

The Scintillation Prediction Observations Research Task (SPORT) Mission

James F. Spann (NASA/MSFC), Charles Swenson (USU), Otavio Durão (INPE), Luis Loures (ITA), Rod Heelis (UTD), Rebecca Bishop (Aerospace), Guan Le (NASA/GSFC), Mangalathayuil Abdu (ITA), Linda Krause (NASA/MSFC), Clezio Dinardini (INPE), Eloi Fonseca (ITA) Email: jim.spann@nasa.gov

Science

The Scintillation Prediction Observations Research Task (SPORT) mission tackles the very difficult problem of understanding the conditions under which ionospheric variability develops that leads to scintillation that compromises transmission signals. SPORT seeks to answer:

 What is the state of the ionosphere that gives rise to the growth of plasma irregularities that extend into and above the F-peak giving rise to scintillation?

SPORT is science mission using a 6U CubeSat and integrated ground network that will (1) advance understanding and (2) enable improved predictions of scintillation occurrence that impact GPS signals and radio communications. This is the science of Space Weather. SPORT is an international partnership with NASA, U.S. institutions, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA).

Science Traceability Matrix

The Scintillation Prediction Observations Resea	rch Task (SPORT)	Instrumentation	Spacecraft	
Observational Approach	Science Measurement Requirements	Instrument Approach	Space Systems Requirements	
1. What is the state of the ionosphere that give	s rise to the growth of plasma irregularit	ies that extend into and above the F-	peak?	
Observations in the 17:00 to 1:00 LY sector over –30° to 30° latitude Height profiles of the plasma density to specify the magnitude and height of the F peak density in the EA Vertical ion drifts at or beow the F peak in the EA	Plasma Density Profile 1. 140 to 450 km alt 2. 10 ⁴ to 10 ⁷ p/cm ³ range 3. 20% p/cm ³ accuracy 4. 1000 km along track sampling Ion Drifts (EarthReference Frame) 1. ±800 m/s Range 2. 20 m/s precision & accuracy 3. 10 km along track sampling	GPS Occulation Observe GPS satellite occultation along and to the sides of the orbit plane to obtain line of site TEC Ion Velocity Meter Observe vertical ion drifts by angle of arrival of heavy ions at detector	Satellite Orbit 1. ≥1 year mission life 2. 40° to 55° inclination 3. 350 to 450 km altitude 4. ±10 km eccentricity Spacecraft 1. ±15° yer mission life 2. ≤1 km position knowldge 3. ≤10 ms timeing	
2. How do plasma irregularities evolve to impa	ct the appearance of radio scintillation at	t different frequencies?		
Observations in the 22:00 to 2:00 LT sector over over –30° to 30° latitude Observations of irregularities in electron density and E-field power spectral density in slope from 200 km to 200 m	E-Field (Earth Reference Frame) 1. ±45 mV/m range 2. 1.1 mV/m precision & accuracy 3. 1 km along track sampling 4. 10 km – 200 m along track waves Plasma Density 1. 10³ to 107 p/cm³ range 2. 10³ p/cm³ precision & accuracy 3. 1 km along track sampling 4. 10 km – 200 m along track waves B-field	E-Field Double Probe Observe probe floating potential for AC E-fields from irregularity GPS Occultation S4 scintillation index Langmuir/Impedance Observe DC and AC probe response for relative and absolute electron density and observe irregularities Three Axis Magnetometer Support VxB computation for ion	Spacecraft Mechanisms 1. ≥0.6 m tip-to-tip booms Attitude (Post Flight Knowledg 1. ≤0.02° 1σ-uncertainty	

