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Abstract

This work presents a computationally-efficient approach for damage determination
that quantifies uncertainty in the provided diagnosis. Given strain sensor data that
are polluted with measurement errors, Bayesian inference is used to estimate the
location, size, and orientation of damage. This approach uses Bayes’ Theorem to
combine any prior knowledge an analyst may have about the nature of the damage
with information provided implicitly by the strain sensor data to form a posterior
probability distribution over possible damage states. The unknown damage param-
eters are then estimated based on samples drawn numerically from this distribution
using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modifica-
tions are made to the traditional Bayesian inference approach to provide significant
computational speedup. First, an efficient surrogate model is constructed using
sparse grid interpolation to replace a costly finite element model that must other-
wise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian
posterior distribution is modified using a weighted likelihood formulation, which is
shown to improve the convergence of the sampling process. Finally, a robust MCMC
algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sam-
ple the probability distribution more efficiently. Numerical examples demonstrate
that the proposed framework effectively provides damage estimates with uncertainty
quantification and can yield orders of magnitude speedup over standard Bayesian
approaches.

1 Introduction

The ability to detect and characterize damage is an integral part of structural health
management (SHM). For example, an effective SHM system could identify damage
(i.e., crack) in an aircraft component well before it neared a critical size in order
to recommend inexpensive preventative maintenance rather than more costly re-
pairs down the road. In general, estimating the damage state requires a framework
that combines mechanical response information from both on-board sensors and a
computational model of the component. Given the critical nature of SHM applica-
tions, such methods are held to stringent standards in terms of accuracy as well as
computational efficiency.

The task of damage identification is further complicated by uncertainty that
manifests itself both in the noisy measurement data acquired and the computational
model (boundary conditions, material properties, for example) of the structural com-
ponent being analyzed. Explicitly characterizing this uncertainty and quantifying
its influence on the resulting damage diagnosis is vital for high fidelity prognostics
and informed decision-making [1]. However, existing approaches to do so generally
come at the expense of substantial computational overhead, making them infeasi-
ble for many practical applications. Thus, it remains an open challenge to provide
computationally-efficient damage estimates with uncertainty quantification for SHM
systems.

Traditionally, damage detection techniques have largely been deterministic in
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nature and have identified structural anomalies based on changes in measured me-
chanical response (e.g. vibrations [2, 3], ultrasonic wave characteristics [4, 5], and
strains [6,7]). While deterministic approaches have had much success in their ability
to accurately locate damage in a computationally-efficient manner, these methods
neglect the impact of uncertainty that is ubiquitous in real SHM systems due to
instrument noise and the simplifications and errors in computational models. In
particular, it has been shown that changes in strain can be used to accurately char-
acterize cracks in relatively few iterations of an optimization algorithm [7], albeit
while assuming the synthetic (i.e., simulated) strain data used to be noise free. As
an extension of this work, the study proposed herein considers noisy strain data
and uses Bayesian inference to take into account the impact of this measurement
uncertainty on the resulting crack estimates.

Adopting a Bayesian approach yields damage estimates in the form of proba-
bility distributions rather than point estimates, naturally enabling quantification of
uncertainty in the predicted damage states. In this way, the framework developed
herein uses noisy in-service strain measurements to infer the probability distributions
of parameters that describe the location, size, and orientation of a crack. Bayes’
Theorem [8] is used to combine any prior knowledge an analyst may have about
the nature of the damage with information provided implicitly by the sensor data
to formulate a posterior probability distribution over possible damage states. Since
the resulting probability distribution is not analytically tractable in general, the
crack parameters are then estimated based on samples drawn numerically from the
distribution using a Markov chain Monte Carlo (MCMC) [9] sampling algorithm.

There has recently been an increased effort in the problem of uncertainty quan-
tification in damage identification using Bayesian inference. Several studies [10–12]
have used noisy vibrational data to detect structural damage, while in one such
study [13], the emphasis was on the development of an efficient MCMC algorithm
for sampling the resulting solution distribution. Structural crack identification us-
ing strain data has also been previously studied within probabilistic frameworks.
In one such study [14], the focus was primarily on the problem of optimal sensor
placement where only point estimates rather than probability distributions of crack
parameters were sought. In a later study [15], a combination of the extended finite
element method and MCMC sampling was used to obtain crack parameter prob-
ability distributions, first demonstrating the feasibility of quantifying uncertainty
in crack estimates from noisy strain data. Compared to deterministic methods,
Bayesian approaches have the major advantage of quantifying uncertainty in the
estimates provided, but also incur a substantial computational penalty. Here, the
computational expense results from the MCMC sampling procedures used, which
typically exhibit slow convergence (i.e., require many samples) and involve the eval-
uation of a potentially intensive computational model (e.g. finite element method
simulation) for each individual sample drawn.

