

Theoretical study of isotopic production cross-sections in proton-nucleus reactions at 200MeV

Mohammad S Sabra USRA Space Science Department NASA Marshall Space Center Huntsville, AL 35805

- As NASA's future plans include extended human missions in deep space, protection from space radiation takes on increased importance.
- When galactic cosmic rays, mainly protons, interacts with spacecraft materials, secondary fragments are produced, which contribute substantially to the dose and dose equivalent received by the crew inside.
- A detailed understanding of the reaction mechanism, as well as a knowledge of cross sections are needed.

Space radiation spectra

• From Wilson et al., NASA Reference Publications 1257 (1991)

<u>Scattering And P</u>roduction <u>Theory O</u>f <u>N</u>uclei (SAPTON)

- SAPTON is a modified version of the standard statistical model.
- It has a final-state interaction between the emitted fragments
- It distinguishes itself from other models in at least one important aspect:

It includes the possibility that the fragments are being emitted the ground states, excited states, as well as in the continuum.

 Double differential cross-section for the production of a pair of fragments A₁ and A₂ is given by

$$\frac{d^2\sigma}{d\Omega dE} \propto \int \frac{T_l(\varepsilon)\rho_1(U_1)\rho_2(U_2)}{\rho_c(U_c)} dU_1 dU_2$$

where

- $\succ T_l(\varepsilon)$ is the transmission Coefficient between the pair with relative energy ε
- $\blacktriangleright \rho_{\rm 1}, \rho_{\rm 2}$ are their level densities
- $> U_1, U_2$ are their excitation energies
- $\succ \rho_{c}$, U_{c} are the level density and excitation energy of the composite system

Theory vs Experiment

- Machner et. al. measured intermediate-mass fragments from the interaction of ²⁷Al, ⁵⁹Co, and ¹⁹⁷Au with 200 MeV protons in an angular range 20° to 120°.
- Double-differential cross-sections were extracted.
- Using SAPTON, with L = 0 (i.e. evaporation stage) → we have calculated energy spectra for fragments produced in proton incident on Al and Co.

200 MeV p + AI \rightarrow Fragment (A,Z)

APS April Meeting 2016, April 16-19, Salt Lake City, UT

200MeV p + Co \rightarrow Fragment (A,Z)

APS April Meeting 2016, April 16-19, Salt Lake City, UT

MARSHALL

CENTER

SPACE FLIGHT

APS April Meeting 2016, April 16-19, Salt Lake City, UT

200MeV p + Co \rightarrow Fragment (A,Z)

MARSHALL

SPACE FLIGHT CENTER

- Using SAPTON → we have calculated intermediate mass fragments (He – C) emissions from ²⁷Al and ⁵⁹Co at 200MeV proton, which is near the maximal abundance in the proton energy cosmic rays
- Productions of ⁶He, ⁸Li, and ^{9,10}Be are dominated by the evaporation stage compared to other fragments, where evaporation stage dominates in the backward direction
- Production of ³He is dominated by the equilibrium stage, even in the backward direction at higher energies → all tritium decays into ³He

 Study the emission of intermediate mass fragments (IMFs) in 200MeV p + ¹⁹⁷Au

THANK YOU QUESTIONS ?