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Approaches

Previous work and ongoing
• Focused on identifying similar weather days
• Analyzing reroutes used on similar days
• Difficult to generate meaningful clusters of days

This work
• Build models to predict the use of reroutes based on

weather data
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Objective
Develop a framework and process to analyze the use of
reroutes and develop models to predict reroute use.

Challenges
• Large amount of weather data available
⇒ difficult to extract relevant features

• Flexibility in route selection and descriptions
⇒ spatially similar routes with different descriptions

• Routes used infrequently
⇒ difficult to find similarities
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Outline

• Advisory details
• Methodology

• Identification of routes used by flights
• Identification of similar routes
• Weather feature extraction
• Development of predictive models

• Prediction results
• Concluding remarks
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Defining advisories

Advisories consist of . . .
• Name
• Valid time range
• Text description of several routes

• From an origin Center or airport
• To a destination airport

June to August 2011
• 01,669 reroute advisories issued
• 0,0735 unique advisory names
• 34,247 routes
• 02,770 origin-destination pairs

9



Defining advisories

Advisories consist of . . .
• Name
• Valid time range
• Text description of several routes

• From an origin Center or airport
• To a destination airport

June to August 2011
• 01,669 reroute advisories issued
• 0,0735 unique advisory names
• 34,247 routes
• 02,770 origin-destination pairs

9



Example advisory

10



Example advisory

11



Example advisory

12



Example advisory

13



Example advisory

14



Outline

• Advisory details
• Methodology

• Identification of routes used by flights
• Identification of similar routes
• Weather feature extraction
• Development of predictive models

• Prediction results
• Concluding remarks

15



Methodology

• Identification of routes used by flights
requires distance metric to compare routes and flight tracks

• Identification of similar routes
requires distance metric to compare routes

• Weather feature extraction
requires domain knowledge

• Development of predictive models
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Distance metric

distance(path A,path B) = 1− length(grid overlap)
min(length(path A),length(path B))
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Route usage

• June through August 2011
• Routes and flights inbound to New York Center (ZNY)
• Define use:

flight track and reroute overlap for at least 85% of shorter path
• Of 4,476 issued routes, 905 were used by at least one flight
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Cluster routes

905 used routes grouped into 253 clusters

Example cluster

Origin Center

Cluster memberCluster centroid

Destination
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Convective weather data

Echo tops
• Estimates of tops of clouds based on radar measurements
• Values are discrete altitude levels

0 ft to 50,000 ft at 5,000 ft intervals
• 108,955 data points cover the continental US
• 2,614,920 echo top values per hour

Grid
• Spatial resolution of 75 nmi by 58 nmi

(1.25◦ lat by 1.25◦ lon)
• 1,000 grid elements cover the continental US
• Temporal resolution of one hour
• 1,000 averaged echo top values per hour
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High resolution weather data
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Outline

• Advisory details
• Methodology

• Identification of routes used by flights
• Identification of similar routes
• Weather feature extraction
• Development of predictive models

• Prediction results
• Concluding remarks
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Data summary

Reduced data
• June to August 2011
⇒ 2,208 one-hour time windows

• ⇒ 905 ZNY-bound routes used
⇒ 253 reroute clusters
⇒ 020 most frequently used clusters
⇒ 253 (used 50 to 240 times)

• 2,614,920 echo top data points per hour
⇒ 1,000 echo top points per hour
⇒ 1,034 created features per hour per cluster

Data for model development for one cluster
• 2,208 observations
• 2,234 created features
• class label
+ reroute cluster used
− reroute cluster not used
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Model performance metrics

Classification error

ε =
# incorrectly predicted observations

total # observations

True positive rate

TPR =
# of correctly predicted positive observations

total # of positive observations

True negative rate

TNR =
# of correctly predicted negative observations

total # of negative observations
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Decision tree

+ − + −

v1 ≤ c1 v1 > c1

v2 ≤ c2 v2 > c2

v3 ≤ c3 v3 > c3

• Shallow trees cannot capture more complex connections
• Deep trees tend to overfit
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Random forest

• Consists of many weak learners (shallow decision trees)
• Each decision tree is built with:

• Randomly selected subset of observations
• Randomly selected subset of features

• Ensemble prediction: weighted vote of each weak learner
⇒ Advantage: reduce sensitivity to noise⇒ reduce overfitting
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Model development
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↗ as ε↘, ε < 0.5
0, otherwise
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Model development
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Model development
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Prediction results
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SMOTE

Synthetic Minority Oversampling Technique (SMOTE)

Within the training set:

• Select a positive observation
• Select one of its nearest neighbors
• Create a new observation:

Convex combination of these two observations

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P., SMOTE: Synthetic Minority Over-sampling
Technique, Journal Of Artificial Intelligence Research, Vol. 16, 2002, pp. 321 357.
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Prediction results with SMOTE
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Conclusions and future work

Conclusions
• Developed a framework to

• analyze the historical use of reroutes
• develop models to predict reroute use

• With improvements, this approach could provide insight
into advisory use

Future work
• Include weather conditions at fixes and along jet routes
• Use Convective Weather Avoidance Model (CWAM)
• Use Collaborative Convective Forecast Product (CCFP)
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Questions?

Heather Arneson
heather.arneson@nasa.gov
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