
CONSIDERATIONS FOR THE NEXT REVISION OF NASA’S SPACE
TELECOMMUNICATIONS RADIO SYSTEM ARCHITECTURE

Sandra K. Johnson (NASA Glenn Research Center, Cleveland, OH)

Sandra.k.johnson@nasa.gov
Louis M. Handler (NASA Glenn Research Center, Cleveland, OH)

Louis.m.handler@nasa.gov
Janette C. Briones (NASA Glenn Research Center, Cleveland, OH)

Janette.c.briones@nasa.gov

ABSTRACT

Development of NASA’s Software Defined Radio
architecture, the Space Telecommunication Radio System
(STRS), was initiated in 2004 with a goal of reducing the
cost, risk and schedule when implementing Software
Defined Radios (SDR) for National Aeronautics and Space
Administration (NASA) space missions. Since STRS was
first flown in 2012 on three Software Defined Radios on the
Space Communication and Navigation (SCaN) Testbed,
only minor changes have been made to the architecture.
Multiple entities have since implemented the architecture
and provided significant feedback for consideration for the
next revision of the standard.
 The focus for the first set of updates to the architecture
is items that enhance application portability. Items that
require modifications to existing applications before
migrating to the updated architecture will only be
considered if there is compelling reasons to make the
change. The significant suggestions that were further
evaluated for consideration include expanding and
clarifying the timing Application Programming Interfaces
(APIs), improving handle name and identification (ID)
definitions and use, and multiple items related to
implementation of STRS Devices. In addition to ideas
suggested while implementing STRS, SDR technology has
evolved significantly and this impact to the architecture
needs to be considered. These include incorporating
cognitive concepts - learning from past decisions and
making new decisions that the radio can act upon. SDRs are
also being developed that do not contain a General Purpose
Module – which is currently required for the platform to be
STRS compliant.
 The purpose of this paper is to discuss the comments
received, provide a summary of the evaluation
considerations, and examine planned dispositions.

1. INTRODUCTION AND BACKGROUND

To reduce the cost, risk, and schedule for developing the
emerging software defined radios for space missions;
NASA began a task in 2004 to develop a standardized
architecture to abstract waveforms from the SDR platforms.
The development of a new waveform for a space SDR is
more expensive then a ground based development, partially
due to the significant documentation and test processes
required to insure reliability in a space environment.
 The Software Communication Architecture (SCA) [1]
and Object Management Group (OMG)’s SWRADIO [2]
were investigated as the potential architecture for NASA’s
needs for space SDRs [3], [4]. For a constrained space
environment, the required resources (size, weight, and
power) of the SDR must be a primary consideration for the
architecture. Processors and other electronic devices used in
space require radiation hardening. These components lag at
least a generation or two behind the processing capabilities
of their terrestrial-based equivalents. Due to slower
processors and limited memory footprint, these reduced
capabilities constrain the operating environments of space
radios compared to radios using the latest commercial
components without these constraints.
 Space waveform applications requiring digital signal
processing have historically been executed in specialized
Application Specific Integrated Circuits (ASICs). ASICs
have the lowest power requirements and greatly satisfy
radiation requirements for space. However, they are not
reprogrammable. Reconfigurable signal processing
continues to evolve and gain acceptance within NASA with
the availability and use of space-qualified Digital Signal
Processors (DSPs) and Field Programmable Gate Arrays
(FPGAs).
 There are other challenges that are factors
implementing SCA on a space radios. The SCA compliant
core framework must fit on the space-qualified platform in
terms of resources, footprint, and features. If the SCA is
used to provide an environment where radio capabilities can
be reprogrammed, the necessary core framework will take
up resources that would normally be dedicated directly to

https://ntrs.nasa.gov/search.jsp?R=20160005279 2019-08-31T03:23:21+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42697576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

