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Abstract
Goal Recognition is the task of inferring an ac-
tor’s goals given some or all of the actor’s observed
actions. There is considerable interest in Goal
Recognition for use in intelligent personal assis-
tants, smart environments, intelligent tutoring sys-
tems, and monitoring user’s needs. In much of this
work, the actor’s observed actions are compared
against a generated library of plans. Recent work
by Ramı́rez and Geffner makes use of AI planning
to determine how closely a sequence of observed
actions matches plans for each possible goal. For
each goal, this is done by comparing the cost of a
plan for that goal with the cost of a plan for that
goal that includes the observed actions. This ap-
proach yields useful rankings, but is impractical for
real-time goal recognition in large domains because
of the computational expense of constructing plans
for each possible goal. In this paper, we introduce
an approach that propagates cost and interaction in-
formation in a plan graph, and uses this information
to estimate goal probabilities. We show that this ap-
proach is much faster, but still yields high quality
results.

1 Introduction
Goal recognition aims to infer an actor’s goals from some
or all of the actor’s observed actions. It is useful in many
areas such as intelligent personal assistants [Weber and Pol-
lack, 2008], smart environments [Wu et al., 2007], monitor-
ing user’s needs [Pollack et al., 2003; Kautz et al., 2002],
and for intelligent tutoring systems [Brown et al., 1977].
Several different techniques have been used to solve plan
recognition problems: hand-coded action taxonomies [Kautz
and Allen, 1986], probabilistic belief networks [Huber et al.,
1994], consistency graphs [Lesh and Etzioni, 1995], Bayesian
inference [Albrecht et al., 1997; Bui, 2003], machine learn-
ing [Bauer, 1998], parsing algorithms [Geib and Goldman,
2009], and more recently AI planning. In particular, Jigui
and Minghao [2007] developed Incremental Planning Recog-
nition (IPR) that is based on reachability in a plan graph.
Ramı́rez and Geffner [2009] developed an approach that iden-
tifies goals where the observed actions are compatible with an

optimal plan for one or more of those goals. To identify those
plans, they used optimal and satisficing planners, as well as
a heuristic estimator [Keyder and Geffner, 2007], which ap-
proximates the solution by computing a relaxed plan. The
limitation of this work is the assumption that agents act op-
timally – suboptimal plans compatible with the given obser-
vations are not considered. To remove this limitation, they
developed an approach for estimating the probability of each
possible goal, given the observations [2010; 2012]. The like-
lihood of a goal given a sequence of observations is computed
using the cost difference between achieving the goal comply-
ing with the observations, and not complying with them. This
cost is computed by means of two calls to a planner for each
possible goal.

A significant drawback to the Ramı́rez approach is the
computational cost of calling a planner twice for each pos-
sible goal. This makes the approach impractical for real-time
goal recognition, such as for a robot observing a human and
trying to assist or avoid conflicts. In this paper we present
an approach that can quickly provide a probability distribu-
tion over the possible goals. This approach makes use of the
theoretical framework of Ramı́rez, but instead of invoking a
planner for each goal, it computes cost estimates using a plan
graph. These cost estimates are more accurate than usual be-
cause we use interaction [Bryce and Smith, 2006]. Moreover,
we can prune the cost-plan graph considering the observed
actions sequence. Consequently, we can quickly compute
cost estimates for goals with and without the observations,
and thus infer a probability distribution over those goals. We
show that this approach is much faster, but still yields high
quality results.

In the next two sections we review the basic notions of
planning and goal recognition from the perspective of plan-
ning. In Section 4 we develop our fast technique for approxi-
mate goal recognition, which includes the propagation of cost
and interaction information through a plan graph, and a plan
graph pruning technique from IPR. In Section 5 we present
an empirical study, and in Section 6 we discuss future work.

2 Planning Background
Automated planning is the problem of choosing and organiz-
ing a sequence of actions that when applied in a given initial
state results in a goal state. Formally, a STRIPS planning
problem is defined as a tuple Π =< P,O, I,G > where P is
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a finite set of propositional state variables; O is a set of op-
erators, each having the form < prec(O), add(O), del(O) >
where prec(O) ⊆ P is the set of propositions that must be
satisfied before the operator can be executed; add(O) ⊆ P
is the set of positive propositions that become true when the
operator is applied; del(O) ⊆ P is the set of propositions
that become false when the operator is applied; I ⊆ P is the
initial state; G ⊆ P is the goal state. A solution or plan for
a planning problem is a sequence of actions π = (o1, ..., on),
which represents the path to reach G starting from I .

Each action a ∈ O has an associate cost Costa > 0. Thus,
a plan solution cost is the sum of the cost of the operators
in the plan, i.e., Cost(π) =

∑
a∈π Costa. The optimal plan

cost, Cost∗(π), is the minimum cost among all the possible
plans.

