
ar
X

iv
:1

50
9.

06
26

4v
1 

 [
as

tr
o-

ph
.I

M
] 

 2
1 

Se
p 

20
15

Accepted by Publications of the Astronomical Society of the Pacific

Teledyne H1RG, H2RG, and H4RG Noise Generator

Bernard J. Rauscher

NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA

Bernard.J.Rauscher@nasa.gov

ABSTRACT

This paper describes the near-infrared detector system noise generator (NG) that

we wrote for the James Webb Space Telescope (JWST ) Near Infrared Spectrograph

(NIRSpec). NG simulates many important noise components including; (1) white “read

noise”, (2) residual bias drifts, (3) pink 1/f noise, (4) alternating column noise, and

(5) picture frame noise. By adjusting the input parameters, NG can simulate noise for

Teledyne’s H1RG, H2RG, and H4RG detectors with and without Teledyne’s SIDECAR

ASIC IR array controller. NG can be used as a starting point for simulating astronomical

scenes by adding dark current, scattered light, and astronomical sources into the results

from NG. NG is written in Python-3.4. The source code is freely available for download

from http://jwst.nasa.gov/publications.html.

Subject headings: instrumentation: detector, noise, H1RG, H2RG, H4RG, SIDECAR,

ASIC

1. Introduction

Simulated detector noise is a standard tool for observation planning. Unfortunately, the noise

of real instruments can be complex. For example, it may contain correlations that appear as

banding, alternating column noise (ACN), residual bias or “pedestal” drifts, and bias patterns that

fade in and out. Simple linear combinations of read noise, shot noise, and even 1/f noise can fail

to satisfactory reflect the full complexity of real data.

This article describes NG, a read noise simulator that we wrote for the JWST NIRSpec detector

subsystem. NG builds on a foundation of principal components analysis (PCA) and the read noise

studies that were done to develop NIRSpec’s Improved Reference Sampling and Subtraction (IRS2;

pronounced “IRS-square”) readout mode (Moseley et al. 2010; Rauscher et al. 2013). NG faithfully

reproduces most of the Fourier noise power seen in real NIRSpec darks, and by extension darks from

other HxRG based systems. NG includes uncorrelated, correlated, stationary, and non-stationary

noise components. It correctly accounts for end of row and end of frame timing gaps. By changing

https://ntrs.nasa.gov/search.jsp?R=20160005731 2019-08-31T03:31:37+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42697052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1509.06264v1
http://jwst.nasa.gov/publications.html


– 2 –

the input parameters, NG can generate read noise for other Teledyne HxRG family detectors

including the H1RG, H4RG-10 (planned for WFIRST-AFTA1), and H4RG-15 (planned for ground

based astronomy).

Although NG faithfully reproduces most of NIRSpec’s detector subsystem noise, there are a

few things that it leaves out. The current version does not simulate random telegraph noise (RTN;

Rauscher et al. 2004; Bacon et al. 2004, 2005). Furthermore, we treat the non-stationary picture

frame as a small perturbation on the dominant stationary noise. A more rigorous treatment would

allow for mixing of the non-stationary and stationary components. In spite of these limitations, we

believe that NG is a useful tool that offers higher fidelity simulations than can be easily achieved

otherwise.

2. Getting Started Quickly

NG is written in Python-3.4 and requires the astropy, datetime, numpy, os, scipy, and warnings

modules to run. The README file specifies which versions of these modules we are running. We

typically run NG using IPython Notebook. Here are the steps to install and run the examples on

a unix computer that already has these components installed.

1. Download the distribution from http://jwst.nasa.gov/publications.html and put it somewhere

in your Python search path.

2. Uncompress the archive using gunzip.

3. Unpack the tar file using tar.

4. cd into the nghxrg/ subdirectory.

5. Configure a shell environment variable named NGHXRG HOME to point to it.

6. Type “ipython notebook” to start IPython Notebook.

7. Select the file 01 README.ipynb to start the examples.

The file 02 README.pdf contains the same information in the more widely used, but non-

executable, PDF format. The examples include generating read noise for JWST NIRSpec, H4RGs

like those that are planned for WFIRST , and a few examples that highlight specific noise compo-

nents.