signal processing. The SCA in space also has to address
concerns with the added software complexity and the
extended time for testing required insuring reliability in a
space environment. The use of DSPs and FPGAs are treated
as special cases in SCA 2.2. SCA 4.1 improves the situation
regarding waveform components implemented on FPGAs
and DSPs by allowing lightweight profiles and other
recommendations to optimize their extremely limited
processing capabilities.
 Due to these differences in the needs for space radios,
the STRS architecture was developed to focus on the
abstraction layer between the operating environment (OE)
and applications to enhance portability, reliability,
scalability, extensibility, flexibility, adaptability as well as
to minimize size, weight and power (SWaP) necessary to be
launched into space and executed in a space-based
environment. Unlike the SCA, the minimal set of
requirements developed for STRS did not include Common
Object Request Broker Architecture (CORBA) nor an
EXtensible Markup Language (XML) parser.
 In 2012, STRS was implemented on three SDR
platforms and installed on an external pallet on the
International Space Station (ISS) as part of the SCaN
Testbed [5]. All platforms and waveforms on the SCaN
Testbed implemented STRS Version 1.02.1, the baseline
version of the STRS architecture [6]. These SDRs have
been reconfigured multiple times with new waveforms. The
SDR platforms were developed by three separate entities:
Harris Corporation, General Dynamics, and Jet Propulsion
Laboratory. Multiple research projects within NASA have
also developed STRS compliant applications and platforms
and provided suggestions for improvement
 In 2014, the STRS architecture standard was approved
by the NASA Office of Chief Engineer as an official NASA
standard [7]. Changes from STRS Version 1.02.1 to the
NASA standard version (NASA-STD-4009) were primarily
editorial, formatting, and clarification. A supporting
Handbook, containing implementation suggestions,
rationale for architecture decisions and addressing many
implementation questions, has also been released [8].
 Questions and comments from developers were
captured to influence the next updates to STRS. The STRS
Handbook is also in the process of being updated. A Project
and Acquisition Guidance document is in development to
address items that are not architecture related but instead
must be considered when implementing an STRS platform
and/or application.

2. DETAILED DESCRIPTION OF CONSIDERED
UPDATES

NASA received approximately 100 comments on the STRS
architecture that ranged from simple editorial changes to
suggestions requiring significant changes to the architecture.

The STRS project goal is to have a new release of STRS in
mid 2017. To meet this schedule, the architecture updates
must be completed for review by the end of 2016, requiring
prioritization and focus on only a few key areas.
 Potential updates were considered primarily on their
potential to enhance application portability. Additional
updates to clarify existing requirements were also
considered. Because multiple platforms and applications
exist, suggestions that require modifications to existing
applications or operating environments but did not have
compelling rationale for enhancing application portability
were not selected. The following sections contain a
discussion of the key areas under consideration for updates
or significant clarification.

2.1. Devices

The definition and use of STRS Devices evoked many
formal comments and informal queries from STRS platform
developers. Most of this confusion comes as a result of
comparing an STRS Device to an application. An STRS
Device is an extension of an STRS application having a set
of portable APIs that may use the Hardware Abstraction
Layer (HAL) to read, write, and control hardware devices.
An STRS application must be able to use the STRS Devices
in a standard way. The OE interfaces to the physical
devices are defined by the platform provider, are not
standard, must be documented in the Hardware Abstraction
Layer (HAL), and are used by the STRS Devices.
 Although the SCA has many types of specific device
interfaces, STRS has only one. The SCA requires specific
APIs and services that are required by most Joint Tactical
Radio sets. NASA has a different set of use cases where
most of the signal transformations happen in FPGAs, not
software. In the SCA, the Modem Hardware Abstraction
Layer (MHAL) provides interfaces to Computational
Element (i.e. GPP, FPGA, or DSP) by abstracting the
channel modem interfaces from the application software via
an MHAL API [9]. The STRS architecture accomplishes
the same thing using STRS Devices as the standard interface
to the application.
 An STRS Device is defined in the STRS Architecture
Standard as “a proxy for the data and/or control path to the
actual hardware.” An STRS Device is a “bridge” used to
decouple an abstraction from its implementation so that the
two can vary independently. An STRS Device is called
using the methods in the STRS Infrastructure Device
Control API, STRS Infrastructure-provided Application
Control API, Infrastructure Data Source API, and
Infrastructure Data Sink API to control the STRS Devices.
The STRS Device implementation is suggested in Figure 1.
The STRS Device may be implemented using any available
platform-specific HAL to communicate with and control the
specialized hardware.