3 Goal Recognition Background
Ramı́rez (2010; 2012), defines a goal recognition problem to
be a tuple T = 〈P,G, O, Pr〉 where P is a planning domain
and initial conditions, G is a set of possible goals or hypothe-
ses, O is the observed action sequence O = o1, ..., on, and
Pr is the prior probability distribution over the goals in G.
The solution to a plan recognition problem is a probability
distribution over the set of goals G ∈ G giving the relative
likelihood of each goal. These posterior goal probabilities
P (G|O) can be characterized using Bayes Rule as:

Pr(G|O) = αPr(O|G)Pr(G) (1)

where α is a normalizing constant, Pr(G) is the prior distri-
bution over G ∈ G, and Pr(O|G) is the likelihood of observ-
ingO when the goal isG. Ramı́rez goes on to characterize the
likelihood Pr(O|G) in terms of cost differences for achieving
G under two conditions: complying with the observations O,
and not complying with the observations O. More precisely,
Ramı́rez characterizes the likelihood, Pr(O|G), in terms of a
Boltzman distribution:

Pr(O|G) =
e[−β∆(G,O)]

1 + e[−β∆(G,O)]
(2)

where β is a positive constant and ∆(G,O) is the cost differ-
ence between achieving the goal with and without the obser-
vations:

∆(G,O) = Cost(G|O)− Cost(G|O) (3)

Putting equations (1) and (2) together yields:

Pr(G|O) = α
e[−β∆(G,O)]

1 + e[−β∆(G,O)]
Pr(G) (4)

By computing ∆(G,O) for each possible goal, equation 4
can be used to compute a probability distribution over those
goals. The two costs necessary to compute ∆ can be found by
optimally solving the two planning problems G|O and G|O.
Ramı́rez shows how the constraintsO andO can be compiled
into the goals, conditions and effects of the planning problem
so that a standard planner can be used to find plans for G|O
and G|O.

To illustrate the Ramı́rez approach, consider the example
shown in Figure 1, where an agent can move up, left, and right
at cost 1. It has two possible goals, G1 and G2, and O = (o1)
as the observed sequence. For goal G1, Cost(G1|O) = 3,
and Cost(G1|O) = Cost(G1) = 3. (The costs are the
same since o1 is on an optimal path to G1 and there is an-
other optimal path that reaches G1 but does not include o1.)
Hence, ∆(G1, O) = 0, and Pr(G1|O) = 0.5. In con-
trast, Cost(G2|O) = 2 and Cost(G2|O) = 4, since avoid-
ing o1 requires a suboptimal plan for G2. This results in
∆(G2, O) = −2, and Pr(G2|O) = 0.88. This means that
G2 is more likely to occur than G1.

Figure 1: A grid examples for goals G1 and G2

This result is somewhat counterintuitive. The fact that the
sequence of observed actions consists exclusively of optimal
action landmarks for G2 causes Cost(G2|O) to differ from
Cost(G2) yielding a higher probability for G2. However, In
most cases, Cost(G|O) = Cost(G) because there are mul-
tiple possible paths to a goal. In order for the two costs to
be different, the observation sequence would need to con-
sist exclusively of optimal landmarks (like the case for G2

above). For example, if we were to shift G1 and G2 left one
column there would now be multiple optimal paths to G2 so
Cost(G2|O) would equal Cost(G2). This would result in
both ∆(G1, O) = 0 and ∆(G2, O) = 0 yielding the same
probability for both goals.

4 Fast Goal Recognition
The major drawback to the Ramı́rez approach is the compu-
tational expense of finding two plans for every possible goal.
Moreover, the constraints O and O make the planning prob-
lems more difficult to solve. As a result, even for relatively
simple Logistics and Blocks World problems it can take 15-
30 minutes to find all the plans necessary for this computa-
tion. This makes it impractical to use this approach for any
sort of real-time goal recognition. To address this problem,
we developed a heuristic approach that combines two princi-
pal ideas: 1) cost and interaction estimates using a plan graph,
and 2) the pruning technique of IPR. As with Ramı́rez, we
assume that we are given T = 〈P,G, O, Pr〉, which includes
the problem P (planning domain and initial conditions), the
set of possible goals G, a set of observations O, and a prior
distribution over the possible goals G. It is also assumed that
the sequence of observed actions may be incomplete, but is
accurate (not noisy).

4.1 Plan Graph Cost Estimation
Simple propagation of cost estimates in a plan graph is a tech-
nique that has been used in a number of planning systems



to do heuristic cost estimation (e.g: [Do and Kambhampati,
2002]). Unfortunately, the cost information computed this
way is often inaccurate because it does not consider the inter-
action between different actions and subgoals.

Cost Interaction is a quantity that represents how more
or less costly it is that two propositions or actions are es-
tablished together instead of independently. Formally, the
optimal Interaction, I∗, is an n-ary interaction relationships
among propositions and among actions (p0 to pn) in the plan
graph, and it is defined as:

I∗(p0, ..., pn) = cost∗(p0∧...∧pn)−(cost∗(p0)+...+cost∗(pn))
(5)

where the term cost∗(p0∧...∧pn) is the minimum cost among
all the possible plans that achieve all the members in the set.
Computing I∗ would be computationally prohibitive. As a re-
sult, we limit the calculation of these values to pairs of propo-
sitions and pairs of actions in each level of a plan graph – in
other words, binary interaction:

I∗(p, q) = cost∗(p ∧ q)− (cost∗(p) + cost∗(q)) (6)

A value I < 0 means that two propositions or actions are
synergistic – that is, the cost of establishing both is less than
the sum of the costs of establishing the two independently.
When I = 0 the two propositions or actions are independent.
When I > 0 the two propositions or actions interfere with
each other, so it is harder to achieve them both than to achieve
them independently. The extreme value I =∞, indicates that
the two propositions or actions are mutually exclusive. One
can therefore think of interaction as a more nuanced general-
ization of the notion of mutual exclusion.

