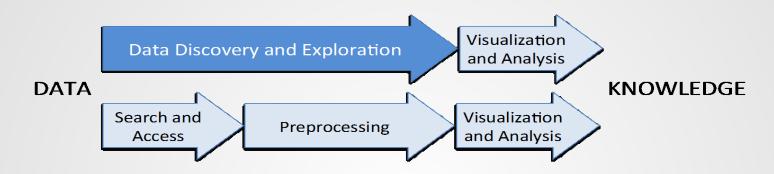
MINING DARK INFORMATION RESOURCES TO DEVELOP NEW INFORMATICS CAPABILITIES TO SUPPORT SCIENCE

Rahul Ramachandran NASA/MSFC, Manil Maskey UAH, Kaylin Bugbee UAH

Project Team:
MSFC/UAH: Patrick Gatlin, Xiang Li, Amanda Weigel, JJ Miller, Kaylin Bugbee, Ajinkya Kulkarni
GSFC: Steve Kempler, Suhung Shen, Chung-Lin Shie, Maksym Petrenko
RPI: Peter Fox, Stefan Zednik, Anirudh Prabhu

European Geosciences Union General Assembly 2016 Vienna, Austria 17–22 April 2016



Outline

- 1. Project Overview
- 2. Data Curation Service
- 3. Rules Engine
- 4. Image Retrieval Service
- 5. Summary

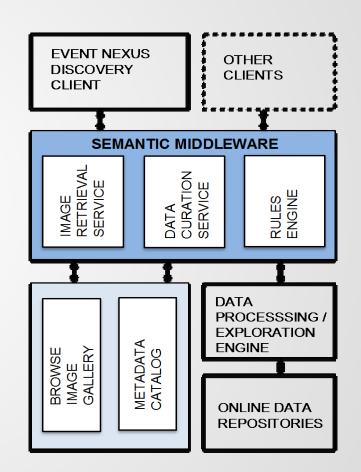
Part 1: Project Overview

Motivation

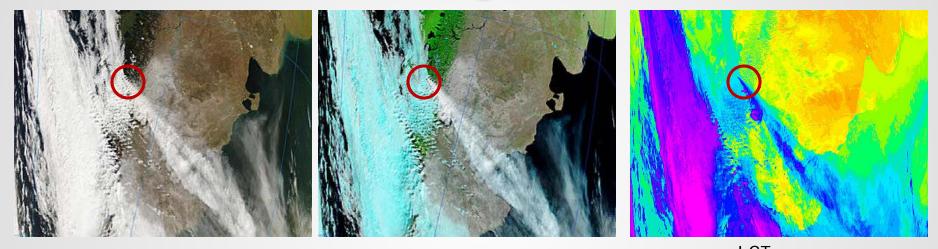
 Data preparation steps are cumbersome and time consuming

o Covers discovery, access and preprocessing

- Limitations of current Data/Information Systems
 - Boolean search on data based on instrument or geophysical or other keywords
 - Underlying assumption that users have sufficient knowledge of the domain vocabulary
 - Lack support for those unfamiliar with the domain
 vocabulary or the breadth of relevant data available


Earth Science Metadata: Dark Resources

- Dark resources information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for **other** purposes
 - Challenge is to recognize, identify and effectively utilize these dark data stores
- Metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and browse images.
 - NASA's Common Metadata Repository (ECHO) holds >6000data collections, 270 million records for individual files and 67 million browse images.


Premise: Metadata catalogs can be utilized beyond their original design intent to provide new data discovery and exploration pathways to support science and education communities.

Project Goals

- Design a Semantic Middleware Layer (SML) to exploit these metadata resources
 - provide novel data discovery and exploration capabilities that significantly reduce data preparation time.
 - utilize a varied set of semantic web, information retrieval and image mining technologies.
- Design SML as a Service Oriented Architecture (SOA) to allow individual components to be used by existing systems

Use Case: Find Interesting Events from Browse Images

Band 1-4-3 (true color) Band 7-2-1 LST Example: MODIS-Aqua 2008-05-03 18:45 UTC

Chaitén Volcano Eruption Eruption Time period: May 2 – Nov 2008 Location: Andes region, Chile (-42.832778, -72.645833)

Image Retrieval Service can be used to find volcanic ash events in browse imagery

Suggest Relevant Data

Total SO₂ mass:

e.g. **Chaitén** is 10 (kt) =(kilotons), (1kt= 1000 metric tons) <u>ftp://measures.gsfc.nasa.gov/data/s4pa/SO2/MSVOLSO2L4.1/MSVOLSO2L4</u> _v01-00-2014m1002.txt

Daily SO2:

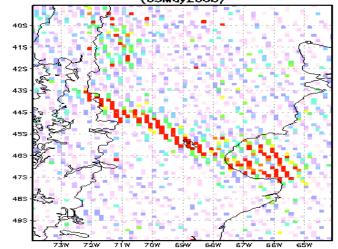
OMI/Aura Sulphur Dioxide (SO2) Total Column Daily L2 Global 0.125 deg http://disc.sci.gsfc.nasa.gov/datacollection/OMSO2G_V003.html

Calibrated Radiances:

MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 1km http://dx.doi.org/10.5067/modis/myd021km.006

Aerosol Optical Thickness:

