Martian Atmospheric Dust Mitigation for ISRU Intakes via Electrostatic Precipitation

ASCE EARTH & SPACE 2016 JAMES R. PHILLIPS III APRIL 14, 2016

James R. Phillips III¹, Jacob R. S. Pollard², Michael R. Johansen¹, Paul J. Mackey¹, J. Sid Clements², Carlos I. Calle¹

¹NASA KSC Mailcode UB-R2, Kennedy Space Center, FL 32899 ²Appalachian State University, Dept. of Physics and Astronomy, Boone, NC 28608

Agenda

The Problem: Martian Atmospheric Dust

- Atmospheric In Situ Resource Utilization (ISRU)
- Atmosphere Requirements
- Atmospheric Dust Properties
- The Solution: Electrostatic Precipitation
- Theory and Model
- Hardware and Software Prototype
- Difficulties and Results
- Conclusions
- Future Work

The Problem

DUST IN THE MARTIAN ATMOSPHERE

In Situ Resource Utilization (ISRU)

ISRU is creating consumables from resources available in the environment.

Particularly interested in Martian atmospheric ISRU:

- Oxygen needs to be produced for life support and propellant uses.
- Martian atmosphere is composed primarily of carbon dioxide (95.32%)¹.
- Carbon dioxide is easily converted into oxygen using a variety of methods.
- Full scale oxygen production of 2.2 kg/hr² is necessary for human exploration with six astronauts.

Since 2.2 kg/hr² is a very ambitious goal, two smaller benchmark missions will be flown:

- Mars 2020 aims for 1% full scale or 22 g/hr oxygen production rate over 50 sol.²
- Mars 2024 aims for 20% full scale or 440 g/hr oxygen production rate over 500 sol.²

Mars 2020

Solid Oxide Electrolysis (SOE)

- Reduce carbon dioxide:
- Recombine monatomic oxygen:
- Net reaction:

 $CO_2 + 2e^- \rightarrow O^{2-} + CO$ $2O^{2-} \rightarrow 4e^- + O_2$ $2CO_2 \rightarrow O_2 + 2CO$

- Requires two moles of carbon dioxide for every one mole of oxygen.
- Will operate at 1% the rate of a full scale human exploration mission or 22 g/hr O_2 .¹
- Over mission length of 50 sol¹, 25.7 kg O_2 will be produced overall.

Solid Oxide Electrolysis Reaction

Mars 2024

Sabatier Reactor

- Electrolyze water from regolith:
- Sabatier reaction:
- Net reaction:

 $2H_2O \rightarrow 2H_2 + O_2$ $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$ $CO_2 + 2H_2O \rightarrow CH_4 + 2O_2$

- Produces two moles of oxygen for every one mole of carbon dioxide.
- $^{\circ}\,$ Will operate at 20% the rate of a full scale human exploration mission or 440 g/hr $\rm O_2.^1$
- Over mission length of 500 sol¹, 5140 kg O_2 will be produced overall.

ISRU Parameters

Parameter	Mars 2020	Mars 2024	Notes
Oxygen Production Rate	1% full scale 22 g/hr	20% full scale 440 g/hr	Mars 2020 AO^1 20x higher O_2 rate
Primary Chemical Reaction	Electrolysis 1 O_2 per 2 CO_2	Sabatier 2 O_2 per 1 CO_2	$4x \text{ more } O_2 \text{ from } CO_2$
Operational Time	50 sol	500 sol	Mars 2020 AO ¹ 10x longer operation
Total Oxygen Produced	25.7 kg	5140 kg	200x more O_2 total

[1] NASA SMD. Mars 2020 Investigations. NASA Solicitation and Proposal Integrated Review and Evaluation System, 2013.

Assumptions

Parameter	Value	Notes
Full Scale Oxygen Production Rate	2.2 kg/hr	Mars 2020 AO ¹
Carbon Dioxide Conversion Efficiency	60 %	Mars 2020 AO ¹
Martian Atmospheric Carbon Dioxide Composition	95.32 %	Williams, 2015 ²
Laboratory Atmospheric Mean Temperature	295 K	
Martian Atmospheric Mean Temperature	210 K	Williams, 2015 ² ~1.4x less than the lab
Laboratory Atmospheric Mean Pressure	1013.25 mbar	
Martian Atmospheric Mean Pressure	6.36 mbar	Williams, 2015 ² ~160x less than the lab

[1] NASA SMD. Mars 2020 Investigations. NASA Solicitation and Proposal Integrated Review and Evaluation System, 2013. [2] Williams, D. R. Mars Fact Sheet. *NASA Lunar and Planetary Science*, 2015.

