A WRF-Chem Analysis of Flash Rates, Lightning-NO_x Production & Subsequent Trace Gas Chemistry of the 29-30 May 2012 Convective Event in Oklahoma during DC3

Kristin A. Cummings *Department of Atmospheric & Oceanic Science, University of Maryland (UMd)/NASA-KSC*

> *Presented by* Kenneth E. Pickering *NASA-GSFC/Department of Atmospheric & Oceanic Science, UMd*

M. Barth & A. Weinheimer (NCAR), M. Bela (Univ. of CO), Y. Li & D. Allen (UMd), E. Bruning (Texas Tech Univ.), D. MacGorman (NOAA/NSSL), S. Rutledge, B. Basarab & B. Fuchs (CSU), I. Pollack & T. Ryerson (NOAA CSD), H. Huntrieser (Inst. of Atmos. Physics, Germany), & M. Biggerstaff (Univ. of OK)

Photo by C. Cantrell

Key Objectives

- Continuation of previous work, which compared flashes generated by various flash rate parameterization schemes (FRPSs) from the literature in a WRF-Chem model simulation with lightning observations:
	- Oklahoma Lightning Mapping Array (OK LMA)
	- National Lightning Detection Network (NLDN)
- Current work objectives:
	- Analyze distribution of observed and model-simulated trace gas species in storm inflow and outflow
	- Determine NO production scenario for IC and CG lightninggenerated NO_x (LNO_x) scheme
	- Investigate additional FRPSs recently developed from DC3 radar and LMA data

Background

- Storm system developed ~21Z May 29 along KS/OK border and continued until 04Z May 30
- Aircraft sampled storm and its environment from 20Z May 29 to 01Z May 30
	- DC-8 focused on storm inflow & outflow
	- GV & Falcon concentrated on outflow
- Ground-based instrumentation included:
	- Dual-Doppler radar (NEXRAD level II regional)
	- Shared Mobile Atmospheric Research and Teaching Radar (SMART-Radar)
	- NLDN cloud-to-ground flash data
	- OK LMA flash initiation density data

3 Blue circles: LMA stations Green outline: Extent of 3-D lightning mapping capability Gray outline: Extent of 2-D lightning detection

WRF-Chem Model V3.6.1

- Grid resolution: $dx = dy = 1$ -km, $dz = 50 250$ m
- Initialized with 18Z NAM ANL (6-hr) for boundary conditions
- Lightning Data Assimilation (18-21Z)

LNO_x Parameterization Scheme (DeCaria et al., 2005)

- Gaussian vertical distribution of IC (bimodal) and CG (single mode) NO production based on typical lightning flash channel distributions
- Lightning channels set to maximize at -15°C (CG and IC) and -45°C (IC)
- NO production can be specified
	- Mean value of 500 moles flash⁻¹ found in previous mid-latitude simulations (*Ott et al., 2010*)
- Horizontal placement of NO based on reflectivity ≥ 20 dBZ in each grid cell

Methodology

- Used W_{max} FRPS in model, since scaling factors provided reasonable results and we were interested in how aircraft observations compared with modelsimulated trace gases:
	- $-$ Find W_{max} per processor (17 km x 19 km) and apply to FRPS equation:

 $5.0 \times 10^{-6} \times W_{max}^{4.5}$

- Compared flash rate trends over the observed and model-simulated storm's lifetime
- Analyzed trace gas species (i.e., CO, NO_{x} , O_3) using model-simulated values and aircraft (DC-8 & GV) observations to:
	- Investigate NO production scenario
	- Compare inflow and outflow statistics
	- Create probability distribution function (PDF) plots in storm outflow 66

**Plots courtesy of M. Bela*

Model Flash Rates vs. Observations

- Model-simulated storm onset occurs 40 min (21:50-05:00 UTC) after observed storm (21:10- 04:10 UTC)
- Model severely *overestimated* the simulated flash rates compared with observations
- Scaling the W_{max} FRPS equation generates similar flash rates as observations
- Initial peak in model-simulated flashes (23:40 UTC) occurs earlier than observations (~01:30 UTC)

Note: Model-simulated flash rates shifted 40 min earlier to start with observed flashes (21:10). The model-simulated flash rates plotted above are scaled.

NO Production Scenario

- $F_{\rm X}$ aroduction of 500 moles flash⁻¹ produced NO_x mixing ratios in anvil outflow a factor of four greater than observed by aircraft
- Reduced LNO_x production to 125 moles flash⁻¹ (see table):
	- $-$ Inflow NO_x larger in model possibly due to emissions
	- $-$ Outflow NO_x larger in model possibly due to strong vertical velocity

**Statistics represent mean values from 23:00-00:20 UTC (courtesy of M. Bela).*

Trace Gas PDFs in Storm Outflow

Trace Gas PDFs in Storm Outflow

- Aircraft measurements (*blue*) indicate the number of higher NO^x values start to slightly increase from 10.48-11.22 km
	- Influence from upper lightning channel peak at -45°C (10.5 km)
- Model-simulated NO_x (*green*) peaks at lower values than observations
	- Is model-simulated vertical velocity slightly stronger?
- Higher NO_x values observed by model (*green*) due to influence from upper lightning channel

Comparison of Storm Vertical Velocity

Max Updraft (m s⁻¹) from SMART-Radar

65

55

5

15

25

35

45

- WRF output data (*not shown*):
	- Storm onset delayed 40 min (23:30-00:40 UTC)
	- Average model-simulated W_{max} ~59 m s⁻¹

[•] SMART-Radar data:

[–] Complete record of 3 mobile radars between 22:51-00:00 UTC

Average W_{max} ~49 m s⁻¹

^{}Plot courtesy of M. Biggerstaff*

Conclusions

- A single model domain at fine resolution (1-km) produces a storm of roughly the same size as observed, however, the model-simulated:
	- Flashes must be scaled
	- W_{max} is 1.2X stronger
- W_{max} FRPS is not appropriate for the 29-30 May storm:
	- Flashes overestimated despite applying a scaling factor to the vertical velocities
- Slightly stronger model-simulated W_{max} leads to the over prediction of trace gas transport shown in CO, NO_x, and O₃ PDFs
- Tentatively conclude LNO_x production is around 125 moles flash $^{-1}$
- Other FRPSs should be pursued, which:
	- Don't require significant scaling
	- Better follow observed flash rate trend
	- Examples include updraft volume and ice mass flux product

FLASH COMPARISON FOR 29 MAY 2012 - w/scaling factors

Note: The FRPS flash rate trends in the above plot are based on offline calculations and are adjusted with scaling factors.

Time (UTC)

Future Work

- Six FRPSs from CSU will be tested in the online model:
	- $-$ Updraft volume > 15 m s⁻¹
	- Precipitating ice mass
	- 30-dBZ echo volume
	- Graupel echo volume
	- Area-height schemes based on graupel or dBZ
- Compare results of FRPSs with 1-min/1-km LMA data
- \cdot Investigate O₃ changes within the cloud and downwind of the storm

Note: The FRPS flash rate trends in the above plot are based on offline calculations and are adjusted with scaling factors.

Acknowledgements

- Regional NEXRAD level II data provided by Cameron Homeyer (NCAR)
- NLDN data collected by Vaisala, Inc. and archived by NASA MSFC

QUESTIONS?

 -120

Photo by C. Cantrell

Mean Values

**Expanded table from slide 8, where statistics represent mean values from 23:00-00:20 UTC (courtesy of M. Bela). Top half of table represents mixing ratios. Bottom half represents CO ratios.*