MODIS/Aqua Aerosol 5-Min L2 Swath 10km <u>http://modis-atmos.gsfc.nasa.gov/MODC</u> SeaWiFS Deep Blue Aerosol Optical Dept Data 13.5km <u>http://disc.gsfc.nasa.gov/datacollection</u> IR Brightness Temperature: Data 10km Data Curation Service recommends relevant datasets to support event analysis


NCEP/CPC 4-km Global (60 deg N - 60 deg S) Merged IR Brightness Temperature Dataset

Generate Giovanni SO2 Plots

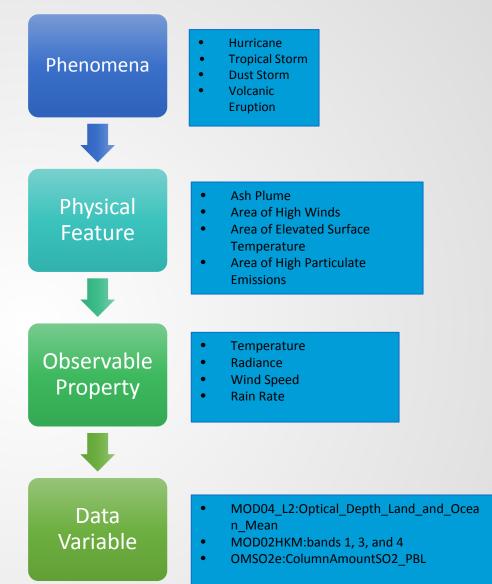
MODIS-Aqua 2008-05-03 18:45 UTC

12G.003 SO2 Column Amount (Planetary Boundary La (03May2008)

MODIS-Aqua 2008-05-05 18:30 UTC

http://gdata2.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omil2g

Conceptual Model

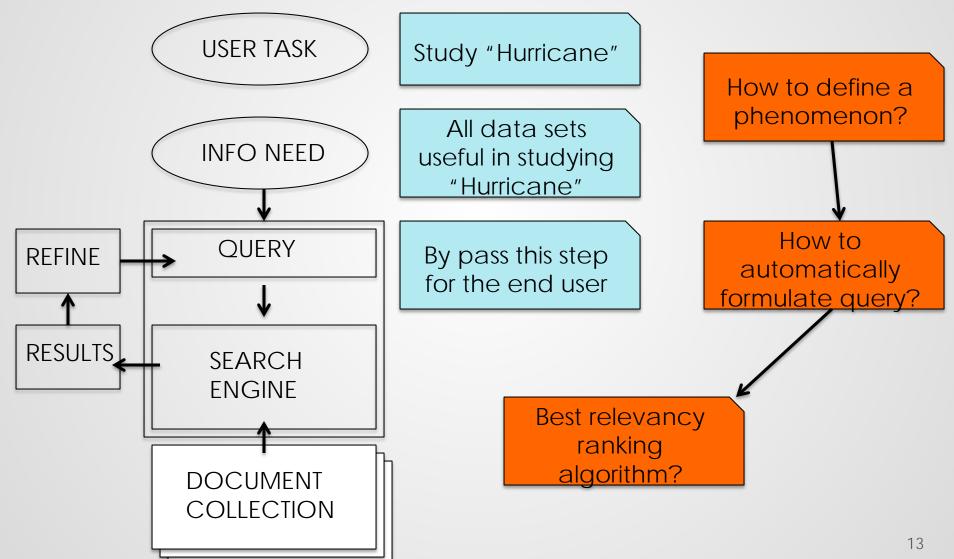

- Phenomena
 - Event type

Physical Feature

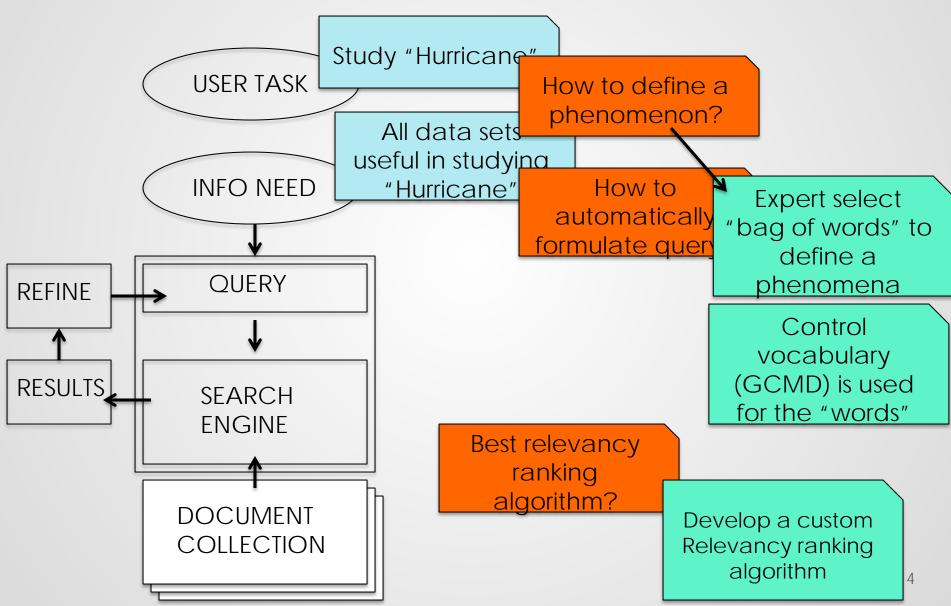
- Manifestation / Driver of phenomena
- Has space/time extent
- Can precede or linger after what is generally thought of as the phenomena event