The Bayesian damage diagnosis strategy presented here is designed to provide
significant computational speedup over previous Bayesian approaches, yielding a
framework that is better suited for SHM applications. An efficient surrogate model
is constructed using sparse grid interpolation [16, 17] to replace a more computa-
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tionally expensive finite element simulation that would otherwise be evaluated for
each MCMC sample. The overall convergence rate of the sampling process is then
improved by modifying the standard Bayesian posterior probability distribution us-
ing a weighted likelihood formulation [18, 19]. Additionally, the Delayed Rejection
Adaptive Metropolis (DRAM) algorithm [20] is adopted for MCMC sampling, allow-
ing robust and efficient exploration of the posterior distribution with less required
user tuning. These improvements yield a Bayesian framework for damage identifica-
tion that is as computationally-efficient as many existing deterministic approaches
while still providing quantitative measures of confidence and uncertainty with its
estimates. Numerical examples demonstrate the ability of the method to accurately
identify the distributions of damage parameters using noisy strain data and show
the potential to provide orders of magnitude computational speedup with respect
to traditional Bayesian approaches.

This article is organized as follows. Section 2 provides the background on the
general approach for Bayesian damage identification, first detailing the formulation
of the probability distribution over the unknown damage parameters and then the
MCMC sampling procedure used to explore the distribution is described. Section
3 then details the formulation of the computationally-efficient Bayesian approach
proposed here, including the formation of a surrogate model using sparse grid inter-
polation, the modification of the posterior distribution using a weighted likelihood
formulation, and the use of the DRAM MCMC algorithm. Next, results from two
numerical examples that demonstrate the effectiveness and efficiency of the proposed
framework are presented in Section 4. Finally, the paper is concluded in Section 5
with a summary of the approach and results.

2 Background: The Standard Bayesian Approach

The goal of damage determination from a Bayesian inference standpoint is to ob-
tain a probability distribution for the unknown damage parameters given measured
strain data from a limited number of noisy sensors. The information offered im-
plicitly from these strain data is captured in a likelihood function that is combined
with a prior distribution, representing any prior knowledge of the damage state,
to produce a posterior probability distribution over damage states. In all but the
simplest formulations, integration of the resulting probability distribution is not fea-
sible and so MCMC algorithms are used to sample the distribution and estimate the
unknown damage parameter statistics. The formulation of the posterior probability
distribution and the subsequent MCMC sampling procedure is now given in detail.
The proposed computational improvements to the standard Bayesian approach are
then detailed in the subsequent section.

2.1 Formulation of the Posterior Probability Distribution

To begin, the damage considered in this study is represented by a simple crack in a
two-dimensional plate that is parameterized with four independent parameters

C = [x, y, a, θ] (1)
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where (x, y) denote the coordinates of the crack center, a is the crack length, and θ
is the crack orientation (i.e., its angle with respect to the x-axis). A schematic of
this setup is shown in Figure 1. It is assumed that strain data are obtained at M
locations throughout the plate, yielding a data set

D = {Ŝi}Mi=1 (2)

from which the crack parameters in Equation 1 are to be estimated. Here, Ŝi =
[εxxi , ε

yy
i , γ

xy
i ]T is the vector of strain components from sensor i. Furthermore, a

computational model, M, of the plate being analyzed is required that can return
the simulated strains Si at sensor i for a given estimate of the crack configuration
C:

Si =M(C, i) (3)

The formulation to follow is done largely in terms of the general damage parameter
array C, response dataset D, and computational modelM. Thus, it is important to
note that the proposed framework allows the possibility of including more complex
damage parameterizations as well as different types of mechanical response data,
provided there is a corresponding computational model to estimate the measured
quantity.

