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ABSTRACT 
 
Development of NASA’s Software Defined Radio 
architecture, the Space Telecommunication Radio System 
(STRS), was initiated in 2004 with a goal of reducing the 
cost, risk and schedule when implementing Software 
Defined Radios (SDR) for National Aeronautics and Space 
Administration (NASA) space missions. Since STRS was 
first flown in 2012 on three Software Defined Radios on the 
Space Communication and Navigation (SCaN) Testbed, 
only minor changes have been made to the architecture.  
Multiple entities have since implemented the architecture 
and provided significant feedback for consideration for the 
next revision of the standard. 
 The focus for the first set of updates to the architecture 
is items that enhance application portability.  Items that 
require modifications to existing applications before 
migrating to the updated architecture will only be 
considered if there is compelling reasons to make the 
change.  The significant suggestions that were further 
evaluated for consideration include expanding and 
clarifying the timing Application Programming Interfaces 
(APIs), improving handle name and identification (ID) 
definitions and use, and multiple items related to 
implementation of STRS Devices.   In addition to ideas 
suggested while implementing STRS, SDR technology has 
evolved significantly and this impact to the architecture 
needs to be considered.  These include incorporating 
cognitive concepts - learning from past decisions and 
making new decisions that the radio can act upon.  SDRs are 
also being developed that do not contain a General Purpose 
Module – which is currently required for the platform to be 
STRS compliant.   
 The purpose of this paper is to discuss the comments 
received, provide a summary of the evaluation 
considerations, and examine planned dispositions. 
 
 
 
 

1. INTRODUCTION AND BACKGROUND 
 
To reduce the cost, risk, and schedule for developing the 
emerging software defined radios for space missions; 
NASA began a task in 2004 to develop a standardized 
architecture to abstract waveforms from the SDR platforms.  
The development of a new waveform for a space SDR is 
more expensive then a ground based development, partially 
due to the significant documentation and test processes 
required to insure reliability in a space environment. 
 The Software Communication Architecture (SCA) [1] 
and Object Management Group (OMG)’s SWRADIO [2] 
were investigated as the potential architecture for NASA’s 
needs for space SDRs [3], [4]. For a constrained space 
environment, the required resources (size, weight, and 
power) of the SDR must be a primary consideration for the 
architecture. Processors and other electronic devices used in 
space require radiation hardening. These components lag at 
least a generation or two behind the processing capabilities 
of their terrestrial-based equivalents. Due to slower 
processors and limited memory footprint, these reduced 
capabilities constrain the operating environments of space 
radios compared to radios using the latest commercial 
components without these constraints.   
 Space waveform applications requiring digital signal 
processing have historically been executed in specialized 
Application Specific Integrated Circuits (ASICs). ASICs 
have the lowest power requirements and greatly satisfy 
radiation requirements for space.  However, they are not 
reprogrammable. Reconfigurable signal processing 
continues to evolve and gain acceptance within NASA with 
the availability and use of space-qualified Digital Signal 
Processors (DSPs) and Field Programmable Gate Arrays 
(FPGAs).  
 There are other challenges that are factors 
implementing SCA on a space radios. The SCA compliant 
core framework must fit on the space-qualified platform in 
terms of resources, footprint, and features. If the SCA is 
used to provide an environment where radio capabilities can 
be reprogrammed, the necessary core framework will take 
up resources that would normally be dedicated directly to 
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signal processing. The SCA in space also has to address 
concerns with the added software complexity and the 
extended time for testing required insuring reliability in a 
space environment. The use of DSPs and FPGAs are treated 
as special cases in SCA 2.2. SCA 4.1 improves the situation 
regarding waveform components implemented on FPGAs 
and DSPs by allowing lightweight profiles and other 
recommendations to optimize their extremely limited 
processing capabilities. 
 Due to these differences in the needs for space radios, 
the STRS architecture was developed to focus on the 
abstraction layer between the operating environment (OE) 
and applications to enhance portability, reliability, 
scalability, extensibility, flexibility, adaptability as well as 
to minimize size, weight and power (SWaP) necessary to be 
launched into space and executed in a space-based 
environment.  Unlike the SCA, the minimal set of 
requirements developed for STRS did not include Common 
Object Request Broker Architecture (CORBA) nor an 
EXtensible Markup Language (XML) parser. 
 In 2012, STRS was implemented on three SDR 
platforms and installed on an external pallet on the 
International Space Station (ISS) as part of the SCaN 
Testbed [5].  All platforms and waveforms on the SCaN 
Testbed implemented STRS Version 1.02.1, the baseline 
version of the STRS architecture  [6]. These SDRs have 
been reconfigured multiple times with new waveforms.  The 
SDR platforms were developed by three separate entities:  
Harris Corporation, General Dynamics, and Jet Propulsion 
Laboratory.  Multiple research projects within NASA have 
also developed STRS compliant applications and platforms 
and provided suggestions for improvement 
 In 2014, the STRS architecture standard was approved 
by the NASA Office of Chief Engineer as an official NASA 
standard [7]. Changes from STRS Version 1.02.1 to the 
NASA standard version (NASA-STD-4009) were primarily 
editorial, formatting, and clarification.  A supporting 
Handbook, containing implementation suggestions, 
rationale for architecture decisions and addressing many 
implementation questions, has also been released [8]. 
 Questions and comments from developers were 
captured to influence the next updates to STRS.  The STRS 
Handbook is also in the process of being updated.  A Project 
and Acquisition Guidance document is in development to 
address items that are not architecture related but instead 
must be considered when implementing an STRS platform 
and/or application. 
 