1Wide Field Infrared Survey Telescope - Astrophysics Focused Telescope Assets

http://jwst.nasa.gov/publications.html


– 3 –

3. NG’s Physical Basis

3.1. Appearance of Noise

Although every near-infrared (NIR) detector system is different, there are usually some simi-

larities. In this article, we take the JWST NIRSpec detector subsystem as our proxy for a HxRG

based system. Although the relative amplitudes of the noise components are specific to NIRSpec,

in our experience the same general noise components are often seen in other contexts.

Fig. 1a shows a typical reference corrected NIRSpec correlated double sampling (CDS) dark

integration.2 Visual inspection reveals white read noise and pink noise. The pink noise manifests

as horizontal banding. More detailed analysis reveals pedestal drifts, ACN (Fig. 1b), and a faint

picture frame pattern that fades in and out. Pedestal drifts are residual bias offsets between

integrations that are detectable even after dark subtraction. To a good approximation, all pixels in

the detector move together in a pedestal drift. The examples (see Sec. 4) generate FITS files that

show ACN and picture frame noise more clearly than is practical here.

Most of NIRSpec’s noise is stationary: meaning that the covariance matrix is the same at all

times. The covariance matrix of stationary noise is diagonal in Fourier space. For this reason, the

Fourier noise power spectrum (Fig. 2) provides a particularly powerful way of looking at NIRSpec’s

noise. Here the horizontal banding clearly appears as 1/f noise. The power spectrum also reveals

a line at the Nyquist frequency with a 1/f -like wing on the low frequency side. This is ACN.

Although the flat part of the power spectrum at intermediate frequencies is not perfectly flat, in

NG we treat it as if it were. This partially explains why NG does not account for all of the read

noise.

3.2. Noise Origins

Teledyne’s H1RG, H2RG, and H4RG detector arrays use a source follower per detector (SFD)

architecture. Fig. 3 shows a circuit diagram of an H2RG pixel.3 The fundamental noise floor of

JWST ’s HgCdTe photodiodes is set by kTC noise during pixel reset. Fortunately, kTC noise is

completely removed by CDS (or sampling up-the-ramp) and most astronomers never see it. Almost

all other noise sources are the result of practical limitations rather than fundamental physics.

The first of these is leakage currents in the HgCdTe photodiodes, i.e. dark current. At

JWST ’s 40 K operating temperature, these are largely modulated by defect states, or traps, in the

2In this article, we use a simple reference correction scheme. We treat each output separately and subtract the

median value of all reference pixels in rows from every pixel on that output.

3We cannot legally publish the actual H2RG schematic diagram. Infrared detectors for space are governed by the

International Traffic in Arms Limitations (ITAR). The ITAR is a set of United States government regulations that

pertain to specified defense-related technologies including JWST ’s detectors.



– 4 –

Fig. 1.— (a) Each NIRSpec H2RG has 2048×2048 pixels. This reference corrected full frame CDS

dark is typical for NIRSpec’s H2RGs when driven by the T ∼ 40 K SIDECARs. The standard

deviation is about σread = 14 e− rms. The four video outputs are visible as thick 512 × 2048 pixel

stripes. The horizontal banding is caused mostly by ∼ 1/f drifts in the bias voltages generated

by the SIDECAR. The yellow arrows point to picture frame noise. There is more picture frame

noise on the opposite side of this image that we did not highlight to avoid obscuring it. In (b), we

expand the yellow 128×128 pixel box to show ACN. Because the NIRSpec detector subsystem was

tuned to minimize ACN, it is not easy to see. One of the downloadable examples has been tuned

to more clearly show ACN.

HgCdTe. Because the HgCdTe will never be perfectly free of defects, there will always be some

charge traps and some leakage current. To a first approximation, the noise on integrated leakage

current is Poissonian shot noise. For the worst of NIRSpec’s two flight SCAs, the median dark

current is < 0.01 e− s−1 even when operated at the highest contemplated operating temperature

of T = 44.9 K. The corresponding shot noise per 10.7 s CDS integration is about 0.3 e−. The

noise contribution from leakage current per BSI is about 3 e− rms. Although shot noise on leakage

current is clearly important, we did not built it in to NG. We believe that adding in leakage current

is best handled at the same time as adding light into models. Sec. 3.3 describes this further and

the executable README (see Sec. 4) includes an example.