The computation of cost and interaction information be-
gins at level zero of a plan graph and proceeds sequentially
to higher levels. For level zero we assume 1) the cost for
propositions at this level is 0 because the initial state is given,
and 2) the interaction between each pair of propositions is 0,
that is, the propositions are independent. With these assump-
tions, we start the propagation by computing the cost of the
actions at the first level of the plan graph. In general, for an
action a at level l with a set of preconditions Pa, the cost is
approximated as:

cost∗(a) = cost∗(Pa) ≈
∑
xi∈Pa

cost(xi) +
∑

(xi,xj)∈Pa
j>i

I(xi, xj)

(7)

The next step is to compute the interaction between two
actions. The interaction between two actions a and b at level
l is:

I∗(a, b) =


∞ if a and b are mutex by inconsistent effects

or interference

Cost∗(a ∧ b)− Cost∗(a)− Cost∗(b) otherwise

where cost∗(a ∧ b) is defined to be cost(Pa ∪ Pb), which is
approximated as in (7) by:

cost(Pa ∪ Pb) ≈
∑

xi∈Pa∪Pb

cost(xi) +
∑

(xi,xj)∈Pa∪Pb
j>i

I(xi, xj)

If the actions are mutex by inconsistent effects, or inter-
ference, then the interaction is∞. Otherwise, the interaction
above simplifies to:

I(a, b) ≈
∑

xi∈Pa−Pb
xj∈Pb−Pa

I(xi, xj)−
[ ∑
xi∈Pa∩Pb

cost(xi) +

∑
(xi,xj)∈Pa∩Pb

j>i

I(xi, xj)

]

For a proposition x at level l, achieved by the actionsAx at
the preceding level, the cost is calculated in the same way as
for traditional plan graph cost estimation:

Cost∗(x) = min
a∈A(x)

[Cost(a) + Costa] (8)

where Ax is the set of actions that support x.
Finally, in order to compute the interaction between two

propositions at a level l, we need to consider all possible ways
of achieving those propositions at the previous level. That is,
all the actions that achieve the pair of propositions and the
interaction between them. Suppose that Ax and Ay are the
sets of actions that achieve the propositions x and y at level l.
The interaction between x and y is then:

I∗(x, y) = cost∗(x ∧ y)− cost∗(x)− cost∗(y)

= min
a∈Ax
b∈Ay

{
cost∗(a ∧ b)

}
− cost∗(x)− cost∗(y)

≈ min



min
a∈Ax∩Ay

cost(a) + Costa

min
a∈Ax−Ay
b∈Ay−Ax

 cost(a) + Costa+
cost(b) + Costb+
I(a, b)




−cost(x)− cost(y)

(9)

Using equations (7), (8), and (9), a cost-plan graph is built
until quiescence. On completion, each possible goal propo-
sition has an estimated cost of achievement, and there is an
interaction estimation between each pair of goal propositions.
Using this information, one can estimate the cost of achieving
a conjunctive goal G = g1, ..., gn as:

Cost(G) ≈
n∑
i=1

[
Cost(gi) +

∑
j<i

I(gi, gj)
]

(10)

Using this information, we can estimate the cost of a plan
for each possible goal G. While this allows us to estimate
Cost(G), what we need for goal recognition is to compute



∆(G,O), which requires Cost(G|O) and Cost(G|O). As
discussed earlier, unless O is a subsequence of every optimal
plan for G, Cost(G|O) = Cost(G). Even when this is not
the case, these two costs tend to be similar except in a few rare
cases. (This is confirmed in our experiments; for most prob-
lems there are multiple distinct optimal plans for each goal.)
As a result, we approximate Cost(G|O) by Cost(G), which
can be estimated as shown above. To estimate Cost(G|O)
we modify the plan graph as described in the next section,
and repropagate cost and interaction information.

4.2 Incremental Plan Recognition
Jigui and Minghao [2007] developed a framework for plan
recognition that narrows the set of possible goals by incre-
mentally pruning a plan graph as actions are observed. The
approach consists of building a plan graph to determine which
actions and which propositions are true (1), false (-1), or un-
known (0) given the observations. For level zero, since it is
assumed that the initial state is true, every proposition has
value 1. In addition, when an action is observed at a level it
gets value 1. The process incrementally builds a plan graph
and updates it level by level. The values of propositions and
actions are updated according to the following rules:

1. An action in the plan graph gets value -1 when any of its
preconditions or any of its effects is -1.

2. An action in the plan graph gets value 1 when it is the
sole producer of an effect that has value 1, noop in-
cluded.

3. A proposition in the plan graph gets value -1 when all
of its consumers or all of its producers are -1, noop in-
cluded.