With these preliminaries in place, the formulation of a conditional probability
distribution of the crack parameters (Equation 1) given the measured strain data
(Equation 2), p(C|D), can now be described. The foundation of the approach is
Bayes’ Theorem [8], which provides a simple but powerful relation between condi-
tional probability distributions as follows

p(C|D) =
p(D|C)p(C)

p(D)
∝ p(D|C)p(C) (4)

!
!
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Figure 1. Schematic of the plate geometry and parameterization of the structural
crack.
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where the normalization constant p(D) is typically neglected for convenience as it
is not required by the MCMC sampling procedure to follow. Thus, the posterior
distribution p(C|D) over the unknown crack parameters is obtained by combining
information from two sources: 1) a likelihood function, p(D|C), describing the prob-
ability of measuring the strain data for a given crack configuration, and 2) a prior
distribution, p(C), reflecting any a priori information one might have about the
crack parameters before obtaining data.

With the posterior distribution expression provided by Bayes’ Theorem in Equa-
tion 4, the specification of the likelihood p(D|C) and prior distribution p(C) will
complete the Bayesian damage identification formulation. Beginning with the lat-
ter, this study assumes a non-informative prior distribution representing a situation
where the analyst has no credible knowledge a priori about the nature of possible
damage. In this way, a uniform distribution over the crack parameters is specified
that simply enforces any practical bounds on the unknowns (e.g. the crack lies
within the domain regardless of orientation, the crack length is positive):

p(C) ∝
{

1, if
(
a
2 ≤ x ≤ (w − a

2 )
)
∩
(
a
2 ≤ y ≤ (h− a

2 )
)
∩ ( 0 ≤ a)

0, otherwise
(5)

While the choice of a uniform prior distribution is motivated by the desire to avoid
any subjectivity in the demonstration of the proposed framework, it is noted that
the prior distribution can be a powerful mechanism for incorporating an analyst’s
insight in practical SHM applications. For example, one could assume that a crack
is more probable near a stress concentration or that cracks are generally more likely
to be oriented perpendicular to an applied load.

The likelihood function is now formulated as the joint probability of measuring
the strain values in D given a particular crack configuration, C:

p(D|C) = p(Ŝ1, ..., ŜM |C) (6)

To obtain an explicit expression for Equation 6, the common and simplifying as-
sumption is first made that the strain measurements are polluted with random noise,
η, that is independent and identically distributed (i.i.d) according to a zero-mean
Gaussian distribution [12–14]

Ŝi = Si + ηi, ηi ∼ N(0, σ2I) (7)

where N(µ,Σ) is a multivariate Gaussian (Normal) distribution with mean µ and
covariance matrix Σ, I ∈ R3 is the identity matrix, and σ is the standard deviation
of the measurement error distribution, interpreted here as the noise level. Using
Equations 3 and 7, the probability of a single strain measurement at sensor i for a
given crack configuration, C, can therefore be written as

p(Ŝi|C) = N(M(C, i), σ2I) (8)

Now, according to the assumed independence of ηi, the likelihood function (Equation
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6) can be obtained by factoring Equation 8 over the M measurements

p(D|C) =

M∏
i=1

p(Ŝi|C)

=
1

(2πσ2)M/2
exp

(
− 1

2σ2

M∑
i=1

‖Ŝi −M(C, i)‖2
)

(9)

where
M∑
i=1

‖Ŝi −M(C, i)‖2 =
M∑
i=1

[Ŝi −M(C, i)]T · [Ŝi −M(C, i)] (10)

is the sum of squares error between measured and computed strains for a given
guess of crack parameters. It is clear from Equation 9 that a particular crack
configuration C that produces large errors between the computational model and
measurement strains will receive lower probability and vice versa, as desired.