After leakage current, the next noise source in the HgCdTe detector layer is Johnson noise in the

pixel interconnects. This is a practical rather than fundamental sources because the interconnect



– 5 –

0

~1/f

~ white

Row rate & 

harmonics

ACN

0

ACN

(a) Log log noise power (b) Log noise power

Fig. 2.— Stationary noise is easiest to understand in Fourier space. In these heavily averaged power

spectra, the colors indicate the density of data points from (low density) blue to (high density) red.

When displayed on an (a) log-log scale, the ∼ 1/f low frequency noise is obvious. In (b), we use a

linear-log scale to better show ACN. ACN manifests as a strong feature at the Nyquist frequency,

50 kHz. The flat part of the power spectrum is roughly white. NG does not attempt to model all

of the lines, bumps, and wiggles that are shown here. For example, we do not attempt to model

the lines associated with the row rate and harmonics because these contain little power.

resistance is largely determined by design choices at Teledyne. For the NIRSpec H2RGs, which are

operated at T ∼ 40 K, we believe that this contributes . 5 e− rms per CDS (. 1.8 e− rms per

BSI). The interconnect resistance is arguably the last significant noise source in the HgCdTe layer.

The first important noise source in the ROIC is the pixel source follower FET. We expect the

pixel source follower to have a 1/f noise power spectrum at low frequencies transitioning to white

noise at frequencies in the ∼few kHz range. Because each pixel has its own source follower, the 1/f

characteristic is only apparent in noise power spectra made using data from one pixel. The pixel

source follower’s 1/f noise gets converted to white noise in the resulting two dimensional images.

After the pixel source followers, signal voltages are multiplexed to the outputs by the column

buses. This is where ACN first appears. ACN is not a fundamental property of the source-follower

per detector IR array architecture. Rather, it is caused by a specific design choice in Teledyne’s

HxRG detector arrays. Working with Teledyne, we traced ACN to a proprietary detail of how the



– 6 –

ΦΦΦΦ
!"#

$
!"#

$
%&'"()*+!

,)-./01%."

,
2+#

$
%&'"ΦΦΦΦ

"+-+3#

$
2+#

$
,+--2!'&0

!ν

!

!"#$%&':)'';4$%5&'<4334=&%'>&%'?&@&5@4%'"A>$@'5"%5$"@'

h ν

a

b

c

d

Fig. 3.— This figure shows the H2RG’s source follower per detector architecture. The (a) photo-

diode in the HgCdTe detector layer is electrically connected to the ROIC using an indium bump.

Although the indium bump is not shown here, functionally it is located at (b). The pixel source

follower (c) is the first FET in the analog signal chain. Its output is multiplexed out on the column

bus. ACN is a consequence of the specific way that Teledyne implemented (d), the column bus

driver. This diagram shows the H2RG’s “unbuffered mode”, in which the column bus is electrically

connected to the output. When running in “buffered mode”, there is an additional output FET

that is not shown here. This figure closely follows Fig. 8 of Loose et al. (2003).

column buses are implemented. Fig. 3 does not show these details. The practical effect is that

the even and odd columns on each output each carry some uncorrelated 1/f noise that appears in

image data as ACN.

After the column buses, the signal is fed either directly to the output in “unbuffered mode”

or to the output source follower in “buffered mode”. NIRSpec runs in buffered mode. As such, the

output source follower adds additional 1/f . Unlike the pixel source follower, for which each pixel

has its own and the noise appears to be white in image space, 1/f noise from the output FET is

visible as 1/f banding in NG images.

At this point, the signal leaves the H2RG, passes through an interconnect cable, and into the

SIDECAR ASIC. From lab testing in the Goddard DCL, we know that the NIRSpec SIDECAR’s

noise is about 6 e− rms with the inputs shorted.