2. DETAILED DESCRIPTION OF CONSIDERED 
UPDATES 

 
NASA received approximately 100 comments on the STRS 
architecture that ranged from simple editorial changes to 
suggestions requiring significant changes to the architecture.   

The STRS project goal is to have a new release of STRS in 
mid 2017.  To meet this schedule, the architecture updates 
must be completed for review by the end of 2016, requiring 
prioritization and focus on only a few key areas. 
 Potential updates were considered primarily on their 
potential to enhance application portability.  Additional 
updates to clarify existing requirements were also 
considered.  Because multiple platforms and applications 
exist, suggestions that require modifications to existing 
applications or operating environments but did not have 
compelling rationale for enhancing application portability 
were not selected.  The following sections contain a 
discussion of the key areas under consideration for updates 
or significant clarification.   
 
2.1. Devices 
 
The definition and use of STRS Devices evoked many 
formal comments and informal queries from STRS platform 
developers.  Most of this confusion comes as a result of 
comparing an STRS Device to an application.  An STRS 
Device is an extension of an STRS application having a set 
of portable APIs that may use the Hardware Abstraction 
Layer (HAL) to read, write, and control hardware devices.  
An STRS application must be able to use the STRS Devices 
in a standard way.  The OE interfaces to the physical 
devices are defined by the platform provider, are not 
standard, must be documented in the Hardware Abstraction 
Layer (HAL), and are used by the STRS Devices. 
 Although the SCA has many types of specific device 
interfaces, STRS has only one.  The SCA requires specific 
APIs and services that are required by most Joint Tactical 
Radio sets.  NASA has a different set of use cases where 
most of the signal transformations happen in FPGAs, not 
software. In the SCA, the Modem Hardware Abstraction 
Layer (MHAL) provides interfaces to Computational 
Element (i.e. GPP, FPGA, or DSP) by abstracting the 
channel modem interfaces from the application software via 
an MHAL API  [9].  The STRS architecture accomplishes 
the same thing using STRS Devices as the standard interface 
to the application. 
 An STRS Device is defined in the STRS Architecture 
Standard as “a proxy for the data and/or control path to the 
actual hardware.”  An STRS Device is a “bridge” used to 
decouple an abstraction from its implementation so that the 
two can vary independently.  An STRS Device is called 
using the methods in the STRS Infrastructure Device 
Control API, STRS Infrastructure-provided Application 
Control API, Infrastructure Data Source API, and 
Infrastructure Data Sink API to control the STRS Devices. 
The STRS Device implementation is suggested in Figure 1.  
The STRS Device may be implemented using any available 
platform-specific HAL to communicate with and control the 
specialized hardware. 



 Standardizing STRS Devices with required STRS 
Device-Provided Device Control API methods was 
suggested to aid in the portability of STRS devices between 
STRS operating environments.   This could be implemented 
by adding a corresponding set of “STRS Device-provided 
Device Control API” calls analogous to the already defined 
“STRS Application-provided Application Control API” 
calls (APP_*) to provide an abstraction between STRS 
Devices and the operating environment 
 This approach would reduce the effort to port devices 
between operating environments and may reduce confusion 
when implementing devices, but this change will not be 
implemented for several reasons.  The STRS architecture 
was not intended to simplify porting of STRS devices and 
implementing this suggestion would cause existing platform 
providers to change quite a bit of code.  It also adds 
unnecessary complexity and could add extra burden to the 
process of accessing the device, which could affect 
performance. 
 An STRS Device may or may not be part of the OE 
depending on the project/mission requirements.  The 

intention was that the platform provider creates a sample 
application that uses an STRS Device to exercise both the 
hardware and software for testing and that serves as a model 
for what can be done by the application developer.  An 
STRS Device could be specified in the OE, for example, if 
the device is not really programmable but can be adjusted or 
turned on/off by the HAL. 