With the prior distribution and likelihood function specified, the posterior dis-
tribution over the crack configurations is obtained by simply combining Equations
4, 5, and 9 as

p(C|D) ∝
{

exp
(
− 1

2σ2

∑M
i=1 ‖Ŝi −Mi(C))‖2

)
, if (L ≤ C ≤ U)

0, otherwise
(11)

where the normalization constant in the likelihood has been omitted since it is
independent of C and the notation for the upper and lower bounds in the prior
distribution have been simplified for brevity. It is noted that an additional strength
of the Bayesian approach used here is the ability to treat the noise level, σ2, as an
unknown and to infer it from the data in the common situation where it is difficult
to estimate a priori. This is done by rewriting the posterior distribution (Equation
11) as the joint probability of the unknown crack configuration and noise level given
the strain data using the product probability rule

p(C, σ2|D) ∝ p(D|C, σ2)p(σ2) (12)

Here, a prior probability on σ2 must be prescribed to complete the formulation. A
common choice, which is adopted here, is the inverse-gamma distribution

p(σ2) ∝ (σ2)(−α−1) exp(− β

σ2
) (13)

where α and β are the shape and scale parameters, respectively. The inverse-gamma
distribution represents an uninformative prior distribution with a suitable selection
of α and β, limiting any subjectivity by the analyst, and also benefits from algo-
rithmic convenience when employing MCMC sampling methods [11]. To simplify
the remaining formulation, however, the form of the posterior distribution given in
Equation 11 will be assumed without loss of generality.
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2.2 Sampling with Markov Chain Monte Carlo

While an explicit expression has been formulated for the posterior probability dis-
tribution of the crack configuration in Equation 11, the calculation of an analytical
solution for the unknown parameters remains intractable due to the dependence on
the computational model M. The standard approach is thus to resort to sampling
algorithms to numerically explore the complex probability distribution [8]. After a
collection of samples {C(j)} has been drawn from p(C|D), both point and interval
estimates of the unknowns can be calculated. For example, the expected value of
the crack configuration can be approximated by the sample mean

E[C] =

∫ U

L
p(C|D)CdC ≈ 1

N

N∑
j=1

C(j) (14)

where N is the total number of samples drawn. Furthermore, credible intervals
can be established based on the empirical distributions of the samples, providing a
measure of confidence in the crack parameter estimates.

MCMC is a powerful and general framework for sampling high dimensional and
complex probability distributions [9] such as Equation 11. Rather than directly
drawing independent samples from the target distribution, a dependent sequence of
samples is generated based on a fixed number of previous samples (i.e., a Markov
chain) and an easily-sampled proposal distribution. Under mild assumptions about
the choice of this proposal distribution and the adoption of a simple acceptance
criteria for the proposal samples drawn, it can be shown that MCMC produces
samples that follow the target probability distribution. In this section, however,
the discussion is limited to the practical aspects of MCMC sampling, while the
references cited can be consulted for coverage of the theoretical justifications of the
framework.

A popular and straightforward implementation of MCMC known as the Metropo-
lis algorithm is now described. Algorithm (1) displays the pseudocode for drawing N
samples of the crack configuration {C(j)}Nj=1 from the posterior distribution p(C|D)
using the Metropolis algorithm. For each iteration, the approach simply draws a
trial sample C∗ from the proposal distribution q(C∗|C(j−1)), and then decides whether
to accept or reject this sample based on the acceptance probability, A(C∗, C(j−1)).

The Metropolis algorithm assumes that the proposal distribution is symmetric
and thus one appropriate and common choice is a Gaussian distribution centered at
the previous sample

q(C∗|C(j−1)) = N(C(j−1),Σ2
q) (15)

where Σ2
q is the user-specified covariance matrix. Here, drawing a candidate sample

from q can be equivalently viewed as adding a random perturbation to the current
crack configuration parameters, with perturbation size and shape being prescribed
by Σq. With regard to the acceptance probability A, it can be seen that a trial
sample C∗ with higher probability than the previous sample C(j−1) according to
p(C|D) will always be accepted (with probability A = 1). On the other hand, if the
trial sample is less probable according to p(C|D), it can still be accepted, but with
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Algorithm 1 The Metropolis MCMC Algorithm

Initialize C(0)
for j = 1 : N do

Sample u ∼ Uniform(0, 1)
Sample C∗ ∼ q(C∗|C(j−1))
if u < A(C∗, C(j−1)) = min{1, p(C∗|D)

p(C(j−1)|D)} then

C(j) = C∗
else
C(j) = C(j−1)

end if
end for

decreasing probability according to the ratio p(C∗|D)
p(C(j−1)|D) . Since the target probability

distribution only appears in the Metropolis algorithm through this ratio, it need be
only specified up to a normalization constant as in Equation 4. It is also noted that
the computational model M must be evaluated for each trial sample C∗ in order to
compute its probability according to p(C|D).