In addition to affecting the video signal, the SIDECARs also imprint noise through the bias

voltages that they provide. In NIRSpec, all H2RG biases are generated by the SIDECARs, and

testing in the DCL shows that these are dominated by 1/f noise, and moreover are highly sensi-

tive to ASIC temperature. Noise on the biases can imprint itself directly on image data via the

DSUB voltage or as picture frame noise by the VBIASGATE and VBIASPOWER bias voltages.

(Rauscher et al. 2013).

Although JWST NIRSpec provided the impetus for developing NG, the underlying noise model



– 7 –

is applicable to all Teledyne HxRG detector systems that we have worked with. By changing the

input parameters, NG can simulate different HxRG family detectors, different SIDECARs, and even

different controllers than SIDECARs. For example, we are already using NG for trade studies in

the WFIRST Science Definition Team. WFIRST plans to use H4RG-10 detectors and SIDECARs.

They will be configured differently than in JWST and operated at much warmer temperatures. We

have likewise used NG to simulate H2RG and H4RG systems using our laboratory’s Gen-III Leach

controllers.

3.3. Simulating Scenes

In Sec. 3.2, we briefly mentioned that NG could be used as one of the inputs to simulate

astronomical scenes. To simulate a scene that contains astronomical sources, background light,

instrument glow, and dark current; one would begin by using NG to generate an “empty” noise

datacube. The noise cube would contain no charge from any source whatsoever. One would then use

separate software to simulate the astronomical scene and effects of the telescope. Finally, as charges

are integrated in pixels, they should be summed in to the datacube at the correct pixel locations

and arrival times. One would calibrate the resulting datacubes as if they were real astronomical

data. For less critical work, one could also generate a scene containing Poissonian shot noise and

add it to a 2-dimensional noise image made using NG. The latter approach has the virtue of fast

execution time, but it does not accurately model the noise correlations in the time domain. The

executable README includes an example that shows how to add shot noise to NG’s output.

4. Software Implementation

By default, NG makes either 2048 × 2048 pixel H2RG noise images or n× 2048 × 2048 data

cubes. Fig. 4 describes the “traditional” JWST clocking pattern. “Traditional” clocking is the

same clocking pattern that Teledyne recommends and that is most widely used for astronomy.

Depending on the instrument, the number of outputs may differ, as may the duration of end of

row and end of frame overheads. When more outputs are used, the same left-to-right, right-to-

left, pattern that is shown here continues. The number of outputs, new row overhead, and new

frame overhead are user selectable parameters in NG. Tab. 1 summarizes all of the user selectable

variables and parameters.

The HxRG architecture is very flexible, incorporating reversible scan directions and pro-

grammable subarrays. NG supports changing the fast scan readout directions and basic subarrays.4

NG defaults to the same fast scan directions that Teledyne HxRG detectors default to upon power

4NG does not currently support the more complicated situation of interleaved subarrays and science data. One

of our aims in releasing the source code is to enable others to add this capability which is often instrument specific.



– 8 –

Table 1. Instance Variables and Noise Parameters

Name Default Unit Description

HXRGNoise Instance Variables:

naxis1 2048 pixel X-dimension of the FITS cube

naxis2 2048 pixel Y-dimension of the FITS cube

naxis3 1 pixel Z-dimension of the FITS cube

n out 4 None Number of detector outputs

nfoh 1 row New frame overhead in rows. This allows for a short wait

at the end of a frame before starting the next frame.
nroh 12 pixel New row overhead in pixels. This allows for a short wait

at the end of a row before starting the next row.
dt 1× 10−5 second Pixel dwell time in seconds

pca0 file nirspec pca0.fits None Name of a FITS file that contains PCA-zero

verbose False T|F Set this = True to provide status reporting

reference pixel

border width

a 4 pixel Width of reference pixel border around image area

reverse scan

direction

False T|F Set this = True to reverse the fast scanner readout direc-

tions. This capability was added to support Teledyne’s

programmable fast scan readout directions. The default

setting = False corresponds to what HxRG detectors de-

fault to upon power up.

