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ABSTRACT 

Large magnetic-storm induced changes have been detected in high-latitude topside vertical 

electron-density profiles Ne(h). The investigation was based on the large database of topside 

Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric 

Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at 

http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be 

obtained when an ISIS satellite passed through nearly the same region of space before, during, 

and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-

latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to 

consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb 

database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied 

both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside 

ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the 

other five storms similar ionospheric data were available in the southern hemisphere. Large 

Ne(h) changes were observed during each one of these storms. Our concentration in this paper is 

on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. 

Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) 

was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 

MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with 

appropriate time shifts, for four storms. 

 

 

1. INTRODUCTION 

While there have been investigations over many decades of the responses of the topside 

ionosphere to magnetic storms, e.g., see the review by Warren [1969] in the June, 1969 Proc. 

IEEE special issue dedicated to the International Satellites for Ionospheric Studies (ISIS) 

program, we seek to determine if such responses can be directly related to solar-wind (SW) 
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parameters. More recent works have also addressed this goal, e.g., see Yizengaw et al. [2006] and 

Liu et al [2010]. 

 

The motivation for this work was provided by magnetospheric electron-density (Ne) 

determinations during a large magnetic storm using data from the Radio Plasma Imager (RPI) on 

the IMAGE satellite. The RPI detected large magnetic-storm-enhanced Ne values, which were 

highly correlated with fluctuations in SW parameters, when IMAGE was apogee (~ 8RE) above 

the northern polar cap [Osherovich et al., 2007]. Profile inversions of RPI magnetic field-aligned 

echoes indicated that these Ne enhancements extended down to about 4 RE in radial distance [Tu 

et al., 2007]. Our goal here is to extend such high-latitude investigations to even lower altitudes, 

i.e., into the topside ionosphere, in an attempt to relate changes in vertical electron-density 

profiles Ne(h) to SW parameters during large magnetic storms. Ten large magnetic storms (Dst < 

-100 nT) were identified where high-latitude topside vertical electron-density profiles Ne(h) 

could be obtained from Alouette/ISIS topside-sounder data and where SW data were available. 

Large Ne(h) changes were observed during the storms in all cases. Topside-ionospheric Ne(h) 

profiles were available in the high-latitude northern hemisphere during five of these storms and 

in the southern hemisphere during the other five storms. The Alouette/ISIS topside-sounder data 

and the SW data were obtained from the NASA Space Physics Data Facility (SPDF); the SW 

data from their OMNI database. Here we concentrate on the changes observed during four of the 

northern hemisphere storms where, in addition to good Ne(h) profiles before, during, and after 

the storms, there was good coverage of SW data with what we considered to be the appropriate 

time shift. 

 

 

2. HIGH-LATITUDE MAGNETIC-STORM INDUCED TOPSIDE Ne(h) CHANGES  

Our approach for detecting magnetic-storm-induced Ne(h) changes is to obtain observations 

within the same small region of space before, during, and after a major magnetic storm. Such an 

investigation requires a large database. Here we selected restricted regions of magnetic local time 

(MLT), magnetic latitude (MLAT) and geographic longitude (GLON) for each storm. The 

restrictions on the parameter ranges were critical since too broad a range reduces the significance 

of the results and too small a range leads to insufficient coverage. The Ne(h) profiles for the first 

storm investigated are based on the hand scaling of 35-mm film ionograms by skilled observers 

in the 1960s and 1970s during the peak activity of the ISIS program. They were obtained from 

the SPDF at ftp://spdf.gsfc.nasa.gov/pub/data. This was a large magnetic storm, as indicated by 

the Dst profile in the left panel of Figure 1, and it produced profound nighttime and daytime 

topside Ne(h) changes as illustrated in the center and right panels, respectively. 

 

The main features to notice in Figure 1 are the following: 

(1) profiles 1 and 5 nearly coincide (before & after the storm, respectively) 

(2) profile 2 (during Dst minimum) shows increase (decrease) during night (day) 

(3) bifurcation of the group-2 profiles implies strong Ne gradients during Dst minimum 

(4) profiles 3 and 4 are more consistently displaced during night than day. 

The time separations between profiles 2a and 2b are 84 s and 39 s in the center (night) and right 

(day) panels, respectively, indicating rapid change in the topside ionosphere during the time of 

minimum Dst. 
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A similar presentation for the second storm investigated is presented in Figure 2. 