Observable Property

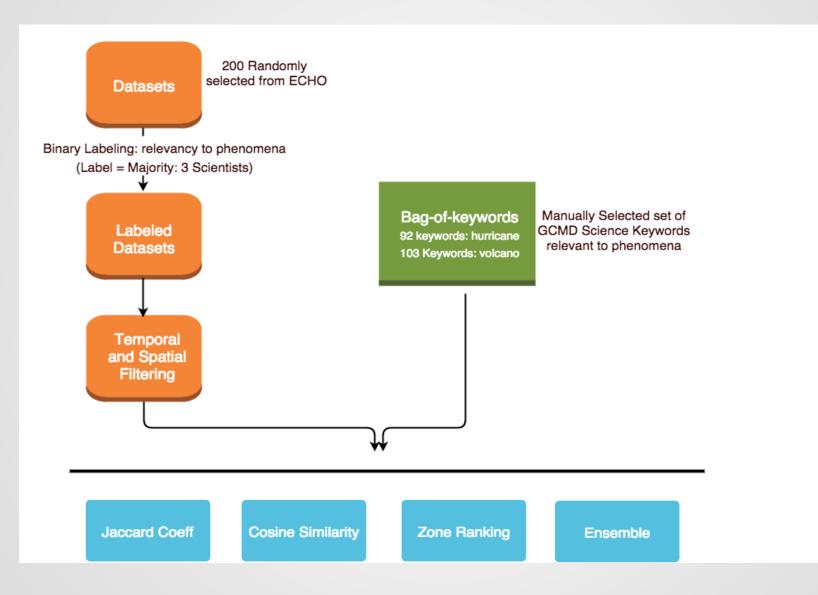
- Characteristic/property of physical feature
- Data Variable
 - Measurement/estimation of observable feature

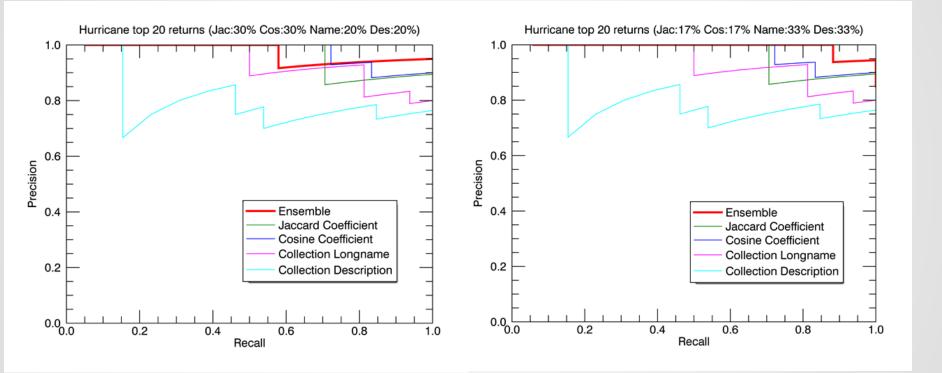

Part 2: Data Curation Algorithm for Phenomena

• • •


Objectives

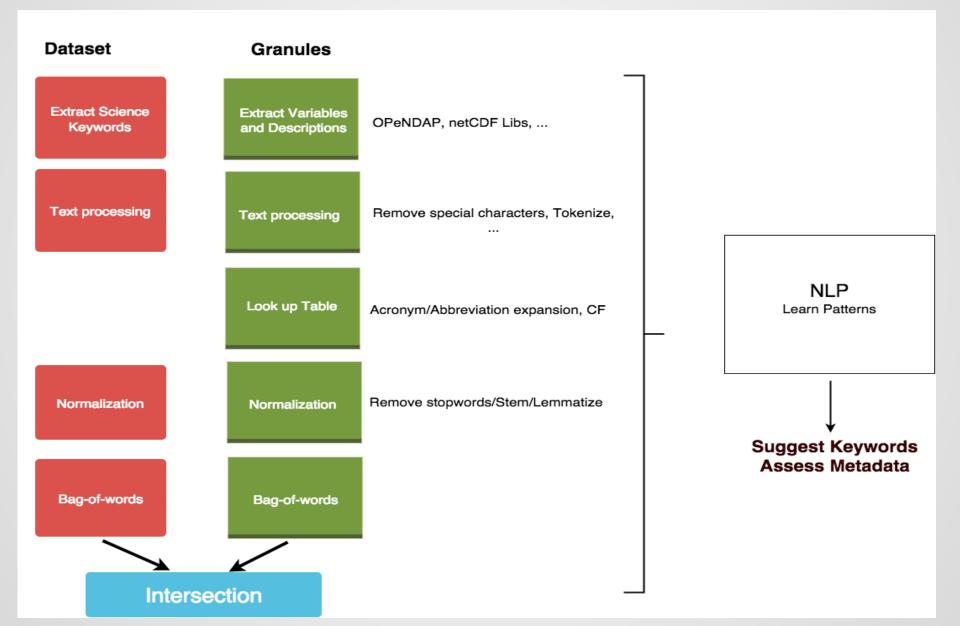
- Design a data curation (relevancy ranking) algorithm for a set of phenomena
- Provide the data curation algorithm as a stand alone service
- Envisioned Use:
 - Given a phenomenon type (Ex: Hurricane), DCS returns a list of relevant data sets (variables)
 - For a specific phenomenon instance (event: Hurricane Katrina), these curated datasets can be filtered based on space/time to get actual granules