HXRGNoise.mknoise Method Parameters:

o file None None Output filename

pedestal 4 e− Magnitude of pedestal drift

rd noise 5.2 e− Standard deviation of read noise

c pink 3 e− Standard deviation of correlated pink noise

u pink 1 e− Standard deviation of uncorrelated pink noise

acn 0.5 e− Standard deviation of alterating column noise

pca0 0.2 e− Standard deviation of pca0

reference pixel

noise ratio

0.8 None Ratio of the standard deviation of the reference pixels to

the regular pixels. Reference pixels are usually a little lower

noise.
ktc noise 29 e− Set this equal to

√
kTC/qe, where k is Boltzmann’s con-

stant, T is detector operating temperature, C is pixel ca-

pacitance, and qe is the fundamental charge. This default

value is appropriate for an H2RG. H4RG series detectors

will likely have a lower value.
bias offset 5000 e− In datacubes, pixels start integrating at about this level.

bias amp 500 None This is used to approximate the bias pattern that is seen in

individual HxRG reads. To approximate the bias pattern,

we multiply the contents of pca0 file by this factor.

aTo save space, long names wrap to the next line with a leading underscore. When written without wrapping,

this variable becomes reference pixel border width. Other variable names that wrap include reverse scan direction

and reference pixel noise ratio.



– 9 –

Fig. 4.— The “traditional” JWST H2RG readout pattern clocks pixels sequentially using four video

outputs, each running at 100 kpix s−1. The JWST fast and slow scan directions are indicated by

arrows. There is a 12 pixel timing overhead at the end of each row for going to the next row and

a 1 row overhead at the end of each frame for starting the next frame.

up. We believe that this is appropriate for most astronomical cameras. To reverse the fast scan-

ners, set the reverse scan direction instance variable to True when instantiating an HXRGNoise

object. We have not implemented reversible slow scanners in NG because the same result can be

accomplished using python slices on the output from NG. The README file provides an example

that shows how to reverse both the fast and slow scanners.

It is best to refer to the examples and source code when trying to understand the implemen-

tation. The file 01 README.ipynb is an executable IPython Notebook that explains NG in more

detail, and provides a few examples. Fig. 5 shows a flow diagram for the mknoise() method. This

shows the sequence in which different noise components are added, indicating which steps are done

in the time domain and which are done in Fourier space. In the following paragraphs, we explain

a few aspects of NG in more detail than is practical in the code comments.

4.1. Generating Non-Periodic Pink Noise

We make pink noise by filtering white noise in Fourier space. Because the Fourier transform

assumes that its input data are periodic, care must be taken to avoid generating periodic pink

noise. Although periodic pink noise still has a 1/f power spectrum, real physical systems usually

do not drift back to their starting points at the ends of experiments.



– 10 –

mknoise()
Making 

datacube?

Make empty 

data array
Add bias pattern

Making  

subarray?

Add white 

read noise

N

Add correlated 

pink noise

Add uncorrelated 

pink noise
Add ACN

Add “picture 

frame noise”

Write FITS fileDone

Y N

Y

Fig. 5.— This figure shows the execution flow though the mknoise() method. This is the top level

method for generating noise. Boxes with solid borders work in the time domain. Boxes with long

dashed borders work primarily in Fourier space. Picture frame noise, dotted border, exploits both

Fourier space and the time domain to add a time-modulated image of the zeroth principal noise

component, PCA-zero.

NG uses the HXRGNoise class’s pink noise() method to generate non-periodic pink noise. We

generate 2× as many Gauss-random numbers as are ultimately required. We compute the FFT of

this seed vector and multiply it by a pinkening filter. Finally, we invert the FFT and keep only

the first half of the data. This procedure produces 1/f -noise that randomly walks away from the

initial value as desired rather than wrapping back around on itself as would otherwise be the case.

Finally, we offset and scale the data to have the same mean and standard deviation as the initial

random seed vector. For long seed vectors, pink noise() produces noise that is very close to pink

and that drifts away from the starting point as desired.

NG can generate both correlated and uncorrelated pink noise. Here correlated means that the

same pink noise appears on all outputs. Uncorrelated means only that each output can have some

pink noise that is unique to itself.