Configuration and additional functionality for an STRS 
Device also required additional clarification.  An STRS 
Device is a virtual device that has capability beyond that of 
an STRS application. There are 2 types of additional 
capability of an STRS Device beyond that of an STRS 
application: 1) STRS Device capabilities that correspond to 
STRS Infrastructure-provided Device Control methods, and 
2) STRS Device capabilities that do not correspond to the 
STRS Infrastructure-provide Device Control methods, such 
as setMemoryMap(map). These are suggested in the STRS 
Architecture Standard as shown in Figure 1.  The 
setMemoryMap() is suggested to enable the OE to put 
special configuration data into a table within the STRS 
Device to enable use of special memory locations to transfer 

Figure 1.  STRS Application and Device Structure 
 



data between the STRS Device and the specialized 
hardware, e.g. FPGA.  The location of some named data 
might not be specified as just a name/location, which could 
be configured by a normal name/value pair, but rather as a 
name, base location, location offset, bit offset, and bit 
length.  
 Although portability of STRS devices is not a goal of 
STRS, STRS platform developers commented that STRS 
device portability would be enhanced if there were more 
rigorous standards for how an application developer would 
use the STRS API to process the various types of data that 
must be sent or retrieved from the corresponding addresses 
in specialized hardware; e.g. FPGAs, DSPs, etc.  Many 
SDRs use memory mapped locations in which 
storing/retrieving an item in memory automatically 
pushes/pulls the item to/from the specialized hardware. 
Other SDRs use special APIs to send/retrieve the item 
to/from the specific address in the specialized hardware.  
The STRS Device was created to be a bridge to abstract all 
of these differences, insulating the waveform application 
developer from knowing how the data got to its final 
destination, thus aiding the portability of waveform 
applications without restricting the platform developer’s 
flexibility. 
 STRS Devices are allowed to know the memory map 
and are not required to be portable.  A configuration file for 
the memory locations is suggested in the STRS standard 
(Appendix A.2) and Handbook as a way of allowing the 
FPGA to be reprogrammed with a change in the location for 
a particular purpose without searching and changing the 
locations hard-coded in the STRS Device.  This is not a 
requirement.  An alternative is to define named constant 
values that could all be changed in one place such as the 
STRS Device header file. Since the STRS Device is part of 
the OE, this breaks the strict division of what an application 
developer should need to know or do.   
 Other potential updates suggested for the use of STRS 
Devices included creating a new STRS_DeviceRead and 
STRS_DeviceWrite which specifies the location 
information as well as the storage area for the data.  The 
location, offsets, and size could be defined as arguments.  
Although this might simplify the porting of STRS Devices, 
it is not required to enable application portability and the 
complexity and change for this capability is not critical so 
will not be added to the next STRS version. 
 
2.2. Handle Names and IDs 
 
Comments and discussions related to the uniqueness and 
time of existence of Handle Names and Handle ID have 
resulted in changes in the STRS architecture to the 
clarification in a description and parameter field for the 
STRS_InstantiateApp API and an additional section in the 
STRS Handbook.   

 The description field for STRS_InstantiateApp() stated 
“Instantiate an application, service, or device and perform 
any operations imposed by the configuration file. The 
configuration file specifies such items as initialization 
values and state. The infrastructure is responsible for calling 
the appropriate methods (e.g., STRS_Configure and/or 
APP_Configure) to configure the initial or default values. 
Other STRS methods may be called to perform additional 
functions, such as loading images or performing change of 
state as described in the application state diagram.”  The 
parameter field of the STRS_InstantiateApp() API states 
that the parameter “toWF – (in char*)” is the “storage area 
name or fully qualified file name of the deployed 
configuration file of the application (or device) that should 
be instantiated.  The handleName corresponding to the 
application, service, or device specified in the configuration 
file is to be unique…”   
 Concerns with the definition and valid timeframe for 
the Handle Name and Handle ID have led to the following 
update to the Description and Parameter fields of the 
STRS_InstantiateApp.  The Description field will be 
clarified to add “The configuration file specifies such items 
as the unique handle name, location of the executable(s), 
initialization values, and state. The handle name 
corresponding to the application, service, or device specified 
in the configuration file is to be unique.”  The parameter 
field “toWF” will require the storage area name or fully 
qualified file name of the deployed configuration of the 
application (or device) that should be instantiated.  
 A new section, preliminarily named “Uniqueness of 
Handle Names and IDs”, will be added to the STRS 
Handbook.  This section will address the time during which 
the Handle Name is valid, how the Handle ID is determined, 
when the Handle ID must be unique and the relationship 
between the Handle Name and Handle ID.  Example use 
cases will also be included, with example code. 
 