 Standardizing STRS Devices with required STRS
Device-Provided Device Control API methods was
suggested to aid in the portability of STRS devices between
STRS operating environments. This could be implemented
by adding a corresponding set of “STRS Device-provided
Device Control API” calls analogous to the already defined
“STRS Application-provided Application Control API”
calls (APP_*) to provide an abstraction between STRS
Devices and the operating environment
 This approach would reduce the effort to port devices
between operating environments and may reduce confusion
when implementing devices, but this change will not be
implemented for several reasons. The STRS architecture
was not intended to simplify porting of STRS devices and
implementing this suggestion would cause existing platform
providers to change quite a bit of code. It also adds
unnecessary complexity and could add extra burden to the
process of accessing the device, which could affect
performance.
 An STRS Device may or may not be part of the OE
depending on the project/mission requirements. The

intention was that the platform provider creates a sample
application that uses an STRS Device to exercise both the
hardware and software for testing and that serves as a model
for what can be done by the application developer. An
STRS Device could be specified in the OE, for example, if
the device is not really programmable but can be adjusted or
turned on/off by the HAL.

Configuration and additional functionality for an STRS
Device also required additional clarification. An STRS
Device is a virtual device that has capability beyond that of
an STRS application. There are 2 types of additional
capability of an STRS Device beyond that of an STRS
application: 1) STRS Device capabilities that correspond to
STRS Infrastructure-provided Device Control methods, and
2) STRS Device capabilities that do not correspond to the
STRS Infrastructure-provide Device Control methods, such
as setMemoryMap(map). These are suggested in the STRS
Architecture Standard as shown in Figure 1. The
setMemoryMap() is suggested to enable the OE to put
special configuration data into a table within the STRS
Device to enable use of special memory locations to transfer

Figure 1. STRS Application and Device Structure

data between the STRS Device and the specialized
hardware, e.g. FPGA. The location of some named data
might not be specified as just a name/location, which could
be configured by a normal name/value pair, but rather as a
name, base location, location offset, bit offset, and bit
length.
 Although portability of STRS devices is not a goal of
STRS, STRS platform developers commented that STRS
device portability would be enhanced if there were more
rigorous standards for how an application developer would
use the STRS API to process the various types of data that
must be sent or retrieved from the corresponding addresses
in specialized hardware; e.g. FPGAs, DSPs, etc. Many
SDRs use memory mapped locations in which
storing/retrieving an item in memory automatically
pushes/pulls the item to/from the specialized hardware.
Other SDRs use special APIs to send/retrieve the item
to/from the specific address in the specialized hardware.
The STRS Device was created to be a bridge to abstract all
of these differences, insulating the waveform application
developer from knowing how the data got to its final
destination, thus aiding the portability of waveform
applications without restricting the platform developer’s
flexibility.
 STRS Devices are allowed to know the memory map
and are not required to be portable. A configuration file for
the memory locations is suggested in the STRS standard
(Appendix A.2) and Handbook as a way of allowing the
FPGA to be reprogrammed with a change in the location for
a particular purpose without searching and changing the
locations hard-coded in the STRS Device. This is not a
requirement. An alternative is to define named constant
values that could all be changed in one place such as the
STRS Device header file. Since the STRS Device is part of
the OE, this breaks the strict division of what an application
developer should need to know or do.
 Other potential updates suggested for the use of STRS
Devices included creating a new STRS_DeviceRead and
STRS_DeviceWrite which specifies the location
information as well as the storage area for the data. The
location, offsets, and size could be defined as arguments.
Although this might simplify the porting of STRS Devices,
it is not required to enable application portability and the
complexity and change for this capability is not critical so
will not be added to the next STRS version.