4.2. Generating ACN

Observationally, ACN manifests as a feature at the Nyquist frequency with a 1/f -like shoulder

on the low frequency side. Physically, we believe that the alternating column pattern at the Nyquist

frequency is likely carrying much of the same 1/f that appears at low frequency, but up-converted

to the Nyquist frequency. To simulate this, we generate non-periodic pink noise as described in

Sec. 4.1 for the even and odd columns of each output separately. For example, NIRSpec’s H2RGs



– 11 –

are read out using four outputs. To simulate ACN, we use the pink noise() method to generate

eight vectors of pink noise.

4.3. Generating Picture Frame Noise

PCA of the NIRSpec detector subsystem showed that there is a picture frame component

that drifts in and out during integrations. Other applications that do not use SIDECARs, or that

run their SIDECARs and/or detectors warmer, may not see the picture frame as it is described

here. To completely turn off the picture frame component in NG, set pca0 amp = 0 when calling

HXRGNoise’s mknoise() method.

Extensive testing in the DCL showed that the appearance of the picture frame in any one

NIRSpec integration can be approximated by 1/f noise modulating 0th PCA component, which is

the dominant one.

5. Comparing Real and Simulated NIRSpec Data

Fig. 6 compares real and simulated NIRSpec after calibrating the 88-frame up-the-ramp sam-

pled cube to a reference pixel corrected image. Here we compare a two dimensional simulation to

the calibrated image. NG could also be used to produce an 88-frame cube which could be cali-

brated. In practice, we seldom do this because the execution time is very long. However, we have

verified that it works.

The real detector has an epoxy void and hot pixels. The void appears as a dark feature near

the bottom-center. Teledyne uses an epoxy backfill between the silicon ROIC and HgCdTe detector

layer. Among other things, this increases mechanical strength. Sometimes, however, the backfill

process is not perfect and voids appear where the epoxy fails to flow. In NG, we do not attempt

to simulate voids because each one is unique.

Visibly, the simulated image is a reasonable facsimile of the real data. This is not surprising

since NIRSpec’s noise is close to stationary and the input parameters were tuned to match the real

system in Fourier space. NIRSpec’s four video outputs are clearly seen. The horizontal banding is

caused by 1/f noise. Upon close inspection, ACN can be seen in both and picture frame artifacts

may be detectable along the right hand edge. The examples include FITS files that can be examined

using a FITS viewer such as DS9 to better see these fine details.

Fig. 7 provides a quantitative comparison in Fourier space. NG captures the main features

including; 1/f at low frequency, white noise at mid frequencies, and ACN at 50 kHz. Much of the

“fuzz” that is present in the real power spectrum is an artifact from interpolating over bad pixels.

NG does not simulate bad pixels. Near the “knee”, where 1/f transitions to white noise in the

real data, there is some structure that NG does not model. If this were to become important, one



– 12 –

Fig. 6.— This figure compares: (a) real and (b) simulated JWST NIRSpec slope images. The

read noise is about 6 e− rms in both images. The integration time, = 934 seconds, is the same for

both. Both are on the same approximately (−10,+10) e− grayscale after dark subtraction. The

reference pixels in the real data appear dark because the regular pixels contain integrated dark

current whereas those in the simulated data do not. Both show significant white, 1/f , and ACN

contributions. NIRSpec’s four video outputs are clearly seen. The picture frame is not obvious

in either image, although is some integrations it can become more obvious. The elongated dark

feature near the bottom-center in the real data is an epoxy void.

solution would be to allow the user to explicitly specify a pinkening filter (i.e. frequency dependent

weights) on the command line.

6. Summary

This paper describes NG, the noise generator that we wrote for the JWST NIRSpec detector

subsystem. NG is capable of simulating both stationary and non-stationary read noise components.

Compared to more basic simulators that include white and 1/f noise; it builds in the correct

Teledyne H2RG clocking pattern and timing and includes ACN and picture frame noise. With

appropriate choice of input parameters, NG can simulate other HxRG family Teledyne detectors

including the H4RG and H1RG.