While the Metropolis algorithm and other MCMC approaches can be expressed
in just a few lines of pseudocode and have straightforward implementations, tuning
the algorithms for good performance is notoriously difficult [20]. This is primarily
due to the selection of an appropriate proposal distribution through the specification
of Σq in Equation 15. Here, Σq effectively controls the expected range of the trial
samples in the parameter space or, as mentioned, the size and shape of the per-
turbation added to the previous sample to generate the trial sample. If the range
selected is too small, a thorough exploration of the posterior probability distribution
can take a huge number of samples and the algorithm is more susceptible to being
trapped in local modes of the distribution. Increasing the range too far, however,
also increases the rejection rate of the trial samples and can significantly decrease
the rate of convergence.

3 Formulation: Improvements for Computational Effi-
ciency

The Bayesian approach to damage identification with MCMC sampling described
in the previous section provides an effective way to quantify how the uncertainty
in the noisy strain measurement data propagates to estimates of the damage state
(i.e., crack parameters). However, the well known drawback of such approaches is
the substantial computational overhead incurred by the sampling process. Three
primary factors that increase solution time for MCMC-based Bayesian approaches
are: 1) the evaluation of the potentially intensive computational model M for each
sample drawn from the posterior distribution p(C|D), 2) the complex, multimodal
nature of the resulting posterior distribution itself, and 3) the inefficiency and limited
robustness of standard MCMC sampling algorithms.
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This work seeks to substantially improve the efficiency of the standard Bayesian
approach by addressing each of these factors with the following: 1) an efficient
surrogate model using sparse grid interpolation to replace the costly computational
model, 2) a reformulation of the posterior distribution using a weighted likelihood
approach that improves sampling convergence, and 3) the adoption of the Delayed
Rejection Adaptive Metropolis (DRAM) algorithm to improve the robustness of the
sampling process itself. The remainder of this section details each of these three
computational enhancements.

3.1 Surrogate Modeling with Sparse Grid Interpolation

It is clear from Algorithm (1) and the expression for the posterior distribution in
Equation 11 that each iteration of the Metropolis algorithm requires the evaluation
of p(C|D) and thus the solution of the computational model M. For expensive
models such as three-dimensional (3D) finite element analysis codes, obtaining the
computed strains throughout the sampling process can have a prohibitively long
computation time, especially for SHM applications. Hence, to improve the efficiency
of the Bayesian damage detection approach, a surrogate model is substituted for the
computational model that can be evaluated in a fraction of the time.

In this work, sparse grid interpolation [17] is employed for surrogate modeling.
This method generates an approximation to a given multivariate function by in-
terpolating between stored values of the function on a predefined grid of points.
Sparse grid interpolation relies on Smolyak’s algorithm [16] for selecting an optimal,
reduced set of points and appropriate basis functions for representing the underly-
ing function. This results in a method that scales better with increasing dimension,
i.e., the number of required grid points can be reduced by orders of magnitude with
respect to full grid interpolation while retaining a similar degree of accuracy.

In the context of the Bayesian damage detection framework presented here, the
goal is to construct sparse grid interpolants that can efficiently approximate the
strains at each sensor location for a given crack configuration. For example, the
strain vector at sensor i is obtained through the evaluation of an interpolant Ii
rather than the original computational model:

Si =M(C, i) ≈ Ii(C) (16)

Here, each component of strain is viewed as a function of crack configuration C for
which an interpolant of the following form can be constructed

εxxi (C) ≈ Ixxi (C) =
n∑
k=1

ak(C)εxxi (C̄(k)) (17)

where {C̄(1), ..., C̄(n)} represent a predefined sparse grid of n points in the four dimen-
sional crack configuration space and ak(C) are appropriate basis functions satisfying
ak(C̄(k)) = 1 and ak(C̄(j)) = 0 ∀k, k 6= j. The same logic applies to the strain
components εyy and γxy at each sensor.