2.3. Timing 
 
The use of the STRS timing APIs invoked many comments 
about standardizing a timing service for implementation on 
GPPs.  This would enable portability of waveforms across 
platforms because a translation for the time stamps, etc. that 
use the timing service would no longer be required.  Unless 
STRS eventually is expanded to include platform services 
with defined APIs, this change to the architecture standard 
will not be added to STRS.  Instead, discussion about the 
use of the STRS time APIs will be updated in the STRS 
Handbook.   
 Since the OE does not need to be portable, the STRS 
application developer must document the application’s use 
of the time API.  The clocks/timers are used for determining 
when an event occurs and how long it takes, and/or 
coordinating internal and external events, including 



timestamps for messages, navigation, a cognitive engine's 
event processing, or conveying networking application’s 
bundle/frame information.   
 As computer speeds increase, more real-time functions 
for communication may be performed in the GPP.  Some 
functions currently in FPGA may be transitioned to the GPP 
when the GPPs are fast enough and capable enough to 
handle the additional signal processing functionality.  These 
GPP functions will need access to high-speed clocks/timers.  
It is recommended that one clock/timer match the required 
timestamp for STRS_Log so that an application, service, the 
OE, or even STRS_Log itself could obtain that time in a 
consistent way.  It was suggested that the time for the 
timestamp be retrieved via STRS_GetTime using the handle 
ID corresponding to handle name "OEClockAppName" and 
kind given by property "OEClockKind".  The use of this 
handle ID for STRS_SetTime could be restricted as 
necessary.    
 A mission could create an STRS infrastructure 
requirement concerning the format of the telemetry and 
error messages, including the timestamp, to be used by the 
mission.  The mission could either specify a format or the 
documentation of a previously created format.  In either 
case, the documentation must include information about the 
interpretation of such messages.   
 There were also comments about adding methods to 
convert times between mission time and UTC time, or other 
time conversion needs.  Time conversion tools exist and 
formats have been standardized by the CCSDS [10].  New 
integer types are being considered for the STRS architecture 
for STRS_Seconds and STRS_Nanoseconds to allow the 
integer values to vary in length.  Guidance will also be 
added in the description of the STRS time functions to 
calculate the number of bits required for suggest increasing 
for STRS_Seconds and STRS_Nanoseconds to prevent 
rollover for missions with a long operational lifetime. 
 
2.4. Operating Environment Information 
 
The ability for an application to obtain current information 
about the STRS infrastructure, such as the version, active 
applications, resources used and free, and faults, was 
suggested. To obtain information about the OE, all that is 
needed is a handle name and handle ID that could be used in 
STRS_Query.  Although the handle ID might be used in 
STRS_RunTest to obtain more complicated information 
from the OE, that should not be part of the standard.  To 
promote application portability, the OE handle name should 
be specified in a named constant with a requirement such as:   
 
The STRS infrastructure shall contain the handle name 
STRS_OE_HANDLE_NAME whose corresponding 
handle ID may be used to query the OE for information 
about the OE.    

 
For example, the handle ID to be retrieve information from 
the OE could be obtained by the following line of code: 
STRS_HandleID oeID = STRS_HandleRequest(fromWF, 
STRS_OE_HANDLE_NAME). 
 
2.5. SDRs without GPMs 
 
Many SDRs under development do not have integrated 
General Purpose Processors (GPPs).  Instead, they rely on 
an external system, generally the flight computer, to provide 
the functions needed in a GPP to control, receive telemetry, 
and configure the Signal-Processing Module.  Requirement 
(STRS-109) requires that an STRS-compliant SDR contains 
a General Purpose Module containing a GPP (Figure 2).   
 
A few options exist to enable this approach with STRS with 
varying degrees of compliance: 
 
1) Distribute the functionality of the GPM to the flight 

computer by implementing an STRS OE on the flight 
computer.  This approach is compliant with the current 
STRS architecture. 

