

Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

Alexandre Langlois^{1,2} Prof. Université de Sherbrooke

Alain Royer^{1,2}, Benoît Montpetit³, Cheryl-Ann Johnson⁴, Ludovic Brucker⁵, Caroline Dolant^{1,2}, Agnes Richards⁶, Alexandre Roy^{1,2}

¹Centre d'Applications et de Recherches en Télédétection (CARTEL), Université de Sherbrooke, Quebec, Canada. ²Centre d'étude nordiques, Quebec, Canada ³ Canadian Ice Service, Ottawa, ON, Canada ⁴Canadian Wildlife Service, Environment Canada, Ottawa, ON ⁵ NASA Goddard, Greenbelt, USA ⁶ Canadian Center for Inland Waters, Env. Can., Toronto, Canada

Remote Sensing of the Cryosphere I, Wednesday Dec. 16th 2015 American Geophysical Union Fall Meeting

Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

Outline

PART I: Arctic context

Motivation and study sites
Algorithm development

PART II: Some occurrence numbers 1979-2011

- 3. Rain-on-snow
- 4. Ice layers
- 5. Perspective

PART I :Arctic context

1. Motivation and study sites

- increased occurrence of strong wind events
 - \rightarrow both leading to snow densification
- Changing rapidly, with significant consequences:
 - Grazing conditions under ice for ungulates;
 - Changes in snow cover affects permafrost and sea ice regimes.
- Need for global information of snow information
 - Passive microwave remote sensing;
 - Snow modeling / climate model coupling.

ROS events are projected to be more frequent over a wider spatial extent (Semmens et al., 2013): need for a satellite-based detection approach

PART I :Arctic context

1. Motivation and study sites

- Peary caribou population affected by snow conditions:

Ouellet et al., 2015

Need to develop ROS and ice tracking approaches in the Arctic...

PART I :Arctic context

2. Algorithm development: ROS

- Empirical approach from case study: January 30th – February 2nd 2013:

-	Water
	water
10	Snow
17	Soil

Figure 5: General scheme of the snow microwave response; (1) basic snowpack, (2) snowpack with ice crust or wet snow

Dolant et al., 2015

PART I: Arctic context

2. Algorithm development: ROS

PART I: Arctic context

2. Algorithm development: Ice Detection Index (IDI)

- Polarization ratio (PR): $PR(f) = \frac{T_B(f, V Pol) T_B(f, H Pol)}{T_B(f, V Pol) + T_B(f, H Pol)}$
- Horizontal polarization more sensitive to ice layers and vertical dielectric contrast, threshold established from the following (PR simulated with ice vs PR without ice):