Data Curation is a Specialized Search Problem

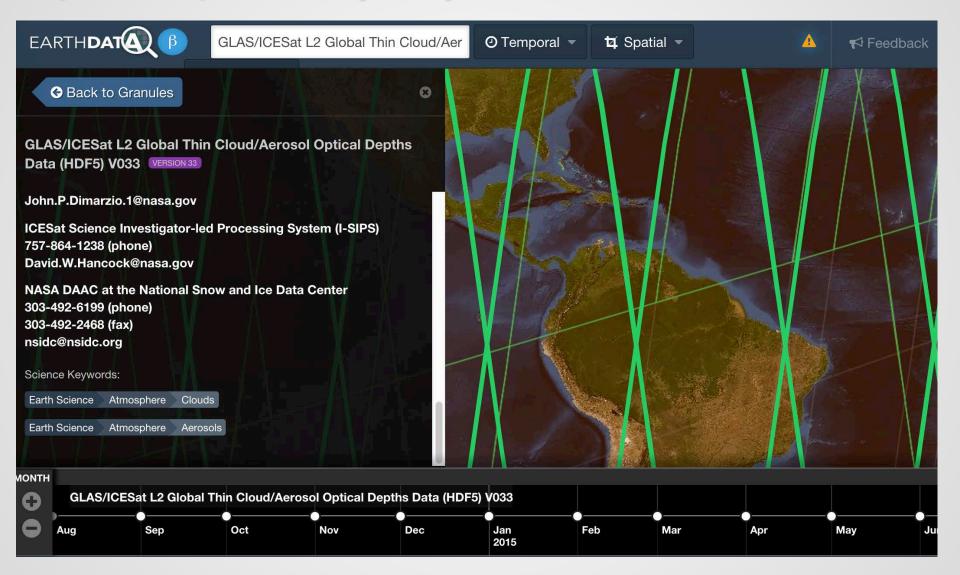

Our Approach

Experiment Setup

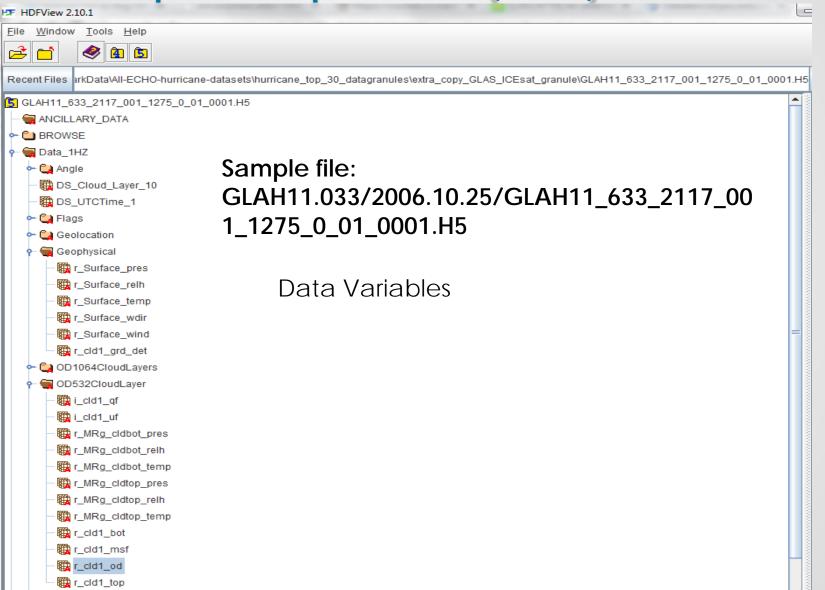
Top 20 returns (Hurricane)



Next: Find relevant data fields


- Need actual data variables
 - Example: Giovanni uses these fields for visualization
- What we know
 - Data set (Collection) level science keywords (GCMD) – Experts
 - Granule data fields and metadata Auto extract*
- How do we map?

o Start with GCMD to CF Standard nameo Most don't follow CF Standard names


Approach

Example: GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data (HDF5) V033 – Dataset Metadata