To construct the interpolant Equation 17, a sparse grid of crack configurations
{C̄(1), ..., C̄(n)} is first defined based on the level of refinement specified and the upper
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and lower bounds on possible crack parameters. Next, for each of the n cracks in
the sparse grid, the original computational model is evaluated and the strains at
each of the sensor locations are stored. Then, during the MCMC sampling process,
an approximate posterior distribution depending on the sparse grid interpolation
surrogate model is evaluated at each iteration

p(C|D) ≈ p̃(C|D) ∝
{

exp
(
− 1

2σ2

∑M
i=1 ‖Ŝi − Ii(C)‖2

)
, if (L ≤ C ≤ U)

0, otherwise
(18)

Although the surrogate model I for computed strains can require many simulations
using M to generate, it is important to note that this is considered an offline cost.
Specifically, for a given structural component with specified sensor locations, a series
of n expensive computational model evaluations is performed just once initially so
that an arbitrary number of subsequent analyses can be carried out in a fraction
of the time for SHM applications. Furthermore, the n simulations required are
independent of one another and can thus be executed simultaneously across multiple
processors.

3.2 Weighted Likelihood Formulation

Another significant challenge of Bayesian damage detection approaches is that the
posterior distribution is often an extremely complicated function with many modes
(i.e., maxima). This complexity is a reflection of the likelihood function that de-
scribes the observed data and the fact that several damage states can produce com-
parable structural responses [13]. Each plausible damage state then corresponds to a
mode of the likelihood and posterior distributions. As a result, MCMC sampling al-
gorithms are susceptible to becoming “trapped” in these local modes while exploring
the posterior distribution, substantially increasing the number of samples needed for
accurate damage estimates. While Nichols and coworkers [13] focused on developing
a MCMC method that could better explore a complicated posterior distribution, the
framework presented here instead reformulates the posterior distribution to make it
more amenable to sampling.

The reformulation of the posterior distribution done here can be seen as a trans-
formation of the deterministic damage detection approach [7] to a Bayesian context
using a mechanism known as weighted likelihood [18, 19]. To illustrate this, it is
first noted that typical deterministic approaches seek a point estimate of damage by
maximizing the likelihood function (Equation 9), or equivalently, finding the crack
configuration that minimizes the errors between computed and measured strains
(Equation 10). However, it was reported [7] that minimizing a weighted objective
function of the form

M∑
i=1

r2i ‖Ŝi −M(C, i)‖2, (19)

where ri is the distance from the current crack sample C and sensor i (Figure 1),
yielded faster convergence rates.
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In the Bayesian context, the weighted likelihood method has been used in re-
gression problems to provide a formal mechanism to trade bias for precision by
allowing observed data to have varying weight [18]. A weighted likelihood formu-
lation is adopted in this work in an effort to accelerate the convergence of MCMC
sampling algorithms for Bayesian damage detection in a manner analogous to the
use of Equation 19 [7]. To this end, it can be seen that minimizing Equation 19 is
equivalent to maximizing a weighted likelihood of the form

pw(C|D) =
M∏
i=1

p(Ŝi|C)r
2
i (20)

where the standard likelihood in Equation 9 has been modified to weight the strain
data at each sensor i by ri. Therefore, the posterior distribution using a weighted
likelihood formulation is given by

pw(C|D) ∝
{

exp
(
− 1

2σ2

∑M
i=1 r

2
i ‖Ŝi −M(C, i)‖2

)
, if (L ≤ C ≤ U)

0, otherwise
(21)

and the final form of the posterior distribution used in this work with both the
surrogate model I and the weighted likelihood function is

p̃w(C|D) ∝
{

exp
(
− 1

2σ2

∑M
i=1 r

2
i ‖Ŝi − Ii(C)‖2

)
, if (L ≤ C ≤ U)

0, otherwise
(22)

It is demonstrated in the numerical examples that replacing the posterior distri-
bution in Equation 11 with Equation 21 or Equation 22 results in probability dis-
tributions for C that are far less complex and multimodal, providing substantial
improvement in the convergence of MCMC algorithms.

3.3 Efficient Sampling with the DRAM Algorithm

As mentioned in Section 2.2, it can be very challenging to appropriately tune MCMC
methods such as the Metropolis algorithm to get good sampling performance with
Bayesian approaches. A user must carefully specify a suitable proposal distribution
(Equation 15) that strikes a balance between an efficient exploration of the poste-
rior probability distribution and an acceptable rejection rate of proposed samples.
Failure to do so can drastically increase the number of samples required for accu-
rate crack parameter estimates and therefore the overall solution time in a Bayesian
damage detection framework. In this work, a self-tuning, efficient version of the
original Metropolis algorithm known as the Delayed Rejection Adaptive Metropo-
lis (DRAM) algorithm [20] is adopted to sample the posterior distribution more
effectively.