4. A proposition in the plan graph gets value 1 when any of
its consumers or any of its producers is 1, noop included.

The process results in a plan graph where each proposition
and each action is labeled as 1, -1, or 0. Those propositions
and actions identified as -1 can be ignored for plan recog-
nition purposes, meaning that these are pruned from the re-
sulting plan graph. To illustrate this propagation and pruning
technique, consider a simple problem with three operators:

A : y → z

B : y →,¬y, t
C : t→ k,¬t (11)

Suppose that the sequence of observed actions is A at level
0, and C at level 2. Figure 2 shows the plan graph for this
problem. The numbers above the propositions and actions
are the values for each proposition and action computed using
the above propagation rules. As a result of the propagation,
z must be true (has value 1) at level 1 because action A was
observed. As a result, since A and B are mutually exclusive,
action B and its effects t and ¬y are false (have value -1) at
level 0. As a consequence of t being false, C is also false at
level 1 along with its effects k and ¬t. At level 2, k and ¬t
must be true because action C was observed. (This results in

t being true at level 1.) Since A and C, and B and C are mu-
tually exclusive, A, B, ¬y, and t are not possible (have value
-1) at level 2. Action B is unknown (has value 0) at level 1
since there is not enough information to determine whether
it is true or false. The proposition y is true at level 0 since
it is assumed that the initial state is true, and is unknown at
level 1 because there is not enough information to determine
whether it is true or false. However, it is false at level 2 due to
the mutual exclusion between C and noop-y. Proposition z is
true at every level since there are no operators in the domain
that delete it.

Figure 2: A plan graph with status values of propositions and
actions

4.3 Relaxing the Time Step Assumption
We have modified the IPR pruning technique in order to relax
the assumption of knowing the time step of each action in the
observed sequence. Like Ramı́rez and Geffner [2010], we as-
sume that the sequence of actions is sequential. Initially, we
assign an earliest time step (ets) i to each action o in the ob-
served sequence. The ets is given by the order of each action
in the observed sequence. That is, given (o0, o1, ..., oi), the ets
for each action is: ets(o0)=0, ets(o1)=1, ets(o2)=2, etc. When
the pruning process starts, we establish that an observed ac-
tion o is possible to be observed at the assigned level i if all
its preconditions are true (value 1) and/or unknown (value 0),
and they are not mutually exclusive at level i − 1. Other-
wise, the action cannot be executed at that level, which re-
sults in an update of the ets of each remaining action in the
observed sequence. For instance, considering the initial se-
quence where ets(o0)=0, ets(o1)=1, ets(o2)=2, and o0 can be
executed at level 0. If o1 cannot be executed at level 1, then
ets(o1)=2 and ets(o2)=3. If necessary, the cost-plan graph will
be expanded until an ets is assigned to each observed action
in the sequence. To illustrate this method, consider the exam-
ple from Figure 2. Let us suppose the sequence of observed
actions is A and C, with initial ets 0 and 1 respectively. As
a result of the propagation, z must be true (have value 1) at
level 1 because action A was observed. As a result, since A
and B are mutually exclusive, action B and its effects t and
¬y are false (have value -1) at level 0. Action C is initially
assumed to be at level 1, but this cannot be the case because



its precondition t is false at level 0. Therefore, the ets for C is
updated to 2. The result of this updating is that each observed
action is assumed to occur at the earliest possible time con-
sistent with both the observation sequence and the constraints
found in constructing the plan graph, using the interaction in-
formation.

4.4 Computing Goal Probabilities
With the plan graph cost estimation technique described in
Section 4.1, and the observation pruning technique described
in Section 4.2 and Section 4.3, we can now put these pieces
together to allow fast estimation of cost differences ∆(G,O),
giving us probability estimates for the possible goals G ∈ G.
The steps are:

1. Build a plan graph for the problem P (domain plus ini-
tial conditions) and propagate cost and interaction infor-
mation through this plan graph according to the tech-
nique described in Section 4.1.

2. For each (possibly conjunctive) goal G ∈ G estimate the
Cost(G) from the plan graph using equation (10).

3. Prune the plan graph, based on the observed actions O,
using the technique described in Section 4.2 and Sec-
tion 4.3.

4. Compute new cost and interaction estimates for this
pruned plan graph, considering only those propositions
and actions labeled 0, or 1.

5. For each (possibly conjunctive) goal G ∈ G estimate the
Cost(G|O) from the cost and interaction estimates in
the pruned plan graph, again using equation (10). The
pruned cost-plan graph may discard propositions or/and
actions in the cost-plan graph necessary to reach the
goal. This constraint provides a way to discriminate pos-
sible goals. However, it may imply that 1) the real goal
is discarded, 2) the calculated costs are less accurate.
Therefore, computation of Cost(G|O) has been devel-
oped under two strategies:

(a) Cost(G|O) is computed using the pruned cost-plan
graph.

(b) Cost(G|O) is computed after the pruned cost-plan
graph is expanded to quiescence again. This will
reintroduce any pruned goals that are still possible
given the observations.

6. For each goal G ∈ G, compute ∆(G,O), and using
equation (4) compute the probability Pr(G|O) for the
goal given the observations.