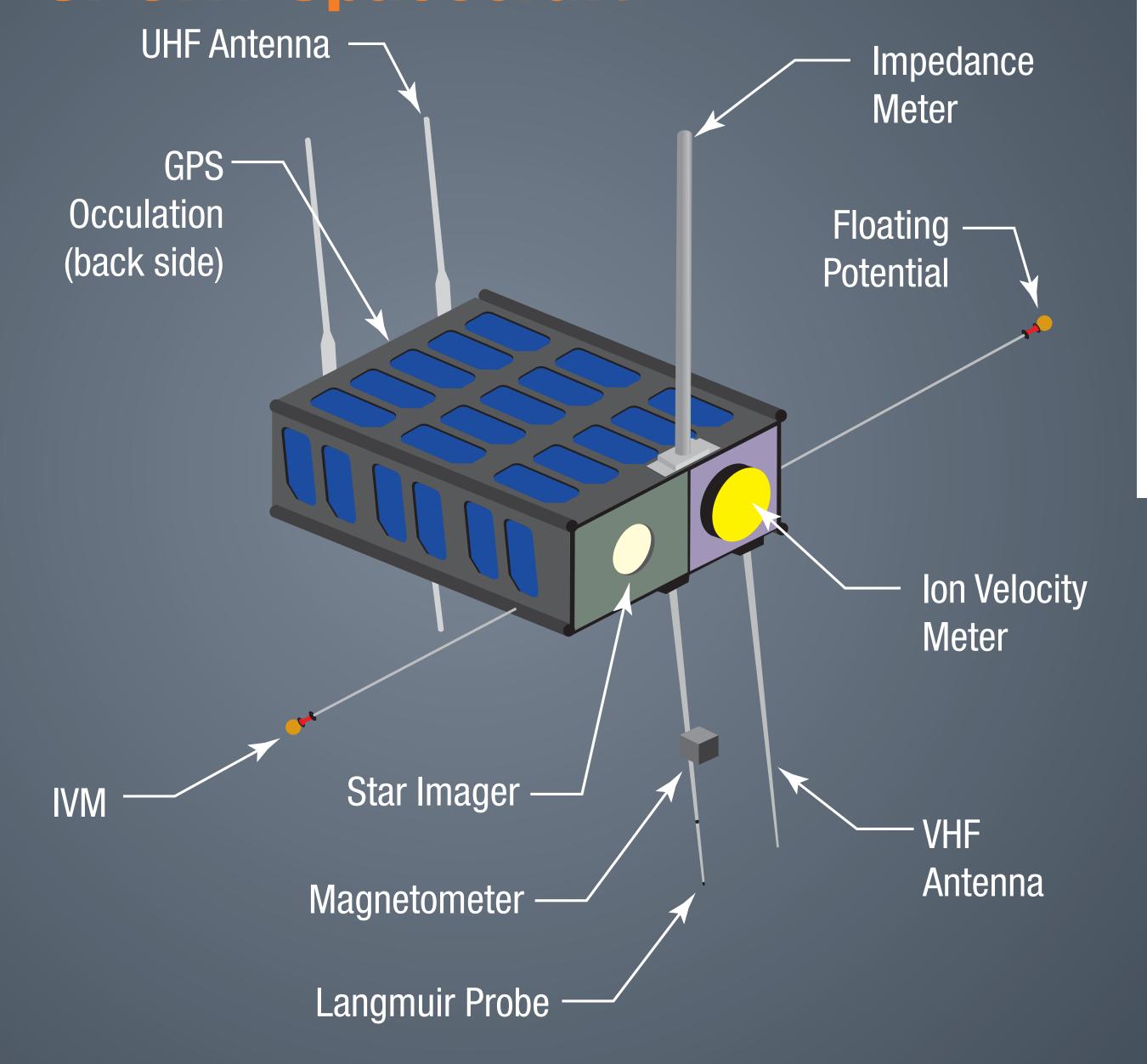
Instruments **Expected Instrument Performance and Requirements**