Martian Atmosphere Mass Intake

$$\dot{m}_{\text{mars}} = \dot{m}_{\text{CO}_2} \frac{1}{\eta} \frac{1}{w_{\text{CO}_2}} = \dot{m}_{\text{O}_2} \frac{M_{\text{CO}_2}}{M_{\text{O}_2}} \frac{n_{\text{CO}_2}}{n_{\text{O}_2}} \frac{1}{\eta} \frac{1}{w_{\text{CO}_2}}$$

 \dot{m} : Mass flow rate

n: Number of moles

M: Molecular mass

- η : Conversion efficiency
- *w*: Atmospheric composition

Subscripts indicate oxygen or carbon dioxide.

Martian Atmosphere Volume Intake

$$\dot{V}_{\text{mars}} = \frac{\dot{m}_{\text{mars}}}{M_{\text{CO}_2}} R \frac{T}{P} = \frac{\dot{m}_{\text{O}_2}}{M_{\text{O}_2}} \frac{n_{\text{CO}_2}}{n_{\text{O}_2}} \frac{1}{\eta} \frac{1}{w_{\text{CO}_2}} R \frac{T}{P}$$

 η :

- \dot{V} : Volume flow rate
- \dot{m} : Mass flow rate
- M: Molecular mass
- R: Ideal gas constant

Conversion efficiency

- T: Gas temperature
- *n*: Number of moles
- P: Gas pressure

Subscripts indicate oxygen or carbon dioxide.

Martian Atmospheric Requirements

Parameter	Mars 2020	Mars 2024	Notes
Mass Flow Rate	106 g/hr	529 g/hr	
Volume Flow Rate (Mars)	110 L/min	550 L/min	5x higher flow rate
Volume Flow Rate (Lab)	0.97 L/min	4.85 L/min	

Martian Atmospheric Dust

Dust storms cause surface regolith to become suspended in the atmosphere.

Continuous winds allow entrained dust to remain airborne indefinitely.

Any ISRU system utilizing Martian atmosphere will ingest dust along with the gas.

Dust will adversely affect ISRU systems, so it must be removed.

What do we know about this dust?

Martian Atmospheric Dust Properties

Parameter	Value	Note
Cross-Sectional Area Weighting Coefficient	6.875	Landia 10061
Mass Weighting Coefficient	9.75	Landis, 1996 ⁻
Cross-Sectional Area Weighted Mean Radius	1.6 µm	Tomasko, 1999 ²
Mass Weighted Mean Radius	2.27 μm	
Mean Cross-Sectional Area	8.04 μm ²	
Mean Volume	48.9 μm ³	
Mean Density	1.52 g/cm ³	Hviid, 1997 ³
Mean Mass	74.4 pg	

[1] Landis, G. A. Dust Obscuration of Mars Solar Arrays. *Acta Astronautica*, 38(11): 885 – 891, 1996.

[2] Tomasko, M. G., et al. Properties of Dust in the Martian Atmosphere from the Imager on Mars Pathfinder. *Journal of Geophysical Research: Planets*, 104(E4): 8987–9007, 1999. [3] Hviid, S. F., et al. Magnetic Properties Experiments on the Mars Pathfinder Lander: Preliminary Results. *Science*, 278(5344): 1768 – 1770, 1997.

Martian Atmospheric Dust Concentration

Parameter	Value	Notes
Atmospheric Optical Depth	0.5	Lamman 20041
Atmospheric Scale Height	11.6 km	Lemmon, 2004 ⁺
Mean Surface Concentration (Linear Model)	5.36 particles/cm ³	
Mean Surface Concentration (Exponential Model)	8.48 particles/cm ³	~58% more than linear

[1] Lemmon, M. T., et al. Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. *Science*, 306(5702):1753–1756, 2004.

Martian Atmospheric Dust Ingestion

Parameter	Mars 2020	Mars 2024	Notes	
Duct Ingestion Date	9.33×10^5 particles/s	6.54×10^{10} particles/s		
Dust Ingestion Rate	69.4 μg/min	347 μg/min	5x higher flow rate	
Total Dust Ingested	3.20 cm ³	160 cm ³	50x more dust total	
	4.86 g	243 g	SUX MOLE CUST LOLA	

The Solution

MARTIAN ENVIRONMENT ELECTROSTATIC PRECIPITATOR

Precipitator vs. Conventional Filter

Electrostatic Precipitator Reasoning

Conventional filter limits flow due to high pressure drop and clogs quickly.

Precipitator has very low pressure drop due to open geometry.

One of the only viable possibilities for Martian atmosphere filtration available.

Terrestrial precipitators are commonplace and achieve efficiencies upward of 99%.