2.2. Handle Names and IDs

Comments and discussions related to the uniqueness and
time of existence of Handle Names and Handle ID have
resulted in changes in the STRS architecture to the
clarification in a description and parameter field for the
STRS_InstantiateApp API and an additional section in the
STRS Handbook.

 The description field for STRS_InstantiateApp() stated
“Instantiate an application, service, or device and perform
any operations imposed by the configuration file. The
configuration file specifies such items as initialization
values and state. The infrastructure is responsible for calling
the appropriate methods (e.g., STRS_Configure and/or
APP_Configure) to configure the initial or default values.
Other STRS methods may be called to perform additional
functions, such as loading images or performing change of
state as described in the application state diagram.” The
parameter field of the STRS_InstantiateApp() API states
that the parameter “toWF – (in char*)” is the “storage area
name or fully qualified file name of the deployed
configuration file of the application (or device) that should
be instantiated. The handleName corresponding to the
application, service, or device specified in the configuration
file is to be unique…”
 Concerns with the definition and valid timeframe for
the Handle Name and Handle ID have led to the following
update to the Description and Parameter fields of the
STRS_InstantiateApp. The Description field will be
clarified to add “The configuration file specifies such items
as the unique handle name, location of the executable(s),
initialization values, and state. The handle name
corresponding to the application, service, or device specified
in the configuration file is to be unique.” The parameter
field “toWF” will require the storage area name or fully
qualified file name of the deployed configuration of the
application (or device) that should be instantiated.
 A new section, preliminarily named “Uniqueness of
Handle Names and IDs”, will be added to the STRS
Handbook. This section will address the time during which
the Handle Name is valid, how the Handle ID is determined,
when the Handle ID must be unique and the relationship
between the Handle Name and Handle ID. Example use
cases will also be included, with example code.

2.3. Timing

The use of the STRS timing APIs invoked many comments
about standardizing a timing service for implementation on
GPPs. This would enable portability of waveforms across
platforms because a translation for the time stamps, etc. that
use the timing service would no longer be required. Unless
STRS eventually is expanded to include platform services
with defined APIs, this change to the architecture standard
will not be added to STRS. Instead, discussion about the
use of the STRS time APIs will be updated in the STRS
Handbook.
 Since the OE does not need to be portable, the STRS
application developer must document the application’s use
of the time API. The clocks/timers are used for determining
when an event occurs and how long it takes, and/or
coordinating internal and external events, including

timestamps for messages, navigation, a cognitive engine's
event processing, or conveying networking application’s
bundle/frame information.
 As computer speeds increase, more real-time functions
for communication may be performed in the GPP. Some
functions currently in FPGA may be transitioned to the GPP
when the GPPs are fast enough and capable enough to
handle the additional signal processing functionality. These
GPP functions will need access to high-speed clocks/timers.
It is recommended that one clock/timer match the required
timestamp for STRS_Log so that an application, service, the
OE, or even STRS_Log itself could obtain that time in a
consistent way. It was suggested that the time for the
timestamp be retrieved via STRS_GetTime using the handle
ID corresponding to handle name "OEClockAppName" and
kind given by property "OEClockKind". The use of this
handle ID for STRS_SetTime could be restricted as
necessary.
 A mission could create an STRS infrastructure
requirement concerning the format of the telemetry and
error messages, including the timestamp, to be used by the
mission. The mission could either specify a format or the
documentation of a previously created format. In either
case, the documentation must include information about the
interpretation of such messages.
 There were also comments about adding methods to
convert times between mission time and UTC time, or other
time conversion needs. Time conversion tools exist and
formats have been standardized by the CCSDS [10]. New
integer types are being considered for the STRS architecture
for STRS_Seconds and STRS_Nanoseconds to allow the
integer values to vary in length. Guidance will also be
added in the description of the STRS time functions to
calculate the number of bits required for suggest increasing
for STRS_Seconds and STRS_Nanoseconds to prevent
rollover for missions with a long operational lifetime.