velocity and E-Field measurements

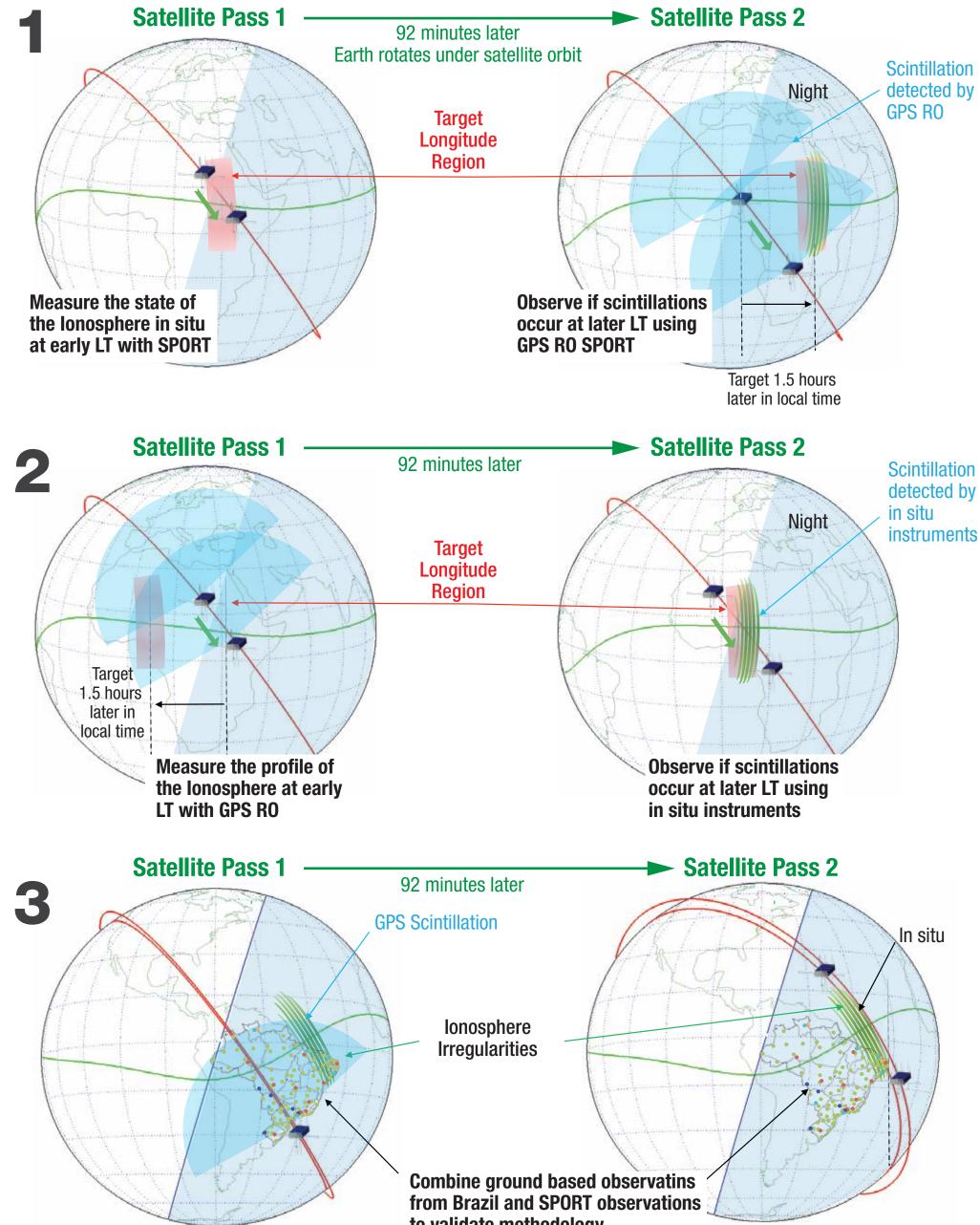
1. \pm 56,000 nT range

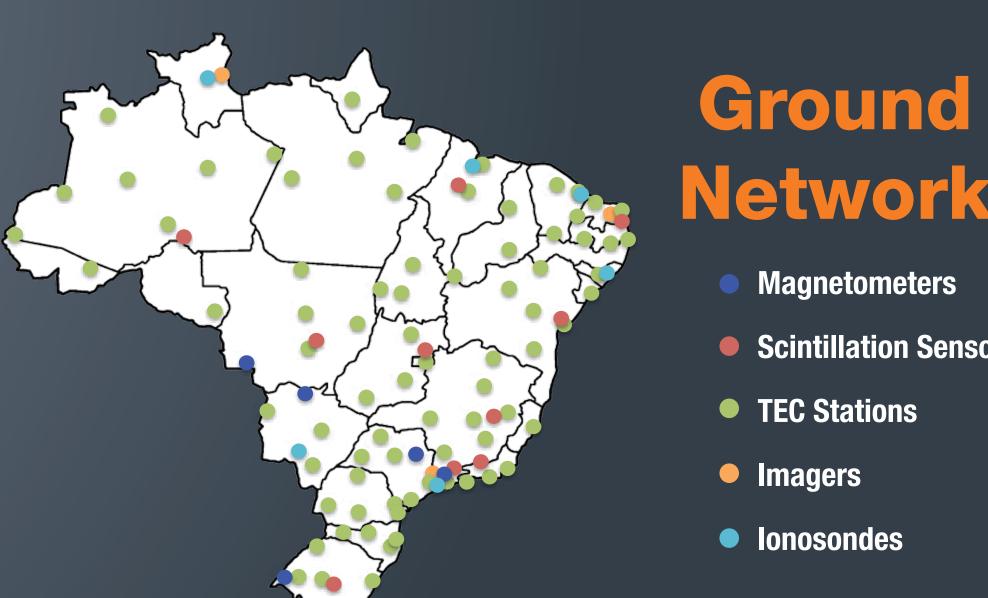
2. ±100 nT precision and accuracy

3. 1 km along track sampling


Parameter	Ion Velocity Meter	GPS Occultation	Electric Field Probe	Langmuir Probe	Impedance Probe	Magnetometer
Scientific	V _i : ±800 m/s, 20 m/s	N _e -Profile: 10 ⁴ to 10 ⁷ cm ⁻³	0.1 to ±45 mV/m	\triangle N _e : 10 ³ to 10 ⁷ cm ⁻³	$N_{\rm e}$: 10 3 to 10 7 cm $^{-3}$	± 56,000 nT, 100 nT
Requirement	∆Ni: 10⁴ to 10 ⁷ cm ⁻³	S4 0.2 to 1.2		$\triangle N_{i}$: 10 ³ to 10 ⁷ cm ⁻³		
Instrument	V _i : ±1000 m/s, 15 m/s	Scintillations (S4)	0.1 to 500 mV/m, 1%	\triangle N _e : 10 to 10 ⁷ cm ⁻³ , 5%	N_e : 10 to 10 7 cm $^{-3}$, 1%	± 64,000 nT, 10 nT
Performance	\triangle N _i : 10 ² to 10 ⁷ cm ⁻³ , 5%	Slant TEC: 3 to 200 units	V _i (derived): 20 m/s	$\triangle N_{i}$: 10 ³ to 10 ⁹ cm ⁻³ , 5%		
	T _i : 250 to 5000 K	Ne-Profile: 10 ³ to 10 ⁷ cm ⁻³		T _e : 200 to 5000 K		
	C _i : 0–100%, 1–40 amu	S4 0.1 to 1.5		V_{f} : ±10 mV to ± 12 V		
		σ: 0.1 to 20 rads		V_p : ±10 mV to ± 12 V		
	DC to 2 Hz	50 Hz	DC-40 Hz	DC-40 Hz, 25 s/sweep	DC-40 Hz, 25 s/sweep	DC-40 Hz
			16 spectrometer ch.	16 spectrometer ch.		
			20 Hz to 15 kHz	20 Hz to 15 kHz		
Mechanism	8 cm aperture	7.6 x 7.6 x 0.5 cm patch antenna	Two 30 cm booms	0.3 x 30 cm boom	30 cm boom	25 cm boom
Attitude Control	15° pointing control	15° pointing control	15° pointing control	15° pointing control	15° pointing control	NA