Electrostatic Precipitator Theory

$$E(r) = \frac{V}{r \ln \frac{R}{a}} \qquad E(r) = \sqrt{\frac{I}{2\pi\varepsilon_0 Lb} + \left(\frac{a}{r}\right)^2 \left[\left(\frac{V}{\ln \frac{R}{a}}\right)^2 - \frac{I}{2\pi\varepsilon_0 Lb}\right]}$$

- *E*: Electric field
- *r*: Distance from electrode
- *a*: Electrode diameter
- *I*: lon current
- ε_0 : Permittivity of free space

- *V*: Applied voltage
- *R*: Precipitator radius
- *L*: Precipitator length
- *b*: Ion mobility

Generalized Paschen's Law

$$V_B(pd) = \frac{Bpd}{\ln(Apd) - \ln\left[\ln\left(1 + \frac{1}{\gamma}\right)\right]} \qquad V_{B,\min} = \frac{B}{A}e\ln\left(1 + \frac{1}{\gamma}\right)$$

- V_B : Breakdown voltage
- *d*: Electrode separation
- *B*: lonization energy constant
- *p*: Gas pressure
- *A*: Saturation ionization constant
- γ : Secondary electron emission constant

Pressure and separation govern maximum voltage attainable before spark.

Paschen's Law in Martian Atmosphere

Breakdown at Martian Conditions

Precip. Radius (mm)	P-D Product (Torr-mm)	Breakdown Voltage (V)	Notes
1.05	5	500	
2.10	10	555	
3.14	15	610	
4.19	20	670	
5.24	25	725	10x radius
6.29	30	760	1.8x voltage
7.34	35	800	U
8.39	40	835	
9.43	45	870	
10.5	50	920	

6.36 mbar ≈ 4.77 Torr

Paschen's Law in Martian Atmosphere

Increase maximum voltage by increasing gas pressure:

- Need system upstream of precipitator to compress gas
- Compression system will be damaged by dust, so a filter will be needed

Increase maximum voltage by increasing precipitator radius:

- Electric field from electrode decreases with increasing radius faster than maximum voltage increases
- Precipitator system becomes much larger and more massive

ASSEMBLED SYSTEM

Electrostatic Precipitator Prototype

Electrostatic Precipitator Software

Developed robust LabVIEW program utilizing analog data acquisition cards.

Software generalized to allow for quickly adding and calibrating new analog inputs and outputs.

• Program is now used to automate all vacuum chambers in lab for Martian conditions.

Software features:

- Add/calibrate/remove analog inputs and outputs easily
- Interact with inputs and outputs in actual units rather than voltages
- Plot and record all inputs and outputs in real time
- Automatically sweep through the values of an output and monitor inputs
- Manually output individual values

1	ElectrostaticPrecipitator.vi	
-15	Electrostatici recipitatoriai	

Program Setup Analog Setup Results To Do

Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B	0	100
	PrecipitatorAI/ai0	Power Supply Voltage		+0.00000E+0	+6.00000E-3	+0.00000E+0	\bigcirc			Last AI Read Time	
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B	00:00:00.0	AI Polling Time (ms)
\bigcirc	PrecipitatorAI/ai1	Power Supply Current	UA	+0.00000E+0	+1.50000E+2	+0.00000E+0	\bigcirc	\bigcirc		YYYY/MM/DD	200
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B	Analog Input Task	0
	PrecipitatorAI/ai2	Inlet Gas Pressure	Torr	+0.00000E+0	+9.99957E+1	+1.71873E+0	\bigcirc	\bigcirc		Initialize AI	AI Polling Rate (Hz)
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B	Terminate AI	0
\bigcirc	PrecipitatorAI/ai3	Chamber Pressure	Torr	+0.00000E+0	+9.97467E-1	+1.08931E-2	\bigcirc	\bigcirc			0
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B		
\bigcirc	PrecipitatorAI/ai4	Controller Flow Rate	SCCM	+0.00000E+0	+2.00000E+1	+0.00000E+0	\bigcirc	\bigcirc			
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B		
\bigcirc	PrecipitatorAI/ai5	Controller Pressure	Torr	+0.00000E+0	+2.00149E+0	-8.43771E-3	\bigcirc	\bigcirc	\bigcirc		
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B		
\cup				+0.00000E+0	+0.00000E+0	+0.0000E+0		\bigcirc			
og Out	put Setup									AO Channels	
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B	0	
\bigcirc	PrecipitatorAO/ao0	Power Supply Voltage Setpoint		+0.00000E+0	+1.66667E+2	+0.00000E+0	\bigcirc	\bigcirc	\bigcirc	Last AO Write Time	
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B	00:00:00.0 YYYY/MM/DD	
\bigcirc	PrecipitatorAO/ao1	Power Supply Current Setpoint	UA	+0.00000E+0	+6.66667E-3	+0.00000E+0	\bigcirc	\bigcirc		Analog Output Task	
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B	1% NULL	
\bigcirc	PrecipitatorAO/ao2	Controller Flow Rate Setpoint	SCCM	+0.00000E+0	+5.00000E-2	+0.00000E+0				Initialize AO	
Color	Channel	Name	Units	Calibration A	Calibration B	Calibration C	Enable	Graph A	Graph B	Terminate AO	

😽 ElectrostaticPrecipitator.vi

Preliminary Results

9 mbar ≈ 6.75 Torr

Preliminary Results

	Upstream	Downstream	Efficiency
Disabled	282	784	N/A
Operating	467	1	99.83%

Low counts because terrestrial pressure particle counters were used.