2.4. Operating Environment Information

The ability for an application to obtain current information
about the STRS infrastructure, such as the version, active
applications, resources used and free, and faults, was
suggested. To obtain information about the OE, all that is
needed is a handle name and handle ID that could be used in
STRS_Query. Although the handle ID might be used in
STRS_RunTest to obtain more complicated information
from the OE, that should not be part of the standard. To
promote application portability, the OE handle name should
be specified in a named constant with a requirement such as:

The STRS infrastructure shall contain the handle name
STRS_OE_HANDLE_NAME whose corresponding
handle ID may be used to query the OE for information
about the OE.

For example, the handle ID to be retrieve information from
the OE could be obtained by the following line of code:
STRS_HandleID oeID = STRS_HandleRequest(fromWF,
STRS_OE_HANDLE_NAME).

2.5. SDRs without GPMs

Many SDRs under development do not have integrated
General Purpose Processors (GPPs). Instead, they rely on
an external system, generally the flight computer, to provide
the functions needed in a GPP to control, receive telemetry,
and configure the Signal-Processing Module. Requirement
(STRS-109) requires that an STRS-compliant SDR contains
a General Purpose Module containing a GPP (Figure 2).

A few options exist to enable this approach with STRS with
varying degrees of compliance:

1) Distribute the functionality of the GPM to the flight

computer by implementing an STRS OE on the flight
computer. This approach is compliant with the current
STRS architecture.

2) Control the SPM without STRS APIs. This approach is
not fully compliant with the STRS architecture, but
offers benefit for third party use of the platform and
limited reuse of the application.

3) Implement STRS configurations through data packet
via waveform. The commands could be data via the
waveform to the FPGA and the FPGA could parse the
data to affect its operation without the flight computer
ever being involved. Although this option is also not
STRS compliant, it also offers partial benefit for
platform reuse and application portability.

Figure 2. Current High-Level Software and Configurable
Hardware Design Waveform Application Interfaces

4) Use a System on a Chip to implement the GPP
functions. For this approach, the API methods would
be implemented on the processing element on the chip
and would therefore be STRS compliant.

Distributed functionality

STRS requirement #109 states “An STRS platform shall
have a GPM that contains and executes the STRS OE and
the control portions of the STRS applications and services
software.” Although the supporting figure (Figure 2) shows
all components within a single radio platform, the radio
functionality can be distributed. One method may be to
implement the operating environment as part of the flight
computer software as shown in Figure 3.

The issue with this approach might be the requirements
placed on the flight computer software developer to add
STRS APIs and behavior, along with the necessary
additional test and documentation. It does reduce the
number of processing elements and therefore would reduce
the overall size, weight, and power of the combined flight
computer and radio system.

Control the SPM using non-STRS methods

All specialized hardware has custom methods for
configuration and control, such as specialized register
settings. Without STRS APIs on a GPP, an SDR can
continue to use this method. This obviously reduces the
ability to port this application to a new, STRS compliant
platform because these unique configuration items must be
translated into STRS APIs. Other STRS requirements that
enable third party development on the SDR, such as
Hardware Interface Descriptions and test applications, will
still offer advantages for future use of the platform.

Control the SPM via the waveform

A waveform could have the ability to be a “command
interpreter” for simple commands. By selectively parsing
bits that are defined as commands from the incoming data
stream received through the RF path and writing them to the
preassigned register, the SPM could respond independently
(without a GPP) to configuration and control functions.
This has the same advantages and disadvantages for
portability as method #2.

Implement STRS GPP functions on a SOC

This approach is STRS compliant, but for a highly
constrained processing engine, the additional burden to
implement STRS APIs may be more than the system can
tolerate.