To illustrate this computation, consider again the actions
A, B, and C from equation (11), and the plan graph shown
in Figure 2. Suppose that A, B, and C have costs 2, 1, and 3
respectively, and that the possible goals are g1 = {z, k} and
g2 = {z, t}. Propagating cost and interaction information
through the plan graph, we get Cost(t) = 1, Cost(z) =
2, Cost(k) = 4, and interaction values I(k, t) = ∞ and
I(k, z) = 0 at level 3. Now consider the hypothesis g1 =
{z, k}; in order to compute Cost(k ∧ z), we use the cost and
interaction information propagated through the plan graph.
In order to compute Cost(k ∧ z|O), the cost and interaction

information is propagated again only in those actions with
status 1 and 0. In our example, these costs are:

Cost(k ∧ z) ≈ Cost(z) + Cost(k) + I(k, z) = 2 + 4 + 0 = 6

Cost(k ∧ z|O) ≈ Cost(k) +Cost(z) + I(k, z) = 4 + 2− 1 = 5

Thus, the cost difference is:

∆(g1, O) = Cost(g1|O)− Cost(g1) = 5− 6 = −1

As a result:

Pr(O|g1) =
e−(−1)

1 + e−(−1)
= 0.73

For the hypothesis g2 = {z, t}, the plan graph dismisses
this hypothesis as a solution because once the plan graph is
pruned, propositions t and z are labeled as -1. Therefore:

Cost(k ∧ t|O) ≈ Cost(k) + Cost(t) + I(k, t) =∞

So:
Pr(O|g2) =

e−∞

1 + e−∞
=

0

1
= 0

If we expand the pruned cost-plan graph until quiescence
again, the solution is still the same because A and B are per-
manently mutually exclusive.

Assuming uniform priors, Pr(G), after normalizing the
probabilities, we get that Pr(g1|O) = 1 and Pr(g2|O) = 0,
so the goal g1 is certain in this simple example, given the ob-
servations of actions A and C.

5 Experimental Results
We have conducted an experimental evaluation on planning
domains used by Ramı́rez and Geffner: BlocksWord, Intru-
sion, Kitchen, and Logistics. Each domain has 15 problems.
The hypotheses set and actual goal for each problem were
chosen at random with the priors on the goal sets assumed to
be uniform. For each problem in each of the domains, we ran
the LAMA planner [Richter et al., 2008] to solve the prob-
lem for the actual goal. The set of observed actions for each
recognition problem was taken to be a subset of this plan so-
lution, ranging from 100% of the actions, down to 10% of the
actions. The experiments were conducted on an Intel Xeon
CPU E5-1650 processor running at 3.20GHz with 32 GB of
RAM.

Ramı́rez evaluates his technique using an optimal planner
HSP∗f [Haslum, 2008], and LAMA, a satisficing planner that
is used in two modes: as a greedy planner that stops when it
finds the first plan (LAMAG), and as a planner that returns
the best plan found in a given time limit (LAMA). For pur-
poses of this test, Ramı́rez technique is also evaluated using
the heuristic estimator hsa, which was used by Ramı́rez and
Geffner (2009). Like our technique, this requires no search



Table 1: Summarized Evaluation Random Observations
Domain Blocks Campus Easy Grid Intrusion

Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗fu
T 704.77 579.04 508.12 479.16 479.16 1.78 1.1 0.55 0.28 0.28 224.67 144.49 79.82 41.47 37.42 588.34 414.29 214.19 4.25 4.22
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6

gHSP∗fu
T 558.08 419.45 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.2 38.8 447.41 281.12 151.37 3.58 3.55
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6

LAMA

T 1603.24 1522.96 1260.6 1077.62 1082.15 1.75 1.38 0.8 0.62 0.52 13.93 13.19 11.66 10.38 10.36 92.85 89.01 64.97 17.57 17.48
Q 0.33 0.8 0.8 0.93 1 1 1 1 1 0.4 0.53 0.6 0.66 0.73 0.93 1 1 1 1 1
S 1 1.13 3.86 10.4 10.93 1 1 1 1 1 2 1.93 1.8 2.53 2.53 0.93 1 1.06 4.46 4.6

Q20 1 1 1 1 1 1 1 1 1 1 0.6 0.6 0.66 0.73 0.93 0.93 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.86 0.86 0.93 0.93 1 1 1 1

d 0.24 0.316 0.192 0.048 0.068 3.66·10−6 8·10−5 1.31·10−3 0.054 3.66·10−6 0.021 0.016 0.011 7.54·10−3 0.018 1.739 1.12 0.095 7·10−6 7·10−6

LAMAG

T 849.08 840.76 814.95 803.04 809.01 0.65 0.55 0.45 0.42 0.37 10.43 9.38 8.47 7.45 7.54 3.32 2.63 2.21 2.08 2.08
Q 0.93 0.8 0.73 0.66 0.46 1 1 1 0.8 0.66 0.26 0.53 0.46 0.6 0.66 0 0.4 1 1 1
S 1 1.2 3 6.2 4.2 1 1 1 1.06 1.06 1.66 1.66 1.73 2.13 2.13 0 0.4 1.13 4.46 4.6