2) Control the SPM without STRS APIs.  This approach is 
not fully compliant with the STRS architecture, but 
offers benefit for third party use of the platform and 
limited reuse of the application. 

3) Implement STRS configurations through data packet 
via waveform.   The commands could be data via the 
waveform to the FPGA and the FPGA could parse the 
data to affect its operation without the flight computer 
ever being involved.  Although this option is also not 
STRS compliant, it also offers partial benefit for 
platform reuse and application portability.  

Figure 2.  Current  High-Level Software and Configurable 
Hardware Design Waveform Application Interfaces 



4) Use a System on a Chip to implement the GPP 
functions.  For this approach, the API methods would 
be implemented on the processing element on the chip 
and would therefore be STRS compliant. 

 
Distributed functionality 
 
STRS requirement #109 states “An STRS platform shall 
have a GPM that contains and executes the STRS OE and 
the control portions of the STRS applications and services 
software.” Although the supporting figure (Figure 2) shows 
all components within a single radio platform, the radio 
functionality can be distributed.  One method may be to 
implement the operating environment as part of the flight 
computer software as shown in Figure 3. 
  
The issue with this approach might be the requirements 
placed on the flight computer software developer to add 
STRS APIs and behavior, along with the necessary 
additional test and documentation.  It does reduce the 
number of processing elements and therefore would reduce 
the overall size, weight, and power of the combined flight 
computer and radio system. 
 
Control the SPM using non-STRS methods 
 
All specialized hardware has custom methods for 
configuration and control, such as specialized register 
settings.  Without STRS APIs on a GPP, an SDR can 
continue to use this method.  This obviously reduces the 
ability to port this application to a new, STRS compliant 
platform because these unique configuration items must be 
translated into STRS APIs.  Other STRS requirements that 
enable third party development on the SDR, such as 
Hardware Interface Descriptions and test applications, will 
still offer advantages for future use of the platform. 

 

Control the SPM via the waveform 
 
A waveform could have the ability to be a “command 
interpreter” for simple commands.  By selectively parsing 
bits that are defined as commands from the incoming data 
stream received through the RF path and writing them to the 
preassigned register, the SPM could respond independently 
(without a GPP) to configuration and control functions.  
This has the same advantages and disadvantages for 
portability as method #2. 
 
Implement STRS GPP functions on a SOC 
 
This approach is STRS compliant, but for a highly 
constrained processing engine, the additional burden to 
implement STRS APIs may be more than the system can 
tolerate. 
 
2.6. Cognitive Radio 
 
Radios today are evolving from awareness toward 
cognition. An SDR provides the most capability for 
integrating autonomous decision making ability and allows 
the incremental evolution toward a cognitive radio. This 
cognitive radio technology will impact NASA space 
communications in areas such as spectrum utilization, 
interoperability, network operations, and radio resource 
management over a wide range of operating conditions.  
 NASA’s cognitive radio will build upon the SDR 
infrastructure being developed by STRS. The STRS 
architecture defines methods that can inform the cognitive 
engine about the radio environment so that the cognitive 
engine can learn autonomously from experience and take 
appropriate actions to adapt the radio operating 
characteristics and optimize performance [11].   
 The STRS architecture contains methods to query to 
obtain information about the SDR (e.g. modulation scheme, 
power, signal to noise level, error rates, etc.), its 
environment, and its waveform applications as well as 
methods to control the operation of the SDR. A cognitive 
engine may use these features to optimize performance 
autonomously under adverse conditions such as mitigating 
the effects of unplanned interference and maximize the data 
throughput, reconfiguring due to propagation effects, or any 
effect that impacts communications. The cognitive data for a 
NASA SDR must include information about mission 
requirements and radio capability; because the SDR could 
be controlling satellite navigation or antenna pointing, for 
example. 
 Most processes described required for cognitive radios 
can be accomplished using the current STRS architecture 
with an “adapter” between the application layers and the 
cognitive engine as shown in Figure 4. 
       Following the concept, design, and proof of concept 

Figure 3.  Distributed GPM Functionality 



implementation of a cognitive radio, it was determined that 
no changes are required to the STRS standard to implement 
CR.  The CR should be a service invoked from an adapter 
STRS service. STRS services are software programs that 
provide functionality available for use by other applications.   
As a service, the CR can do a reboot, if necessary, or other 
functionality that is forbidden to an STRS application but 
may be necessary when the radio is more autonomous.   
 