Precipitator Difficulties

Keeping transducers safe from high voltage transients

 $\circ\,$ Large resistor on the order of $G\Omega$ used to limit current to safe levels

Developing control system that can maintain flow rate and pressure

- Currently works very well at 1% full scale use case
- Will require modifications to accommodate 20% full scale use case

Achieving characteristic quantity and size distribution of dust

Investigating separate dust aerosolization chamber rather than dust cup

Particle counters in use are not calibrated for use at Martian pressures

• Will look into removing internal orifice to increase flow rate and number of counts

Conclusions

Martian atmosphere intake was calculated for two future missions:

- Mars 2020 will intake 110 L/min on Mars, but only 0.97 L/min when simulated in the lab
- Mars 2024 will intake 550 L/min on Mars, but only 4.85 L/min when simulated in the lab

Martian atmospheric dust intake was calculated for two future missions:

- Mars 2020 will intake 3.20 cm³ or 4.86 g of Martian dust
- Mars 2024 will intake 160 cm³ or 243 g of Martian dust

Electrostatic precipitator prototype operational voltages were measured:

- Dehumidified air undergoes stable corona between 950V and 1500V
- Carbon dioxide undergoes stable corona between 1350V and 1900V

Electrostatic precipitator prototype showed encouraging particle removal efficiencies.

Future Work

Model precipitator system in COMSOL to optimize parameters

Quantify collection efficiency as a function of:

- Voltage and corona current
- Electrode length and diameter
- Simulated atmospheric flow rate

More precisely control dust injection to match the particle size distribution on Mars Determine a way to better interpret particle counts at pressures lower than terrestrial After determining optimal geometry, build larger prototype capable of full scale flows Choose a minimum efficiency and work to minimize mass and volume of final prototype

References

Haberle, R. M., C. P. McKay, J. B. Pollack, O. E. Gwynne, D. H. Atkinson, J. Appelbaum, G. A. Landis, R. W. Zurek, and D. J. Flood. Atmospheric Effects on the Utility of Solar Power on Mars. 1993.

Hecht, M. H., D. R. Rapp, and J. A. Hoffman. The Mars Oxygen ISRU Experiment (MOXIE). In International Workshop on Instrumentation for Planetary Missions, Greenbelt, MD, 2014.

Hviid, S. F., M. B. Madsen, H. P. Gunnlaugsson, W. Goetz, J. M. Knudsen, R. B. Hargraves, P. Smith, D. Britt, A. R. Dinesen, C. T. Mogensen, M. Olsen, C. T. Pedersen, and L. Vistisen. Magnetic Properties Experiments on the Mars Pathfinder Lander: Preliminary Results. *Science*, 278(5344): 1768 – 1770, 1997.

Landis, G. A. Dust Obscuration of Mars Solar Arrays. Acta Astronautica, 38(11): 885 – 891, 1996.

Lemmon, M. T., M. J. Wolff, M. D. Smith, R. T. Clancy, D. Banfield, G. A. Landis, A. Ghosh, P. H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J. F. Bell, and S. W. Squyres. Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. *Science*, 306(5702):1753–1756, 2004.

Muscatello, A. C. and E. Santiago-Maldonado. Mars In Situ Resource Utilization Technology Evalulation. In 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, 2012.

NASA SMD. Mars 2020 Investigations. NASA Solicitation and Proposal Integrated Review and Evaluation System, 2013.

Sanders, G. B., K. A. Romig, W. E. Larson, R. Johnson, D. Rapp, K. R. Johnson, K. Sacksteder, D. Linne, P. Curreri, M. Duke, B. Blair, L. Gertsch, D. Bouchert, E. Rice, L. Clark, E. McCullough, and R. Zubrin. Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU). In 2005 International Lunar Conference, Toronto, Canada, 2005.

Tomasko, M. G., L. R. Doose, M. Lemmon, P. H. Smith, E. Wegryn, et al. Properties of Dust in the Martian Atmosphere from the Imager on Mars Pathfinder. *Journal of Geophysical Research: Planets*, 104(E4): 8987–9007, 1999.

Williams, D. R. Mars Fact Sheet. NASA Lunar and Planetary Science, 2015.