Laser Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

SPIE DSS April 19, 2016 Paul R. Stysley, D. Barry Coyle, Greg B. Clarke, Erich Frese, Gordon Blalock, Peter Morey, Richard B. Kay, Demetrios Poulios, Michael Hersh NASA-Goddard Space Flight Center

GEDI Mission Overview

- NASA Earth Ventures Instrument (EVI) program
- \$90 M, cost capped, "PI-Led" mission
- Class C, 1-2 year mission
- Multi-beam waveform lidar instrument with 10 ground tracks
- Launch Vehicle: Space-X Falcon 9/Dragon or equivalent
- Platform: International Space Station,

- Orbit: 415 km average; 51.6 degrees
- Payload Allocations (TBR): 600 Kg., 887 W, 5.4 Mbps
- Science and Mission Operations Ground System, B.32 GSFC

						•	
2015	2016	2	017	201	8	2019	2020
SRR 6-15	PDR 4-16	CDR 1-17	PER 8-17	PSR 5-18	LRD 8-18	Primary Mission: 365 Days of Science Collection	Extended Mission to Account for ISS Induced Downtime

Characterize the effects of changing climate and land use on ecosystem structure and dynamics

GEDI provides the Earth's first comprehensive

and high-resolution data set of ecosystem structure

- Sole GEDI observable is the lidar waveform
 - Provide ground elevation, canopy height, canopy cover and various vertical profiles and metrics

GEDI Laser Ground Track Coverage

- GEDI is selfcontained laser altimeter
- 3 lasers produce a total of 10 ground tracks
- Precise ranging, attitude & position sensors enable precise geo-location of each laser footprint (10-m knowledge)
- Active Pointing Control Mechanism (PCM) provides even distribution and complete coverage of ground tracks (225-m control)

ARYLN

GEDI – Internal Views

- HR = high reflective mirror
- TCL = thermal compensation lens
- TFP = thin film polarizer
- QS = Q-Switch
- 1/4 WP = 1/4 wave plate
- GRM = gradient (Gaussian) reflective mirror

- 1. HR mirror prescription change 2.5 mCC to 1.0 mCC
- 2. The TCL focal length is "adjusted" for each cavity or slab installed, to best match thermal lensing. (TCLs ordered at a range anyway)
- 3. Mini-BX added to adjust for change in divergence
- 4. Reduction in output power from 17 mJ to 10 mJ to maintain same damage margins
- 5. Reduction of power allocation from 50 W to 40 W

HOMER Class Heritage and Philosophy

10

HOMER TRL-6 Performance Summary

Parameter	HOMER Output
Energy	20 - 15 mJ
Pulse Width	12 +/- 1 ns
Rep Rate	250 -100 Hz
LDA Current	48-80 A
LDA Derating	50%
TRL 6 Mass	6 kg
Total QS Shots HOMER Design	15+ Billion

<u>Single Mode Far Field Image</u> D_x/D_y = 0.99/0.96 mRad

Laser Settings:

- Diode Pulse = 65us
- I = 48 A (~55% derated)
- F = 241 Hz

Reported 01/06/2010 <u>HR mirror Near Field Image</u> W_x/W_y = 1.8/2.12 mm

Laser Output:

- E = 16 mJ
- Q-switch pulse ~11ns
- Fluence < 2.5 J/cm²

GEDI Laser Interface and Functional Overview

- Incorporating all opto-mechanical lessons learned from HOMER-2, LOLA, MLA, CALIPSO, DESDYNI, & ESA's ALADIN
- Modular design allows complete laser assembly, alignment, and substantial performance without the enclosure if necessary
- Preliminary leak rate, structural, and thermal analysis performed and will be tested

BDU Design Overview

Side Lobe Description Summary

A few rays at "top" of Y-axis travel a different path. This produces a clipping effect, or "lobe" at the slab output end.

This creates problems for science differentiating between sloped ground and tree height.

To remove this you can either:

- 1) Clip off the side lobes outside the cavity
- 2) Make the beam smaller
- 3) Make the slab bigger

All options were explored and GEDI selected option 2 by changing HR Mirror curvature.