2.7. Acquisition Guidance 
 
Many of the comments and questions are not addressed 
using a standard architecture, but are instead guidance that 
should be provided to a project when implementing an SDR 
platform and/or application.  This guidance is being 
captured in the “STRS Project and Acquisition Guidance” 
document, to be released in 2016. 
 The focus of the first version of the guidance document 
is assuring that the data rights are considered when 
purchasing a platform or application.  The platform software 
is not intended to be reusable across platforms, so the main 
focus in assuring the needed data rights are included in the 
purchase of an STRS compliant platform is requiring that 
the source code is available for STRS compliance tests.  The 
distribution rights for the platform “wrapper” and the 
associated documentation must also be considered. 

 Data rights for applications must be considered in the 
initial procurement of the application in order to assure that 
it can be reused for future projects.  It is also necessary that 
it can be redistributed by the STRS project.  Redistribution 
by the STRS project provides an avenue to capture all of the 
relevant software and supporting documentation in a single 
place by a project with the responsibility to securely archive 
the application and provide it when requested.  The STRS 
project has the responsibility to assure that the initial data 
rights are upheld when redistributing the application.   
NASA will not always fund the full application 
development and intellectual property will often be 
embedded with new developments.  Therefore, it is critical 
to negotiate and understand the data rights prior to 
completing the contract.  The acquisition guidance 
document contains suggestions for contract language to 
consider for multiple procurement vehicles, including 
SBIRs, Space Act Agreements, Cooperative Agreements, 
and Contracts. 
 Other challenges somewhat unique to SDR 
development that must be considered during the 
development of the Statement of Work include required 
documentation, STRS training and compliance, and 
consideration for spare resources for upgrades.  New 
applications are likely to require additional external 
commands and telemetry.  Considering this capability early 
in the design will reduce effort in the future.  The SDR 
platform Verification and Validation (V&V) differs from 
that for a fixed platform.  Test waveforms are suggested that 
access all interfaces and provide the necessary functions to 
test the range of the platform’s capabilities without a full 
operational waveform development. 
 
2.8   Standardized Platform Services 
 
Platform services may be implemented as an STRS 
application or STRS service.  There have been a few 
services that have been suggested for all radios, such as 
CCSDS service, security, commanding, telemetry, etc.  
However, none will be standardized in the next version of 
STRS but are likely candidates for future versions.   
 

3. BACKWARDS COMPATIBILITY 
 
The STRS version number will be captured for all 
applications submitted to the STRS application repository.  
Any changes to the application to integrate it with previous 
or future versions of an OE will be the responsibility of the 
integrator of the project reusing the application.  
Documentation will be developed detailing all changes to 
each version of STRS.  Updates to STRS are expected to 
occur every two to three years, limiting the number of 
versions available.  This would limit the amount of time Figure 4.  Cognitive Engine Layer Diagram 

 



porting newer applications to preexisting STRS radios or 
porting existing applications to newer radios. 
 

4. SUMMARY  
 
In summary, the following significant suggestions for the 
STRS architecture were considered and the proposed 
resolution is as follows: 
1) STRS Devices:  No changes will be made to the current 

architecture, but additional clarification will be added 
to the supporting handbook. 

2) Handle Names and IDs:  Updates will be made to the 
parameter and description fields in the appropriate 
function calls to include the handle name and 
uniqueness aspects.  A new section will be added to the 
supporting handbook to discuss timeliness. 

3) Timing APIs:  A new integer type will be added to 
allow for varying lengths for the applicable time 
values. 

4) Operating Environment Information:  A new 
requirement will be added to the architecture to require 
a standard naming convention for the application to use 
to obtain operating environment details. 

5) SDRs without GPMs:  Four designs for SDRs without 
conventional General Purpose Processors as a separate 
module in an SDR were proposed and the pros and 
cons for each suggestion were discussed. 

6) Acquisition Guidance:  A summary of the unique 
aspects to be considered when developing an SDR 
versus a traditional fixed radio was provided.  These 
will be captured in detail in a future document. 

7) Standardized Platform Services:  Platform Services that 
are common to most NASA SDRs may be added to the 
STRS architecture in future versions.  

 
 
 
 
 

5. FUTURE WORK 
 
The updates mentioned in this paper will continue to be 
evaluated in their significance for application portability.  
The disposition recommended by the STRS team will be 
discussed with the commenter, if applicable, and reviewed 
by a broader team of personnel with STRS knowledge.  If 
applicable, the suggested software changes will be coded to 
assure accuracy.  NASA's reference implementation will be 
changed accordingly so as to have an executable model to 
test. 
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