Q20 0.93 1 1 1 1 1 1 1 0.8 0.66 0.53 0.6 0.66 0.73 0.8 0 0.4 1 1 1
Q50 0.93 1 1 1 1 1 1 1 1 1 0.8 0.6 0.86 0.86 0.8 0 0.4 1 1 1

d 0.068 0.34 0.404 0.322 0.341 2.7·10−6 4.8·10−4 7·10−3 0.138 0.155 0.021 0.016 0.011 6.74·10−3 0.018 1.86 1.12 0.108 7·10−6 7·10−6

hsa

T 1.04 0.89 0.81 0.81 0.8 0.04 0.04 0.03 0.03 0.03 0.43 0.32 0.28 0.25 0.23 0.7 0.46 0.39 0.35 0.36
Q 1 1 1 1 1 1 1 1 1 1 0.86 0.86 0.86 0.86 0.86 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 2 2 2 2 2 5.33 5.33 5.33 5.33 5.33 16.66 16.66 16.66 16.66 16.66

Q20 1 1 1 1 1 1 1 1 1 1 0.86 0.86 0.86 0.86 0.86 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.86 0.86 0.86 0.86 0.86 1 1 1 1 1

d 0.092 0.087 0.062 0.035 0.035 0.19 0.19 0.26 0.19 0.19 0.05 0.05 0.05 0.03 0.03 0.123 0.124 0.119 0.075 0.073

GRI

T 1.007 1.029 1.265 1.452 1.452 0.27 0.29 0.35 0.39 0.39 108.49 110.11 97.24 98.8 95.21 0.885 0.493 0.212 0.209 0.21
Q 1 0.66 0.4 0.13 0.13 1 1 0.93 0.93 0.93 1 0.13 0.6 0.86 0.66 1 1 0.93 0.93 0.93
S 1.06 0.8 1.06 1.73 1.73 1 1 0.93 1.13 1.13 1 1.4 1.93 2.33 2.06 1 1 1 4.4 4.53

Q20 1 0.66 0.53 0.46 0.46 1 1 0.93 0.93 0.93 1 0.13 0.6 0.86 0.66 1 1 1 0.93 0.93
Q50 1 0.73 0.73 0.8 0.8 1 1 0.93 0.93 0.93 1 0.13 0.6 0.93 0.66 1 1 1 1 1

d 0.149 0.962 0.751 0.336 0.336 7.2·10−7 0.12 0.108 0.038 7.2·10−7 0.001 0.082 0.149 0.084 0.001 3.2·10−4 0.055 0.872 0.241 0.241

GRIE

T 9.936 8.211 4.542 3.696 3.687 0.39 0.44 0.43 0.43 0.43 124.15 124.93 110.36 115.47 100.46 1.293 1.191 0.996 0.743 0.738
Q 0.46 0.53 0.46 0.13 0.13 1 1 0.93 0.93 0.93 1 0.13 0.6 0.86 0.66 1 1 0.93 0.93 0.93
S 1.26 1.13 1.86 1.73 1.73 1 1 0.93 1.13 1.13 1 1.4 1.86 2.06 2.13 1 1 1 4.4 4.53

Q20 0.46 0.73 0.66 0.4 0.4 1 1 0.93 0.93 0.93 1 0.13 0.6 0.86 0.66 1 1 1 0.93 0.93
Q50 0.46 0.8 0.86 0.8 0.8 1 1 0.93 0.93 0.93 1 0.13 0.6 0.86 0.66 1 1 1 1 1

d 1.094 1.025 0.742 0.358 0.358 5.6·10−7 4.37·10−5 0.017 0.038 5.6·10−7 0.001 0.082 0.152 0.077 0.001 3.2·10−4 0.055 0.872 0.241 0.241

GR¬I

T 0.761 0.609 0.643 0.782 0.783 0.19 0.2 0.23 0.25 0.25 33.15 33.6 33.29 35.52 35 0.886 0.491 0.196 0.192 0.193
Q 1 0.46 0.46 0.46 0.46 1 0.33 0.53 0.93 0.93 0.93 0.13 0.53 0.73 0.6 1 1 1 1 0.93
S 1 0.53 1.2 2.06 2.06 1.2 0.33 0.73 1.2 1.2 1.2 1.66 2.53 2.26 2.33 1 1.13 1.13 4.06 3.93

Q20 1 0.46 0.6 0.6 0.6 1 0.33 0.53 0.93 0.93 0.93 0.13 0.53 0.73 0.6 1 1 1 1 0.93
Q50 1 0.46 0.6 0.73 0.73 1 0.33 0.53 0.93 0.93 0.93 0.13 0.53 0.8 0.6 1 1 1 1 1

d 0.088 1.084 1.036 1.004 1.004 7.2·10−7 0.08 0.093 0.133 7.2·10−7 0.013 0.068 0.148 0.084 0.013 0.151 0.764 1.25 0.311 0.285

since the cost is given by a heuristic estimator. We compare
our goal recognition technique, GR, against Ramı́rez’s tech-
nique for those three planners and hsa, on the aforementioned
domains, using a range of time limits from 5 seconds up to
1800 seconds. We present two variations of our technique,
with and without extension of the plan graph after pruning:

• GRI : the propagation of cost information through the
plan graph considers interaction information.

• GRIE: same as above, but the pruned cost-plan graph is
expanded until quiescence.

• GR¬I : the propagation of cost information through the
plan graph does not consider interaction information.