– 13 –

This work was supported by NASA as part of the JWST Project. NG would not have been

possible without many invaluable contributions from the NIRSpec Detector Subsystem Team at

Goddard, the JWST ISIM team, and the ESA NIRSpec Team. With regard strictly to minimizing

and understanding the as-built system noise, Yiting Wen and Markus Loose played the lead roles

in tuning the system for peak performance. More than anybody else, Harvey Moseley realized that

understanding the noise in detail would allow us to develop better tools for removing it. Dale Fixsen

provided the mathematical tools to do so, and Rick Arendt implemented them. I wish to thank

Brent Mott for his superb technical management of the NIRSpec Detector Subsystem throughout

the challenging integration and test campaign, and also Donna Wilson for taking ownership of

the SIDECAR ASIC and mastering the practicalities of making it work for JWST . Ray Wright

routinely performed above and beyond the call of duty by learning Python at about the same time

as I did and developing tools for analyzing JWST telemetry that greatly facilitated understanding

what causes the noise. Pierre Ferruit of ESA provided many helpful comments on both the source

code and manuscript. Chaz Shapiro of NASA JPL steered me toward better ways of handling

several challenges in the Python implementation. I wish to thank the referee for providing many

helpful comments, on both the text and source code. A great many other people contributed

important things, but I will stop here lest this acknowledgment become so long that nobody reads

it.

REFERENCES

Bacon, C., McMurtry, C. W., Pipher, J. L., et al. 2004, Proc SPIE, 5563, 35

Bacon, C. M., McMurtry, C. W., Pipher, J. L., Forrest, W. J., & Garnett, J. D. 2005, Proc SPIE,

5902, 116

Loose, M., Farris, M. C., Garnett, J. D., Hall, D. N. B., & Kozlowski, L. J. 2003, Proc SPIE, 4850,

867

Moseley, S. H., Arendt, R. G., Fixsen, D. J., et al. 2010, Proc SPIE, 7742, 36

Rauscher, B. J., Figer, D. F., Regan, M. W., et al. 2004, Proc SPIE, 5487, 710

Rauscher, B. J., Arendt, R. G., Fixsen, D. J., et al. 2013, in Proc SPIE, ed. H. A. MacEwen &

J. B. Breckinridge (SPIE), 886005

Rauscher, B. J., Boehm, N., Cagiano, S., et al. 2014, PASP, 126, 739

This preprint was prepared with the AAS LATEX macros v5.2.



– 14 –

(a) Real data

100
10-5

101 102 103 104

10-4

10-3

10-2

10-1

100

Frequency (Hz)

(b) NG Simulation

100
10-5

101 102 103 104

10-4

10-3

10-2

10-1

100

Frequency (Hz)

(c) NG Simulation Overlaid on Data

100
10-5

101 102 103 104

10-4

10-3

10-2

10-1

100

Frequency (Hz)

N
o
is

e 
P

o
w

er
 (

el
ec

tr
o
n
s2

 s
te

p
-1

)
N

o
is

e 
P

o
w

er
 (

el
ec

tr
o
n
s2

 s
te

p
-1

)
N

o
is

e 
P

o
w

er
 (

el
ec

tr
o
n
s2

 s
te

p
-1

)

Fig. 7.— This figure provides a more quantitative comparison between real and simulated images.

(a) Shows the noise power spectrum of the actual NIRSpec flight detector, 491, while (b) is the

power spectrum of a simulated image using the default noise parameters in mknoise(). Finally, (c)

overlays the simulated data on the real data. NG simulates the 1/f characteristic at low frequency,

ACN at 50 kHz, and white noise at intermediate frequencies. Much of the “fuzz” that appears in

the real data is due to interpolation over bad pixels. There are no bad pixels in the simulated data.


	1 Introduction
	2 Getting Started Quickly
	3 NG's Physical Basis
	3.1 Appearance of Noise
	3.2 Noise Origins
	3.3 Simulating Scenes

	4 Software Implementation
	4.1 Generating Non-Periodic Pink Noise
	4.2 Generating ACN
	4.3 Generating Picture Frame Noise

	5 Comparing Real and Simulated NIRSpec Data
	6 Summary

