
 - Nomex

- aramid structure with dense electron clouds
- All highly stable with few susceptible reaction sites.
 - Oxygen Molecular Collision Rate Competition for Reaction Sites?

WHITE SANDS TEST FACILITY Ignition Sequence

- Available Reaction Sites Ignition Sequence Pyrolysis
 - 1. Flammable gas mixing
 - 2. Ignition induction
- Proposed additional mechanism step in ignition sequence
- Limited Reaction Sites Ignition Sequence
 - 1. Oxygen molecular collision rate competition for reaction sites
 - 2. Pyrolysis

- 3. Flammable gas mixing
- 4. Ignition Induction
- Theory would be successful in describing observed experimental trends

SA

Future Work

- Additional testing in low pressure ranges
- Acquisition of burn rate data at the various equivalent partial pressure conditions.

Conclusions

- Partial pressure of oxygen equivalency does not represent flammability equivalency
- Oxygen Concentration % is the primary driver for flammability despite equivalent partial pressure
- Higher O₂% /lower P data <u>can</u> be conservatively applied to evaluate the risk of lower O_2 % higher P equivalent PP environments ▶ 30 O₂%,10.2 psi(3.1pp)

21 O₂%,14.7psi(3.1pp)

21 O₂%,14.7psi(3.1pp)

30 O₂%,10.2 psi(3.1pp)

Back-up Slides

	Material	psia													
	1. Interesting	(total pressure)													
		Determined at													
		0.4	0.5	0.6	0.9		7	10	.2	12	2.35	14	1.7	1	7.3
		MOP	MOP	MOP	MOP	MOC	MOP	MOC	MOP	MOC	MOP	MOC	MOP	MOC	MOP
		(psia)	(psia)	(psia)	(psia)	(vol%)	(psia)	(vol%)	(psia)	(vol%)) (psia)	(vol%)) (psia)	(vol%)	(psia)
	PITE V-IE 01					23	3.7			40	5.7	42	0.2		
	Silicone					28	2.0			23	2.9	21	7.0		
	Zvtel 42					25	1.8			23	2.8	23	3.4		
_	Viton-A					29	2.0			21	2.6	21	3.1		
Pressure effects	Buna-S					18	1.3			17	2.1	16	2.4		
	Neoprene					18	1.3			17	2.1	16	2.4		
on Self	Buna-N					18	1.3			16	2.0	15	2.2		
	EPDM Rubber					18	1.3			16	2.0	16	2.4		
Extinguishment	Polyethylene (PE)					18	1.3			18	2.2	17	2.5		
Throcholde 8	Zotek F30					15 47	33			12	1.5	37.5	1.0	36	62
The shous a	Valox DR48					31	2.2					28.1	4.1	28	4.8
Normovic & ISS	Nylon/ Phenolic					18	1.3					17	2.5	17	2.9
	Armalon TG4060					50	3.5					35	5.1	33	5.7
environment	Sygef							34	3.5			34	5.0	32	5.5
a a litiana far	Polysulfone				0.9			29	3.0			24	3.5	22	3.8
conditions for	Ultem 1000				0.9			24	2.4			21	3.1	21	3.6
comparison	Melamine/ Glass							36	3.7			34	5.0	33	5.7
companson	Melinex 515	0.4						20	2.0			18.5	2.7		
	Kydex 100			0.6				32	3.3			32	4.7	28	4.8
	Nomex 90-40		0.5					37	3.8			31.5	4.6	30	5.2
	environment														
	partial pressure														
	equivalents								~ .			~ .			
	(CEV/STS) ISS environment					44	3.1	30	3.1	25	3.1	21	3.1	18	3.1
	partial pressure														
	equivalents					50	3.5	34	3.5	28	3.5	24.1	3.5	20	3.5
	MOC = Maximum oxyge	n concent	ration v	which c	onsiste	ntly res	ults in n	naterial	self-ez	xtinguis	shment				

MOP = Maximum oxygen partial pressure when extinguishment occurs (based on MOC with the exception of 99.8% testing)

Pressure Effects on NASA STD-6001 Test 1 Maximum O₂ Concentration Flammability Thresholds