Table 1 and 2 show the results. For each planner, each
column shows average performance over the 15 problems in
each domain. The first row in the table represents the op-
timal solution where HSP∗f (HSP∗fu) computes ∆(G,O) us-
ing equation (3). The second row in the table represents the
optimal solution where HSP∗f (gHSP∗fu) computes ∆(G,O)

using Cost(G) instead of Cost(G|O) (Equation (3)). Both
approaches were allowed to run for an unlimited amount of
time. The other rows represent different measures of quality
and performance:

• T shows the average time in seconds taken for solving
the problems.

• Q shows the fraction of times the actual goal was among
the goals found to be the most likely.

• S shows the spread, that is, the average number of goals
in G that were found to be the most likely.

• Q20 and Q50 show the fraction of times the actual goal
is in the top 20% and top 50% of the ranked goals. Al-
though Q might be less than 1 for some problem, Q20 or
Q50 might be 1, indicating that the actual goal was close
to the top.
• d is the mean distance between the probability scores

produced for all the goal candidates, and the probabil-
ity scores produced by gHSP∗fu. More precisely, if the
set of possible goals is {G1, ..., Gn}, a method produces
probabilities {e1, ..., en} for those goals, and gHSP∗fu
produces {p1, ..., pn}, d is defined as:

d = 1/n

n∑
i=1

|ei − pi| (12)

In all the domains except Kitchen and Logistics, HSP∗fu
finds the actual goal with highest probability (Q = 1). In
Logistics, the value of Q degrades with lower percentages of
observed actions. The spread increases as the percentage of
observed actions decreases, because there is not enough in-
formation to distinguish among different possible goals. Re-
sults for HSP∗fu are the same except for the Kitchen domain
where gHSP∗fu actually finds higher quality solutions. We
note, however, that gHSP∗fu is significantly faster than HSP∗fu
because it is generally easier to plan for G than for G|O.

LAMA and LAMAG planners solve all the problems for
the BlocksWord domain within 1800 seconds, which is actu-
ally slower than HSP∗f . However, the qualityQ is high, which
means that the actual goal is among the most likely goals for
most problems. In the Campus domain, LAMA solves all the
problems within 1.5 seconds, and generates high quality solu-



tions. LAMAG solves all the problems in less than a second,
but the quality of the solution decreases as the percentage of
observed actions drops. In the Grid domain, LAMA solves
all the problems within the 13 seconds. The quality of the
solution is low when the percentage of observed actions is
high, and it improves as the percentage of observed actions
drops. LAMAG solves all the problems in the Grid domain
within 10 seconds, but the quality of the solution is lower
than for LAMA. In the Intrusion domain, LAMA solves all
the problems producing quality solutions within 90 seconds,
when the percentage of observed actions is high. The com-
putational time decreases to 18 seconds as the percentage of
observed actions drops. LAMAG solves all the problems in
the Intrusion domain within 3 seconds, but the quality of the
solutions is very low when the percentage of observed actions
is high. In the Kitchen domain, the quality of solutions given
by LAMA and LAMAG varies depending on the percentage
of observations. However, LAMAG is faster than LAMA. In
the Logistics domains, LAMA solves all the problems, and
produces quality solutions within 42 seconds as long as the
percentage of observed actions is high. The computation time
decreases to around 11 seconds as the percentage of observed
actions drops. For LAMAG the problems are solved within
5 seconds. When the percentage of observed actions is high,
the quality of the solution is good. (The quality degrades as
the percentage of observed actions drops.)

The hsa heuristic solves all the problems within a second. In
all the domain except Logistics, the quality Q of the solution
is 1, which means that the actual goal is among the most likely
goals for all the problems. However, the spread is very high,
which means that the approach does not discriminate among
the possible goals very well. In Logistics, the qualityQ of the
solution is very low, although in most cases, the actual goal
appears in the top 20% of the ranked goals (Q20).

GRI solves all the problems, except those in the Grid do-
main, within 2 seconds, GRIE solves them within 10 seconds.
In general, the three approaches quickly provide high quality
solutions when the percentage of observed actions is high,
although this degrades a bit as the percentage of observed
actions drops. Considering the expansion of the pruned cost-
plan graph, we expected GRIE to dominate GRI in terms
of goal recognition accuracy. Surprisingly, this does not ap-
pear to be the case in the domains studied. In some cases,
GRIE shows a small improvement, but in others the qual-
ity of the solutions drops. Our hypothesis is that the pruned
goals are sufficiently unlikely that reintroducing them does
not significantly impact the resulting probability distribution.
Considering the use of interaction estimates, GRI gets more
high quality solutions than GR¬I , except for some cases of
BlocksWord and Logistics domains for 30% and 10% of ob-
served actions. In the Grid domain, GRI solves all the prob-
lem within 100 seconds and GRIE within 130 seconds, which
is slower than HSP∗f . However, for all the percentages of ob-
served actions, except for 70%, both approaches provide al-
most the same quality solution as that provided by LAMA.
GR¬I solves all the problems in the Grid domain within the
35 seconds, but the quality is a bit lower than GRI .