Example: GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data (HDF5) V033

Example: GLASICESat L2 Global Thin Cloud Aerosol Optical Depths Data (HDF5) V033

Science keyword to variable mapping

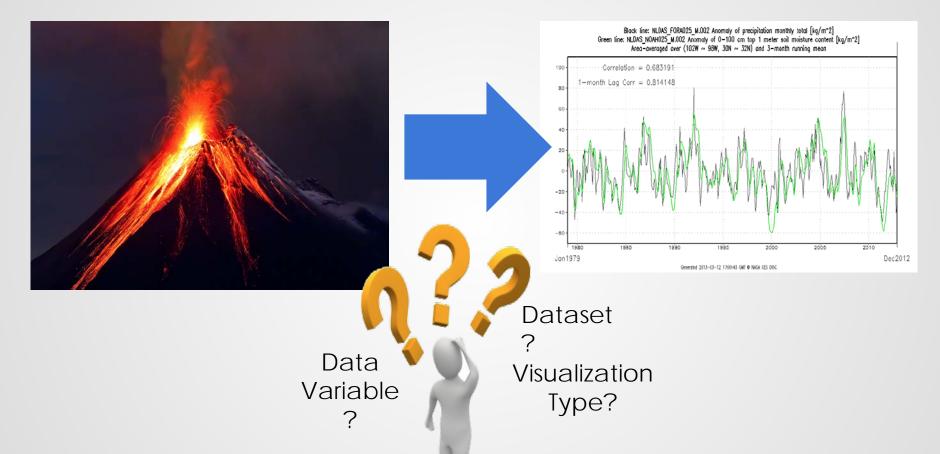
- r_Surface_relh | Surface Relative Humidity
 No match
- r_Surface_temp | Surface Temperature
 No match
- r_Surface_wind | Surface Wind Speed
 - o No match
- r_cld1_od | Cloud Optical Depth at 532 nm
 - Score=3 keyword: ATMOSPHERE->CLOUDS->CLOUD OPTICAL DEPTH/THICKNESS
 - Score=2 keyword: ATMOSPHERE->AEROSOLS->AEROSOL OPTICAL DEPTH/THICKNESS

Variable to keyword mapping

- ATMOSPHERE->CLOUDS->CLOUD OPTICAL DEPTH/THICKNESS
 - Score=3 name: r_cld_ir_OD | Cloud Optical Depth at 1064 nm
 - o score=3 name:i_cld1_qf | Cloud optical depth flag for 532 nm
 - o Score=3 name:i_cld1_uf | Cloud optical depth flag for 532 nm
 - Score=3 name:r_cld1_od | Cloud Optical Depth at 532 nm
- Found incorrect/incomplete keyword annotation
- Can be used assess metadata quality and suggest keyword annotation!!

Parameter Mapping Tool

Data Paramet	er Mapping Tool
tasets	
RS/Aqua Level 2 Support retrieval (AIRS+AMSU) V005	
HRSST Level 2P USA NASA MODIS Aqua SST:1	Datasets
IODIS/Terra Temperature and Water Vapor Profiles 5-Min L2 Swath 5km V0	
S/OTD 2.5 DEGREE LOW RESOLUTION DIURNAL CLIMATOLOGY (LRDC)	V2.3.2013
IODIS/Terra Aerosol 5-Min L2 Swath 10km V005 NRT	
Science Keyword Map	Min L2 Swath 10km V005 NRT Parameter Map
ATMOSPHERE > AEROCOLS > PARTICULATE_MATTER 3 Peep_Blue_Aeroson_Optical_Depth_Land_STD : 1 SCIENCE	Parameter Map
ATMOSPHERE > AEROCILS > PARTICULATE_MATTER 3 Deep_Blue_Aeroson Optical_Depth_Land_STD : 1	Parameter Map EDIT
ATMOSPHERE > AEROCILS > PARTICULATE_MATTER () Deep_Blue_Aeroso_Optical_Depth_Land_STD : 1 SCIENCE Deep_Blue_Aerosol_Optical_Depth_550_Land : 1 CEVWORD	Parameter Map EDIT Optical Depth_Small_Average_Ocean ATMOSPHERE->AEROSOLS- >AEROSOLS_OPTICAL_DEPTH/THICKNESS : 2 Parameter ATMOSPHERE->ATMOSPHERIC_RADIATION-
ATMOSPHERE > AERCE_LS > PARTICULATE_MATTER () Deep, Blue_Aerosol_Optical_Depth_Land_STD : 1 SCIENCE Deep, Blue_Aerosol_Optical_Depth_550_Land : 1 Aerosol_Type_Land : 1 Aerosol_Cidmask_Byproducts_Ocean : 1	Parameter Map EDIT Optical Depth_Small Average_Ocean ATMOSPHERE->AEROSOLS- >AEROSOLS_OPTICAL_DEPTH/THICKNESS : 2 ATMOSPHERE->ATMOSPHERIC_RADIATION- >OPTICAL_DEMANDSHERIC_RADIATION- >OPTICAL_DEMANDSHERIC_RADIATION- SOPTICAL_SOPT
ATMOSPHERE > AEROCILS > PARTICULATE_MATTER ③ Deep_Blue_Aerosol_Optical_Depth_Land_STD : 1 SCIENCE Deep_Blue_Aerosol_Optical_Depth_550_Land : 1 Ceyword Aerosol_Type_Land : 1	Parameter Map EDIT Optical Depth_Small Average_Ocean ATMOSPHERE->AEROSOLS- >AEROSOLS_OPTICAL_DEPTH/THICKNESS : 2 ATMOSPHERE->ATMOSPHERIC_RADIATION- >OPTICAL_DEMANDSHERIC_RADIATION- >OPTICAL_DEMANDSHERIC_RADIATION- SOPTICAL_SOPT
ATMOSPHERE > AEROCILS > PARTICULATE_MATTER ③ Deep_Blue_Aerosol_Optical_Depth_Land_STD : 1 Science Deep_Blue_Aerosol_Optical_Depth_550_Land : 1 evword Aerosol_Type_Land : 1 Aerosol_Cidmask_Byproducts_Ocean : 1 Deep_Blue_Aerosol_Optical_Depth_Land_1 Parameters	Parameter Map EDIT Optical Depth Small Average Ocean ATMOSPHERE->AEROSOLS- >AEROSOLS_OPTICAL_DEPTH/THICKNESS : 2 Parameter ATMOSPHERE->ATMOSPHERIC_RADIATION- >OPTICAL_DEMAPPEEd Science Keywords ATMOSPHERE->AEROSOLS->PARTICULATE_MATTER : 0 S Asymmetry_Factor_Best_Ocean •