 

 
Figure 1. (left) Dst profile from the large magnetic storm during the 1969 interval from days 32 

to 39 with the times for 5 groups of Ne(h) profiles indicated at the top for night conditions (center 

panel) and at the bottom for day conditions (right panel). The profiles in the center and right 

panels are labeled according to the times they were collected (indicated on left panel) as they 

passed through the restricted region indicated in the lower left of each panel. Each profile 

corresponds to a single representative profile of a group of profiles collected at the time during 

the storm indicated in the left panel. If there were significant differences within a group two 

representative profiles are presented (as is the case for group 2 during the Dst minimum). 

 

 
Figure 2. Same as Figure 1 except for the magnetic storm between days 38 and 49 of 1969. 

 

In Figure 2 again, as in Figure 1, the profiles are based on earlier hand-scaling of 35-mm film 

ionograms and there is a large increase in the Ne(h) profiles near the Dst minimum compared 

with pre-storm conditions (profile #2 compared with profile #1) at night (center panel) and a 

decrease during the day (right panel). Also, rapid changes are again indicated at night. In this 

case however, the greatest changes are observed early in the recovery stage where the large 

changes in the group-3 profiles, in the center panel of Figure 2, occur during the 30 s time 

separation between profiles 3a and 3b. (Profile #3b essentially coincides with profile #2.) These 

changes are likely due to a mixture of temporal and spatial effects since the topside sounder 

travels about 200 km in that time interval. The disturbed nature of this nighttime region is also 

indicated by the failure of the profiles, even as late as profile #5, to return to the pre-storm 

conditions of profile #1. In contrast, the daytime profiles (right panel) return to nearly pre-storm 

conditions after profile #2. 
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Two additional large magnetic storms, where topside ionospheric Ne(h) profiles were available 

during northern-hemisphere spring daytime conditions, were investigated in detail. The Dst plots 

for these storms, and the corresponding Ne(h) profiles, are presented in Figures 3 and 4. These 

profiles were determined from the manual scaling of digital topside ionograms from ISIS 1 and 

ISIS 2, respectively, obtained from http://spdf.gsfc.nasa.gov/isis/isis-status.html; they are also 

available from the Virtual Wave Observatory [Fung, 2010]. 

 

 
Figure 3. (left) Dst profile from the large magnetic storm during the 1969 interval from days 80 

to 88 with the times for 6 groups of Ne(h) profiles, obtained during day conditions, indicated at 

the bottom. (right) The corresponding profiles labeled according to the times they were collected 

(indicated on left panel) as they passed through the restricted region indicated in the lower left. 

Each profile corresponds to a single representative profile as described in the Figure 1 caption. 

 

 
Figure 4. Same as Figure 3 except for the magnetic storm during the 1979 interval from days 

114 to 118 and there are only 3 profile groups rather than 6. 

 

The northern-hemisphere daytime Ne(h) profiles for the storms indicated in Figures 3 and 4 show 

large decreases near the Dst minima, as were observed for the northern-hemisphere winter 

storms of Figures 1 and 2, and recovery to pre-storm conditions after the storm. The decreases 

were observed for groups 2 and 3 during the 1969 storm (Figure 3) and for groups 2a and 2c 

during the 1979 storm (Figure 4) and, as in Figure 1 (right panel), large changes were detected in 

the profiles near Dst minimum. Profiles 2a and 2b were separated by 1 min. 23 s in Figure 4 but 

by only 28 s in Figure 3 and the ionogram used to produce the profile 2a of Figure 3 revealed 

strong Ne gradients during the recording of the ionogram as illustrated in Figure 5.   

 

 

http://spdf.gsfc.nasa.gov/isis/isis-status.html
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Figure 5. Portions of selected ISIS-1 ionograms used to obtain the Ne(h) profiles during the 

magnetic storm interval from days 80 to 88 of 1969 (Figure 3) illustrating the echo shape 

changes during Dst minimum (compare 2a and 2b) and the rapid Ne changes within ionogram 2a 

as indicated by the appearance and disappearance of the upper-hybrid resonance during ~ 4 s of 

fixed-frequency sounding at 1.95 MHz (satellite motion ~ 30 km during this 4 s). 