Options were reviewed externally by NESC supervised laser team from 554, 562, and expert from NGS. See GEDI-LAS-REVW-0004

Laser Testing Performance Summary

Parameter	Value	Unit
Average Energy	10.2	mJ
Frequency	242	Hz
Pump Width	71-77	μs
Current	55	А

10 mJ example beam with no side lobes from GEDI-LAS-RPT-0029

Parametric Testing :

- Thermal lensing
- Diode distance

• End mirror tolerance

ETU Diode Life Test Results

Energy measurements were corrected for the LDA temperature change. Efficiency of the LDA decreases as the temperature increases.

GEDI Laser Requirements Verification

O = Occasional C = Continuous X = One Time Measurement

ID	Requirement	Values	FT	СРТ	Life test	Technique Used
1	Laser Wavelength	1064.5 nm ± 0.2 nm in vacuum		х	0	Pickoff beam. Use built in software to calibrate measurement for vac. Take vacuum and air values
2*	Laser Output Energy	10 mJ +5% fully captured beam at the output	х	x	С	Measuring Total Output Energy using energy meter with 10ms integration time. CPT - energy meter put at the end of the snout to get full output. Used to calibrate pickoff measurement as well FT/Lifetest - calibrated pickoff
3*	Far-Field Divergence of the Central Lobe	0.6 mrad ±0.08mrad 1/e ² div.	x	x	С	Spiricon camera (raw beam data) 5-10 captures Computer Analysis and post processing for side lobes FT-50 cm lens CPT - Rayleigh Range
6	Laser Output Polarization Ratio	≥ 200:1		х	0	Measure by hand using wave-plate/hi ratio polarizer configuration
9	Pulse Repetition Rate	242 ± 2 Hz	x	х	С	Confirm pulse with Tektonix 2024C and use e-drive output reading for continuous measurement
10	Pulse Width	<16ns ns Full-width and half- max	x	x	С	FT- 200 MHz Oscilloscope Average of 16 captures of laser pulses CPT -2 GHz scope. High speed Oscilloscope compiling 10,000 shots with histogram through computer analysis and post processing. LMB will be measured as well.
12	Laser Pulse Energy Concentration in Far- Field Outside of Central Lobe	≤ 0.5% of 1/e ² Central Lobe per energy concentration		x	0	Spiricon camera (raw beam data) 5-10 captures Computer Analysis and post processing
13*	Number of Laser Shots for Life Testing	3.2 billion shots	x	х	С	GSE shot counter will monitor shots for every test. ETU life time shot count will be monitored continuously
24	LDA Operating Temperature	35 +/- 2 °C		х	С	.Internal 10k thermistors read by EGSE
WYLN.						

Level of Assembly	
ltem	
Supplier	
Quantity	
Hardware Type	
Modal Survey	
trength - Design Loads (11)	
ne Survey (Sine Sweep)	Stru
Sine Vibration	otur
Random Vibration	
Mechanical Shock	acha
etrology/Dim Inspection	nical
Mechanical Function	
Life Tests	
Mass Properties	
Interface Tests	E
Conducted Emissions	EMI/I
Radiated Emissions	EMC
onducted Susceptibility Y	; & M
Self Compatibility	agne
agnetic Properties (AC) agnetic Properties (DC)	etics
Leak Test	The
Pressure Test	٦rm
Thermal Vacuum [# of Cycles]	al / \
Thermal Balance	/201
ermal Cycling - Ambient	m
Bakeout	(3)

- Environmental Testing performed on ETU and Flight units
 - ETU: Vibration, TVAC, EMC, and life test
 - Flight: Vibration, TVAC, EMI/C (at instrument level)
 - CPTs before and after each test (or specific cycles)
- Interface testing: BDU, LEU, DOE

Laser GSE Functional Diagram

Optical Setup – Laser Lifetest w/BDU

Laser Assembly Flow

Laser Assembly Flow

Laser ETU Bucket and Driver Assembly

Laser ETU Diode and Bench Assembly

BDU ETU Assembly Test Configuration