2.6. Cognitive Radio

Radios today are evolving from awareness toward
cognition. An SDR provides the most capability for
integrating autonomous decision making ability and allows
the incremental evolution toward a cognitive radio. This
cognitive radio technology will impact NASA space
communications in areas such as spectrum utilization,
interoperability, network operations, and radio resource
management over a wide range of operating conditions.
 NASA’s cognitive radio will build upon the SDR
infrastructure being developed by STRS. The STRS
architecture defines methods that can inform the cognitive
engine about the radio environment so that the cognitive
engine can learn autonomously from experience and take
appropriate actions to adapt the radio operating
characteristics and optimize performance [11].
 The STRS architecture contains methods to query to
obtain information about the SDR (e.g. modulation scheme,
power, signal to noise level, error rates, etc.), its
environment, and its waveform applications as well as
methods to control the operation of the SDR. A cognitive
engine may use these features to optimize performance
autonomously under adverse conditions such as mitigating
the effects of unplanned interference and maximize the data
throughput, reconfiguring due to propagation effects, or any
effect that impacts communications. The cognitive data for a
NASA SDR must include information about mission
requirements and radio capability; because the SDR could
be controlling satellite navigation or antenna pointing, for
example.
 Most processes described required for cognitive radios
can be accomplished using the current STRS architecture
with an “adapter” between the application layers and the
cognitive engine as shown in Figure 4.
 Following the concept, design, and proof of concept

Figure 3. Distributed GPM Functionality

implementation of a cognitive radio, it was determined that
no changes are required to the STRS standard to implement
CR. The CR should be a service invoked from an adapter
STRS service. STRS services are software programs that
provide functionality available for use by other applications.
As a service, the CR can do a reboot, if necessary, or other
functionality that is forbidden to an STRS application but
may be necessary when the radio is more autonomous.

2.7. Acquisition Guidance

Many of the comments and questions are not addressed
using a standard architecture, but are instead guidance that
should be provided to a project when implementing an SDR
platform and/or application. This guidance is being
captured in the “STRS Project and Acquisition Guidance”
document, to be released in 2016.
 The focus of the first version of the guidance document
is assuring that the data rights are considered when
purchasing a platform or application. The platform software
is not intended to be reusable across platforms, so the main
focus in assuring the needed data rights are included in the
purchase of an STRS compliant platform is requiring that
the source code is available for STRS compliance tests. The
distribution rights for the platform “wrapper” and the
associated documentation must also be considered.

 Data rights for applications must be considered in the
initial procurement of the application in order to assure that
it can be reused for future projects. It is also necessary that
it can be redistributed by the STRS project. Redistribution
by the STRS project provides an avenue to capture all of the
relevant software and supporting documentation in a single
place by a project with the responsibility to securely archive
the application and provide it when requested. The STRS
project has the responsibility to assure that the initial data
rights are upheld when redistributing the application.
NASA will not always fund the full application
development and intellectual property will often be
embedded with new developments. Therefore, it is critical
to negotiate and understand the data rights prior to
completing the contract. The acquisition guidance
document contains suggestions for contract language to
consider for multiple procurement vehicles, including
SBIRs, Space Act Agreements, Cooperative Agreements,
and Contracts.
 Other challenges somewhat unique to SDR
development that must be considered during the
development of the Statement of Work include required
documentation, STRS training and compliance, and
consideration for spare resources for upgrades. New
applications are likely to require additional external
commands and telemetry. Considering this capability early
in the design will reduce effort in the future. The SDR
platform Verification and Validation (V&V) differs from
that for a fixed platform. Test waveforms are suggested that
access all interfaces and provide the necessary functions to
test the range of the platform’s capabilities without a full
operational waveform development.

2.8 Standardized Platform Services

Platform services may be implemented as an STRS
application or STRS service. There have been a few
services that have been suggested for all radios, such as
CCSDS service, security, commanding, telemetry, etc.
However, none will be standardized in the next version of
STRS but are likely candidates for future versions.