 

 

3. RELATING STORM-INDUCED Ne(h) CHANGES TO SOLAR-WIND PARAMETERS  

Figure 6 presents the SW data from OMNI 2 [King and Papitashvili, 2004] during the large 

magnetic storm of Figure 1. The behavior of the absolute value B of the total SW magnetic field 

B (top panel), the components of B (middle panel), and the absolute value v of the solar-wind 

velocity v (lower panel) have the characteristics of SW magnetic clouds [Burlaga et al., 1981; 

Osherovich and Burlaga, 1997]. Note that in this case v, which is considered to be the most geo-

effective parameter, see, e.g., Osherovich and Fainberg [2015], reaches a maximum near 700 

km/s. In order to relate solar-wind parameters to the observed large Ne(h) profile changes, 

presented in Section 2, it is necessary to estimate the appropriate time shift to be applied to the 

SW data. 
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Figure 6. Solar-wind data providing evidence of magnetic clouds responsible for the magnetic 

storm indicated by the left panel of Figure 1. 

 

In the work of Osherovich et al. [2007] there were several hours of magnetospheric Ne data near 

the IMAGE apogee available to compare with a similar time interval of SW data. This long time 

span enabled the time shift between the SW and magnetospheric Ne observations to be 

determined that yielded the best correlation between the two datasets. The time shift was 

determined to be about 3 hr. The present investigation, involving topside ionospheric satellite 

observations, does not contain such long data intervals from a particular restricted region. Thus a 

different approach was used in order to provide a reasonable estimate of the proper time shift to 

use between SW structures and the possibly related topside-ionospheric changes. This approach 

is described in a companion paper [Osherovich and Fainberg, 2015] where a time shift of 3.6 hr, 

or 0.15 days, was found. Their analysis was based on all 10 large magnetic storms identified in 

the present project where both the appropriate topside-sounder data and SW data were available. 

 

The Ne change during the storms of Figures 1-4 at selected altitudes, expressed as the ratio of Ne 

for group 2 to group 1, are compared to the SW parameters v, B, By, and Bz (shifted by 0.15 

day) in Figures 7 and 8. The ratios are very large (nearly a factor of 10 for one storm) at 1100 km 

for the two winter nighttime conditions (left panels) but they do not increase with increasing 

absolute magnitude of any of these SW parameters. The winter nighttime Ne ratios at the lower 

altitudes of 800 & 500 km, however, increase with increasing v, B, negative By, and negative 

Bz. The winter daytime Ne ratios are less than one at all altitudes (left panels) but the departures 

of the Ne ratios from unity increased only with increasing v and negative By. The spring daytime 

Ne ratios are also less than one at all altitudes (right panels) (and approach 0.1 at 550 km for one 

storm) and the departures of the Ne ratios from unity increased only with increasing negative Bz. 

 

The five large magnetic storms with topside Ne(h) profiles in the high-latitude southern 

hemisphere also revealed large storm-induced profile changes but the changes were quite 

different than those reported here for northern hemisphere topside ionospheric profile data and 

will be reported on later. Topside Ne opposite hemisphere storm-induced asymmetries have been 

reported earlier by Astafyeva et al. [2015a] and at this conference [Astafyeva et al., 2015b]. 
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Figure 7. The ratio of Ne(group 2)/Ne(group 1) at the indicated altitudes for the magnetic storms 

of Figures 1 & 2 (left panels), and 3 & 4 (right panels) vs. the absolute magnitudes of the SW v 

(top) and B (bottom). The storm times correspond to the times when Dst first crosses -50 nT. 

 

 
Figure 8. Same as Figure 7 except for Ne(2)/Ne(1) vs. By (top) and Bz (bottom). 
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4. SUMMARY 

  Large high-latitude ionospheric topside Ne(h) changes were observed in the northern 

hemisphere during 4 large storms (Dst < -100 nT) investigated in detail. The magnetic-storm-

induced winter Ne(h) changes produced large nighttime Ne enhancements and daytime depletions 

in two of the storms. Daytime depletions were also observed in two spring storms. Winter 

nighttime enhancements at 1,100 km approached a factor of 10 and spring daytime depletions at 

550 km approached a factor of 0.1. Ne(h) changes within seconds were observed near the time of 

Dst minimum. In these storms, with good background control, the solar-wind parameters 

observed to influence the topside Ne(h) profile changes were negative Bz in spring daytime, v 

and negative By in winter daytime, and v, B, negative By and negative Bz during winter night. 
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