We have conducted a second test where the set of observed
actions for each recognition problem was considered to be

Table 2: Summarized Evaluation Random Observations
Domain Kitchen Logistics

Approach %O 100 70 50 30 10 100 70 50 30 10

HSP∗fu
T 693.74 243.52 61.03 33.28 33.3 46.06 40.89 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1 1 1.2 1.26 1.26 1 1.13 2.26 3.6 3.6

gHSP∗fu
T 480.51 171.08 49.62 37.93 37.92 36.26 32.46 14.08 7.04 7.04
Q 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 26.33 26.2 20.45 20.3 20.3 45.17 41.71 26.53 11.38 11.39
Q 0.73 1 1 1 1 1 0.93 0.66 0.8 0.8
S 0.73 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

Q20 0.73 1 1 1 1 1 1 0.93 1 1
Q50 0.73 1 1 1 1 1 1 1 1 1

d 0.358 3×10−3 0.016 0.012 0.012 0.019 0.673 1.051 0.956 0.956

LAMAG

T 0.42 0.36 0.33 0.32 0.32 5.47 4.95 4.5 4.33 4.36
Q 0.73 1 1 1 1 1 0.8 0.4 0.46 0.46
S 0.73 1 1.33 1.4 1.4 1 1.2 1.8 2.93 2.93

Q20 0.73 1 1 1 1 1 1 0.66 0.6 0.6
Q50 0.73 1 1 1 1 1 1 0.93 0.86 0.86

d 0.358 3×10−3 0.016 0.012 0.012 0.019 0.675 1.179 1.063 1.063

hsa

T 0.066 0.049 0.044 0.045 0.046 0.61 0.55 0.51 0.51 0.51
Q 1 1 1 1 1 0.13 0.06 0.13 0.06 0.06
S 3 3 3 3 3 2.8 1.86 1.93 1 1

Q20 1 1 1 1 1 0.93 0.93 0.86 0.86 0.86
Q50 1 1 1 1 1 0.93 0.93 0.86 0.86 0.86

d 0.443 0.436 0.284 0.226 0.226 0.123 0.117 0.099 0.074 0.074

GRI

T 0.261 0.195 0.140 0.135 0.135 0.886 1.015 1.19 1.266 1.271
Q 1 1 1 1 1 1 0.86 0.53 0.6 0.6
S 1 1 1.2 1.26 1.26 1 1.26 1.6 2.46 2.46

Q20 1 1 1 1 1 1 0.93 0.66 0.73 0.73
Q50 1 1 1 1 1 1 0.93 0.8 0.86 0.86

d 3.98×10−4 0.036 0.107 0.192 0.192 0.264 0.786 1.163 0.718 0.718

GRIE

T 0.287 0.266 0.230 0.193 0.193 7.535 4.24 3.016 2.842 2.834
Q 1 1 1 1 1 0.86 0.66 0.66 0.6 0.6
S 1 1 1.2 1.26 1.26 1.13 1.4 1.8 2.8 2.8

Q20 1 1 1 1 1 0.86 0.8 0.8 0.73 0.73
Q50 1 1 1 1 1 0.93 1 0.86 0.86 0.86

d 3.98×10−4 0.036 0.107 0.192 0.192 0.387 0.943 1.107 0.771 0.771

GR¬I

T 0.258 0.191 0.136 0.128 0.129 0.806 0.405 0.448 0.508 0.51
Q 1 1 1 1 1 1 0.4 0.46 0.6 0.6
S 1 1 1.33 1.4 1.4 1 1 2.13 2.93 2.93

Q20 1 1 1 1 1 1 0.46 0.6 0.66 0.66
Q50 1 1 1 1 1 1 0.53 0.73 0.8 0.8

d 2×10−6 0.038 5×10−6 0.022 0.022 0.011 1.196 1.29 0.899 0.899

the prefix of the plan solution, ranging from 100% of the ac-
tions, down to 10% of the actions. (Priors on the goal sets
are also assumed to be uniform.) The reason for this test is to
model incremental goal recognition as actions are observed.
This produces essentially the same results as the previous test
for all the different techniques. We have also tested the ap-
proaches in Table 1 on test problems where the observation
sequences were generated using an optimal planner (rather
than LAMA). This also makes no difference in the results.

6 Conclusions and Future Work
In this paper we presented a fast technique for goal recog-
nition. This technique computes cost estimates using a plan
graph, and uses this information to infer probability estimates
for the possible goals. This technique provides fast, high
quality solutions when the percentage of observed actions is
relatively high, and degrades as the percentage of observed
actions decreases. In many domains, this approach yields
results two orders of magnitude faster than the Ramı́rez ap-
proach using HSP∗f , LAMA, or greedy LAMA on the more
difficult domains. The solutions are comparable or better in
quality than those produced by greedy LAMA.

The ranking that we produce could be used to select the
highest probability goals, and then feed this set to the Ramı́rez
approach to provide further refinement to the probabilities.
While this does reduce the amount of computation time re-
quire by the Ramı́rez approach, in our experiments the rank-
ing occasionally improved, and the computation time was still
large for the more difficult domains and problems. When the
top goals are fed to the Ramı́rez approach with the LAMA
planner, the overall ranking occasionally improves for higher



time limits. For low time limits, it doesn’t improve or de-
creases the solution quality.

It appears possible to extend our approach to deal with tem-
poral planning problems involving durative actions and con-
currency. It is not clear whether the compilation technique of
Ramı́rez would extend to temporal problems, but even if this
were possible, the overhead of solving two temporal planning
problems for each possible goal is likely to be prohibitive.
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