	M. 100
ATMOSPHERE->AEROSOLS->AEROSOL_PARTICLE_PROPERTIES : 2	/lin L2 Swath 10k
ATMOSPHERE->AEROSOLS->CLOUD_CONDENSATION_NUCLEI : 2	
ATMOSPHERE->AEROSOLS->AEROSOL_EXTINCTION : 2	
ATMOSPHERE->AEROSOLS->AEROSOLS_OPTICAL_DEPTH/THICKNESS: 2	
ATMOSPHERE->AEROSOLS->AEROSOL_RADIANCE : 2	
ATMOSPHERE->AEROSOLS->CARBONACEOUS_AEROSOLS : 2	
ATMOSPHERE->AEROSOLS->DUST/ASH/SMOKE : 2	
ATMOSPHERE->AEROSOLS->NITRATE_PARTICLES : 2	
ATMOSPHERE->AEROSOLS->ORGANIC_PARTICLES : 2	
ATMOSPHERE->AEROSOLS->PARTICULATE_MATTER : 2	
ATMOSPHERE->AEROSOLS->SULFATE_PARTICLES : 2	Remove
ATMOSPHERE->ATMOSPHERIC_RADIATION->RADIATIVE_FLUX : 2	
ATMOSPHERE->ATMOSPHERIC_RADIATION->REFLECTANCE : 2	
ATMOSPHERE->ATMOSPHERIC_RADIATION->OPTICAL_DEPTH/THICKNESS:2	Remove
	-
ATMOSPHERE->AEROSOLS->PARTICULATE_MATTER : 0	Remove

Edit/Save Mapping

Mapping Scores Generated by Algorithm

Part 3: Rules Engine

What settings should I use to visualize this event?

Goal: Automate data preprocessing and exploratory analysis and visualization tasks

Images from : http://globe-views.com/dcim/dreams/volcano/volcano-03.jpg , http://grecaira.users37.interdns.co.uk/essay/images/confused.png , http://disc.sci.gsfc.nasa.gov/datareleases/images/nldas_monthly_climatology_figure_9.glf

Strategy

- Service to generate and rank candidate workflow configurations
- Use rules to make assertions about compatibility based on multiple factors
 - o does this data variable make sense for this feature?
 - o does this visualization type make sense for this feature?
 - o does the temporal / spatial resolution of this dataset make sense for this feature?
- Each compatibility assertion type is assigned weights.

o ex: Strong = 5, Some = 3, Slight = 1, Indifferent = 0, Negative = -1.

• Based on the aggregated compatibility assertions, we calculate the score for each visualization candidate.

Ruleset Development

Survey asked users to rate characteristics of phenomena features

Feature characteristics for analysis *

What characteristics are of interest when analyzing the feature?

negative value	indifferent	slight value	some value	strong value	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
	Value O O O O O O O O O O O O O O O O O O O	value indifferent O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O	value indifferent value O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O	value indifferent value value O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O	value indifferent value value value value O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

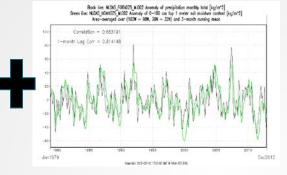
Survey results used to formulate rules

[rule1: (?feature rdf:type dd:AshPlume) -> (?feature dd:strongCompatibilityFor dd:temporal_evolution), (?feature dd:indifferentCompatibilityFor

dd:east-west-movement),

•••

Phenomena Feature Characteristic Mappings


Phenomena	East- West Movem ent	North- South Movement	Temporal Evolution	Spatial Extent of Event	Year-to- Year Variability	May Impact Seasonal Variation	Variation with Atmosphe ric Height	Global Phenomen a	Detection of Events
Volcano - Ash Plume	Indiffere nt	Indifferent	Strong	Slight	Strong	Strong	Strong	Strong	Strong
Flood	Some	Some	Strong	Some	Some	Strong	Some	Slight	Some
Dust Storm	Strong	Strong	Strong	Strong	Indifferent	Indifferent	Strong	Indifferent	Some

Service to Characteristic Mappings

Service	Visualizatio n	East-West Movement	North-South Movement	Temporal Evolution	Spatial Extent of Event	Year-to- Year Variability	Seasonal Variation	Variation with Atmospheri c Height	Global Phenomena	Detection of Events
Time- averaged Map	Color-Slice Map				\checkmark					
Area- averaged Time Series	Time Series			\checkmark						~
User- defined Climatology	Color-Slice Map						~			
Vertical Profile	Line Plot							\checkmark		
Seasonal Time Series	Time Series					\checkmark				
Zonal Means	Line Plot								\checkmark	
Hovmoller (Longitude)	Color-Slice Grid	\checkmark								
Hovmoller (Latitude)	Color-Slice Grid		\checkmark							