3. BACKWARDS COMPATIBILITY

The STRS version number will be captured for all
applications submitted to the STRS application repository.
Any changes to the application to integrate it with previous
or future versions of an OE will be the responsibility of the
integrator of the project reusing the application.
Documentation will be developed detailing all changes to
each version of STRS. Updates to STRS are expected to
occur every two to three years, limiting the number of
versions available. This would limit the amount of time Figure 4. Cognitive Engine Layer Diagram

porting newer applications to preexisting STRS radios or
porting existing applications to newer radios.

4. SUMMARY

In summary, the following significant suggestions for the
STRS architecture were considered and the proposed
resolution is as follows:
1) STRS Devices: No changes will be made to the current

architecture, but additional clarification will be added
to the supporting handbook.

2) Handle Names and IDs: Updates will be made to the
parameter and description fields in the appropriate
function calls to include the handle name and
uniqueness aspects. A new section will be added to the
supporting handbook to discuss timeliness.

3) Timing APIs: A new integer type will be added to
allow for varying lengths for the applicable time
values.

4) Operating Environment Information: A new
requirement will be added to the architecture to require
a standard naming convention for the application to use
to obtain operating environment details.

5) SDRs without GPMs: Four designs for SDRs without
conventional General Purpose Processors as a separate
module in an SDR were proposed and the pros and
cons for each suggestion were discussed.

6) Acquisition Guidance: A summary of the unique
aspects to be considered when developing an SDR
versus a traditional fixed radio was provided. These
will be captured in detail in a future document.

7) Standardized Platform Services: Platform Services that
are common to most NASA SDRs may be added to the
STRS architecture in future versions.

5. FUTURE WORK

The updates mentioned in this paper will continue to be
evaluated in their significance for application portability.
The disposition recommended by the STRS team will be
discussed with the commenter, if applicable, and reviewed
by a broader team of personnel with STRS knowledge. If
applicable, the suggested software changes will be coded to
assure accuracy. NASA's reference implementation will be
changed accordingly so as to have an executable model to
test.

6. REFERENCES

[1] http://www.public.navy.mil/jtnc/sca/Documents/
SCAv2_2_2/SCA_version_2_2_2.pdf

[2] “Enhancing the Platform Independent Model (PIM) and Platform
Specific Model (PSM) for Software Radio Components Specification
Version 1.0—a.k.a. SWRadio specification”, OMG document number
dtc/06-04-17, et al., Object Management Group (OMG), 2006

[3] T. Quinn and T. Kacpura, “Strategic adaptation of SCA for STRS”,
2006 Software Defined Radio Technical Conf. Product Exposition,
Nov. 2006.

[4] J. C. Briones, L. M. Handler, C. S. Hall, R. C. Reinhart, and T. J.
Kacpura, “Case study: Using the OMG SWRadio profile and SDR
Forum input for NASA’s Space Telecommunications Radio System,”
in SDR’08 Technical Conf. Product Exposition, Oct. 2008.

[5] Richard C. Reinhart, Thomas J. Kacpura, Sandra K. Johnson, James
P. Lux, “NASA’s Space Communications and Navigation Test Bed
aboard ISS to Investigate Software Defined Radio, On-board
Networking and Navigation Technologies”, IEEE Aerospace and
Systems Magazine, Volume 28, Number 4, April 2013.

[6] Space Telecommunications Radio Systems (STRS) Architecture
Standard, Version 1.02.1, NASA/TM-2010-216809.

[7] “Space Telecommunications Radio System (STRS) Architecture
Standard, NASA-STD-4009”, NASA Technical Standard, June 2014.

[8] “Space Telecommunications Radio Systems (STRS) Architecture
Standard Rationale, NASA-HDBK-4009”, NASA Technical
Handbook, June 2014.

[9] http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/
 API_3.0_20131002_Mhal_withErrata.pdf
[10] “Time Code Formats, CCSDS 301.0-B-4” Consultative Committee

for Space Data Systems (CCSDS), November 2010.
[11] L.M. Handler, J.C. Briones, “Space Telecommunications Radio

Systems (STRS) Cognitive Radio”, Wireless Innovation Forum, 2013.