Attitude knowledge post processed req.	0.02°	2°	0.02°	10°	10°	2° pointing
Field of View	30°	160°	180°	180°	180°	180°
Peak Power	0.3 W	1.5 W	0.15 W	0.15 W	0.4 W	0.45 W
Volume	1.0U Cube	~0.15U Cube	~0.1U Cube (Shared with LP)	~0.1U Cube (Shared with E-Field)	~0.1U Cube	~0.5U Cube
	9 × 9 × 10 cm	1.5 × 9 × 9 cm	$0.75 \times 9 \times 9$ cm	$0.75 \times 9 \times 9$ cm	0.75 × 9 × 9 cm	5 × 9 × 9 cm
Mass	< 1000 g	< 200 g	< 80 g (shared)	< 80g (shared)	< 160 g	< 150 g
Data Rate	2.0 kbps	1.0 kbps Day;	1.4 kbps	2.0 kbps	1 kbps	2.8 kbps
		15 kbps Night				
Horizontal Cell Size	100 km	500 km	200 m; 20 m spectrometer	200 m; 20 m spectrometer	190 km	10 km
Vertical Cell Size	NA	30 km	NA	NA	NA	NA

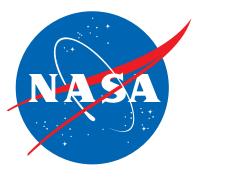
 V_i – ion drift velocities; ΔN_i – relative ion density; ΔN_e – relative electron density; T_e – electron temperature; T_i – ion temperature ; V_f – floating potential ; V_n – plasma potential ; N_e - electron density; B – Magnetic Field; TEC – total electron content; C_1 – Ion composition; DC – 1D DC Electric Field; S4 – RF signal amplitude index, σ – RF signal phase index


Depletions


UV Airglow images from TIMED GUVI clearly showing the equatorial anomaly with embedded depletions that have penetrated through the F peak. Green, Red and Blue traces show the magnetic equator and positive and negative dip angles. SPORT 52° inclination ground tracks are superimposed as black traces.

SPORT Spacecraft

Strategy



Network

- Magnetometers
- Scintillation Sensors
- Imagers

TEC Stations

- lonosondes