Compute Compatibility

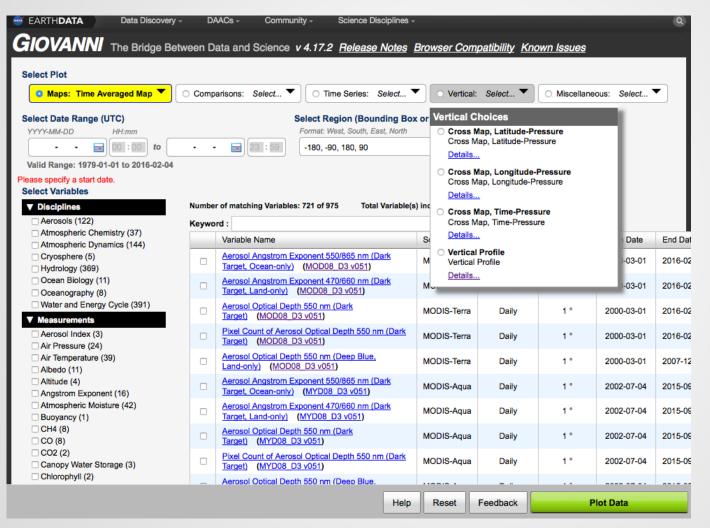
Phenomena: Volcano - Ash Plume Service - Area Averaged Time Series

Temporal Evolution	Detectio n of Events
Strong	Strong

	Area	Temporal
	Averaged	evolution;
	Time Series :	Detection
_	bestFor \rightarrow	of events

STRONG COMPATIBILITY x2

Images from , http://disc.sci.gsfc.nasa.gov/datareleases/images/nldas_monthly_climatology_figure_9.gif, http://www.clipartbest.com/cliparts/biy/bAX/biybAXGiL.png

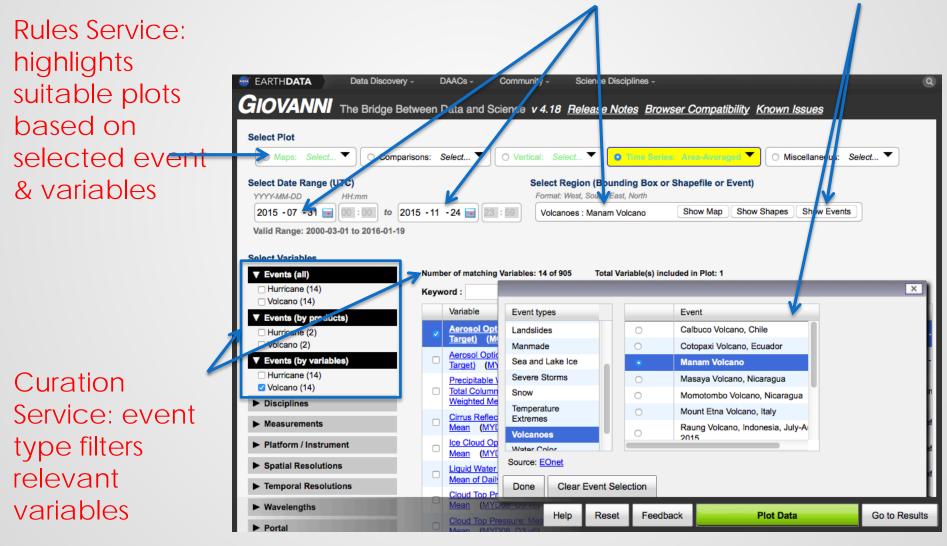

volcanic ash image - By Boaworm (Own work) [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons

Integrating Services in Giovanni

- **Tool**: Giovanni is a popular on-line environment that lets users discover, plot, and download a number of geophysical parameters (data variables)
- Goal: Leverage Dark Data services and technologies to assist Giovanni users in discovering and exploring data

'Success will be realized when Giovanni requests can be automatically invoked with the appropriate spatial and temporal extents, variables and workflow / visualization type for a particular event'

Giovanni – Standard Edition


User needs to decide:

- Variable(s)
- Time
- Space
- Plot type

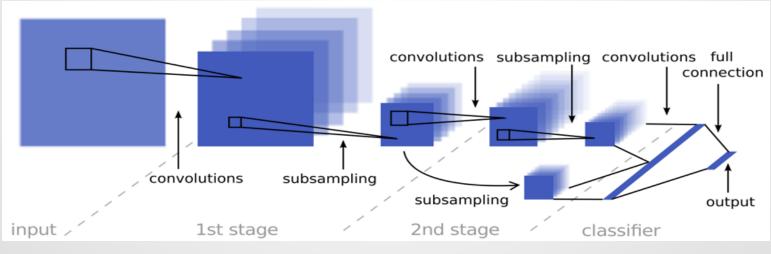
http://giovanni.sci.gsfc.nasa.gov/giovanni/