PART I: Arctic context

2. Algorithm development: Ice Detection Index (IDI)

Dale

	79.	80- 81	31 52	82- 53	83- 84	84- 85	85- 86	10.	17- 58-	83- 89	89- 90	90-	\$1- 92	92- 93	93- 94	95	Tarak 79-85	
871	0	- C	Û.	Û	3	0		Û	Û	- 5	0	0	0	0	13	0	1.3	1
- 9WI	0	. 6	-0-	Û.		0	. 6	0	Û.	5	0	0	0	0	3	0		
-50	. 0	1.61	0	0	0	10	- 0	0	0	2	. 0	0	0		3	0	5	
AHI	1.01	- 0 -	0	0	- Ø.,	101	- 0	0	0	2	101	0	0	0	- 0	0	2	
SEL	0	1.01	0	0	101	0	1.0	0	0	- @ -	0	0	0	0	2	0.0	2	1
CET	- 9 · · ·	1.0	0	0	1.01	0.1	1.0	0	0	· 3.	0	Ú.	0	Q.,	- <u>e</u>	0	t	1
3411	0.1	- 0 -	0	0	D	0 :	- 0 -	0	0	- 5	0	0	0	0	0	0	5	
2211	0	- 0	0	0	- D	0	- 0 -	0	0	- 4	0	0	0	0	0	0	4	
Eg11	0-	- 6	-0-	- Û	- C	0-	- 4	-0	Ū.	- E -	0-	-0-	-0	0	- 4 · ·	Ũ	4	
Emili	0	- 0.0	-0-	Û.	0	0	- 0 -	-0-	Û	- C	0	- 0	-0-	. Ø.	- 0	0	4	
BMI	0.1	1.4	0	0	0	1.1	- 4 -	-0	0	- 0-	11.1	0	0	0	- 0	0	2	
DII	- Q	1.6.1	0	0	1.4	1.0	1.6.0	0	0		0.1	0	0	0	- 4	0	1.0	4
LII	0	1.0-1	0	0	1.0	0	1.0	0	- 10	1.0.	0	0	0	0	- @/	0	1.4.1	
CH	0	1.01	0	Û.	1.10	· 0 · :	1.0	0	Û.	1.0	· 0 · :	1	1	0	1.1	0	1	1
HIV	0	0	0	- 10	0	0	0	0	- 10	0	0	0	0	0	0.	0	1.00	£1
BICT	0	0	0	- 0	0	0	d	0	- 0	0	0	0	0	0	0	0		
BIT	0	- 6 -	-0-	Ű	- 5	0	- 6	- Ö	- Ű	- 5	0	0	0	0	12	0	13	A
- VII	0		0	Û	- 5-1	0	- 0	0	Û	- 4 ·	0	0	0	0	C	0		
Temb	1.1	4	Ð	0	1	1	1.1	0	0	19	1	1	-1	100 B (1)	11	0	- 96	1
-	95-	96-	97-	98.	99-	08-	01-	-18	93.	84-	05-	36-	#7-	05-	09-	10-	Tatab	107
	94	91	98	49	08	91	02	. 93		05	85	47:	98	69	10	11	95.11	291
BP1	0	-00	2	- 2	D.	0	- d	0	0	D -	0	0	12	- 0 -	0	0	14	- 32
PWI	0	- 0	0	0	<u>d</u>	0	- 0 -	0	0	- U -	. 0	0	0	0	0	0		4
SIL	0	1.4	-1-	- Û -	10	0	- 4 -	-0-	- Û	1.0	0	- 0	0-0-	- Ø	- 10	0	1	- 0
AHI		- A -	-0	0	4	1.0	<u></u>	10	0	1.181	1011	. 0	0		- 6	Ũ	14	LY
SEL	1.01	1.6.1	0	0	1.4	1.0	1.6	0	0	- 41	- @	(山)	0	0.00		0	10.00	1
CE1	0.1	1.0-1	-0-	- 10	1.0	0	0	0	- 10	1.0	0	Û.	0	9	1.10	0	100.00	7
MIT	. Q	1.01	0	Û.	101	. Q	- e	0	Û.	- IC	. Q	Û	0	0	10.1	0	1 A 1 A	5
2P11	0	0	0	0	0	0	0	0	- 10	- 0	0	0	0	0	···0	0		2
Egil	0	- D	0	- 0	0	0	0	= 1 -	- 1-	- 0 -	0	0	0	3	- 0 -	0		5
Emilt	0	C	-0-	3	- 5	0	- Q-	Û	Û	- 5	0	0	0	3	- 5 -	0		
BAIL	24-	1	-0-	10	-9-	1.0	3	0	- Ū~-	- B -	- 0-	- 0	0	0	- 9 -	0	24	30
DIL	. 0 .	1.2.4	0	0	1.0	-9.1	181	0	- D -	1.81	-9.1	0	0		1.81	Ŭ	1	1
- UID	. 0	- Q	0	- 13	1.1	28.1	- 6-1	0	- T	1.181	28.1	11	0	4	- 唐二	- ÷	24	20
- CH	0	2	0	- A	1.5	0	3	0	0	-0	0	9	0	1	- O	0.0	14	22
111	- 9 ···	1.01	0	6	1.2	0	1	0	<u>0</u>	1.121	0	_ Û	0	Q.,	1 (C 7	0		7
BICT	0	- 0	0	1	D.	0.1	- 0	0	0	- D -	0	0.	-0-	0.	0	0	1	1
BII	0	- 0 -	2	2	0	0	0	0	7	- D -	0	0	0-	3	0	0	14	17
V11	0	- 4	-0-	Û.	- 10 -	0	- 4	-0-	8	- 4 -	2	6	0	10	- 4	1		:7
Tarak		- 8	3	31	5	1	1.7.2.00	11	17	1000	12.00	6	1.5	25		1	140	

2002-2003

93-94: BI, BP

02-03: AH, Em

Islands with most combined occurrences:

- Boothia Peninsula (Ouellet et al., 2015 SNOWPACK)
- Axel Heiberg
- Byram Martin
- Lougheed + Cornwallis
- Banks + Victoria

Future outcome and concluding remarks

More on GRP threshold, with observed events:

Future outcome and concluding remarks

Plans for 2016:

- Dysdrometer installation in Cambridge Bay along with passive microwave radiometers (19-37-89 GHz);
- More on climatology assessment, tracking origin of ROS and LPDs;
- New PhD student working on the modeling of ROS-snow interactions using the SNOWPACK model.

Acknowledgements

Funding and logistics:

National Search and Rescue Secretariat

Environment Canada Parks Canada Canadian High Arctic Research Station Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Foundation for Innovation National Search and Rescue Secretariat (SAR-NIF) Centre d'études nordiques (CEN) National Aeronautics and Space Administration (NASA) Mitacs scholarship program Hydro-Québec Polar Continental shelf Program

Environnement Environment Canada

CANADIAN HIGH ARCTIC RESEARCH STATION

WWW accords on CHARN

Canadian Centre for Inland Waters - Burlington, ON, December 8th 2015