Giovanni – Dark Data Edition

Selected event & its time Event Client

Part 4: Image Retrieval

Image Retrieval

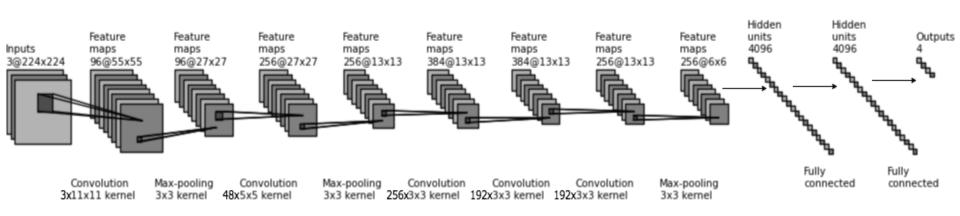

• Goal: given an image of Earth science phenomenon retrieve similar images

Challenge: "semantic gap"

 low-level image pixels and high-level
 semantic concepts perceived by humans

Deep Learning

- Mimics the human brain that is organized in a deep architecture
 - Processes information through multiple stages of transformation and representation
- Learns complex functions that directly map pixels to the output, without relying on human-crafted features

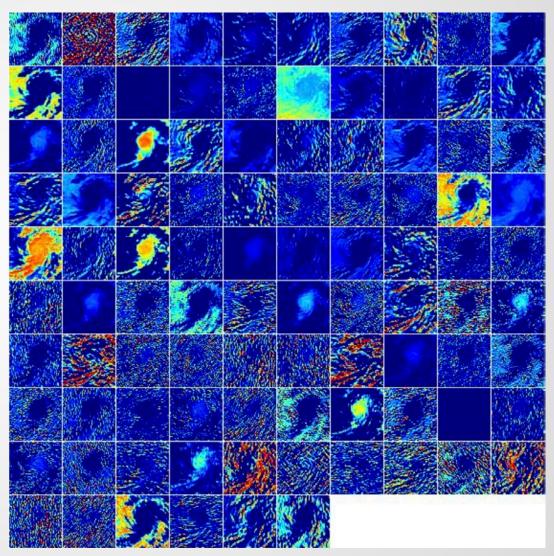

Convolution neural network

Transfer Learning

- CNN requires large number of parameters
- Learning parameters from a few thousand training samples is unrealistic
- Transfer learning
 - Use internal representation learned from one classification task to another
 - o AlexNet architecture Krizhevsky et. al.
 - Weights learned from ImageNet 1.3 million highresolution images
 - o State-of-the-art classification accuracy

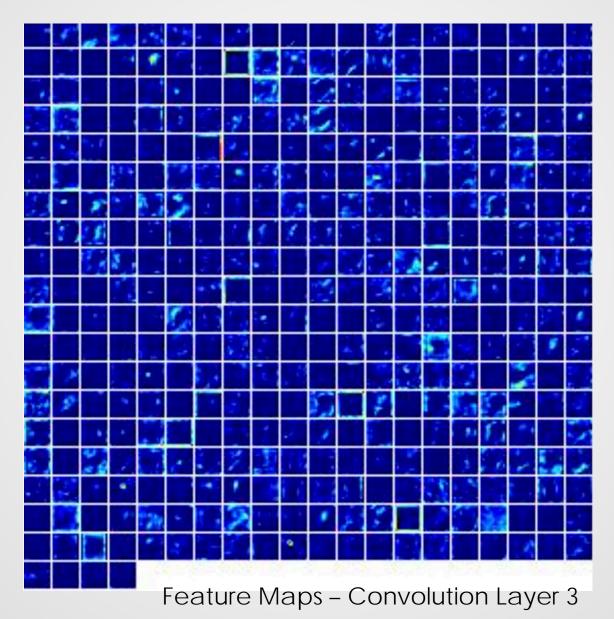
Experiment: CNN Configuration

Text



- AlexNet architecture
 - o Initialized weights with ImageNet trained model
 - o Adaptive learning rate
 - o GPU implementation

Experiment CNN – Visualization



Input Image

Feature Maps - Convolution Layer 1

Experiment CNN – Visualization

Results: Confusion Matrix

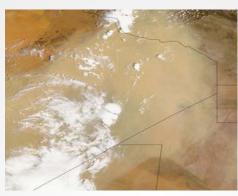
MODIS Rapid Response Test Images (Images are New to Trained CNN)

True/Pred	Dust	Hurricane	Smoke	Other
Dust	287	8	32	33
Hurricane	0	379	1	10
Smoke	12	12	443	9
Other	33	9	23	211

Overall Accuracy = 87.88%

Producer's Accuracy

Dust 86.45% Hurricane 92.89% Smoke 88.78% Other 80.23


User's Accuracy

Dust 79.72% Hurricane 97.18% Smoke 93.07% Other 76.45%

Results (MODIS Rapid Response)

Hurricane - True Positive

Dust – True Positive

Smoke-True Positive

Hurricane – False Negative

Dust – False Positive

Smoke-False Positive

Summary

Building three specific semantic middleware components

 Image retrieval service
 Data curation service
 Semantic rules engine

Infuse the entire middleware or the components into existing NASA data and information system

Dr. Rahul Ramachandran

Deputy Editor, Earth Science Informatics Journal Manager, Global Hydrology Resource Center NASA's Distributed Active Archive Center Earth Science Office (ZP11) NASA / Marshall Space Flight Center Huntsville, Alabama 35812, USA (w) 256.961.7620 (c) 256.226.6854 Orcld: orcid.org/0000-0002-0647-1941 www.linkedin.com/in/rramachandran05/