The DRAM algorithm combines two powerful and complementary MCMC ideas:
1) adaptive Metropolis sampling and 2) delayed rejection. The adaptive Metropolis
concept allows for automatic, on-line tuning of the proposal distribution by explic-
itly updating Σ2

q in Equation 15 using the empirical covariance of the previously
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drawn samples. This adaptation results in trial samples that are more likely to fol-
low the target posterior distribution and diminishes the impact of a poorly chosen
initial proposal distribution. Delayed rejection modifies the standard Metropolis
algorithm to allow more than one stage of proposal distributions so that there are
multiple opportunities to accept a trial sample (i.e., delay its rejection). For exam-
ple, the variance or range of the proposal distributions can be decreased at higher
stages to ensure that some samples will be accepted, ultimately decreasing the re-
jection rate. Since the adaptation component of the algorithm depends on accepted
samples to update the proposal covariance, the delayed rejection idea complements
this process by increasing the probability of accepting a sufficient number of trial
samples. Furthermore, it can be proven that with these modifications, the DRAM
algorithm still converges to the desired probability distribution. More details can
be found in [20].

4 Numerical Examples

The effectiveness of the proposed Bayesian damage detection framework is now
demonstrated in two numerical examples of strain-based crack identification. The
approach was implemented in MATLAB [21], using the spinterp [17] software pack-
age to implement the sparse grid interpolation surrogate model and the DRAM [20]
MATLAB implementation for MCMC sampling. Abaqus [22] was used to generate
the computed strains using the finite element method to construct the surrogate
model with spinterp.

In both examples, strain data were generated synthetically by storing strain
values generated with Abaqus at select sensor locations for the reference crack con-
figuration and adding random Gaussian noise to mimic measurement errors. In
Example 1, only the crack location is considered unknown. Here, an in-depth com-
parison of the efficiency of the proposed method is made against a standard Bayesian
approach, demonstrating the significant computational speedup provided by both
surrogate modeling and the weighted likelihood formulation. In Example 2, a crack
of unknown location, size, and orientation is identified using strain data with varying
noise levels. Here, the ability of the framework to accurately and efficiently esti-
mate the four crack parameters is illustrated, while also quantifying the increasing
uncertainty introduced by measurement errors.

4.1 Example 1: Crack Location Identification

In this example, noisy simulated strain data are used to estimate the location of
a crack with known size and orientation using the proposed Bayesian framework.
A schematic of the reference configuration for this problem can be seen in Figure
2(a). Dimensionless quantities are assumed in this work for simplicity, where a two-
dimensional rectangular domain with width (w) = 6 and height (h) = 12 and crack
location (x, y) = (4, 9) is considered. Fifteen virtual sensor locations, represented
by the white dots in Figure 2(a), are placed uniformly throughout the domain. The
strains due to a uniform applied displacement of 0.5 are computed at these locations

12



using Abaqus and 5% random Gaussian noise is then added to produce synthetic
measurement data for the problem. The finite element mesh used throughout this
work had approximately 104 degrees of freedom. The crack size and orientation are
fixed at a = 1.0 and θ = 0◦, respectively, and thus the goal is to estimate p(C|D)
where C = [x, y] and D = {Ŝi}15i=1. This simplified setting with just two unknowns
allows for clearer visualization of the framework and comparison with a standard
Bayesian approach, while the treatment of general crack identification with unknown
size and orientation is considered subsequently in Example 2.

To execute the proposed Bayesian framework, the surrogate model for computed
strains using sparse grid interpolation was first constructed using the spinterp

MATLAB package. Interpolants were constructed for different levels of refinement
with increasing numbers of nodes (n) in the sparse grid. The accuracy of the surro-
gate model I with respect to the finite element model M for each refinement level
was evaluated using the average percent error in computed strains

e(C) =
1

M

M∑
i=1

|Ii(C)−M(C, i)|
|M(C, i)| × 100 (23)

for particular crack parameters C = [x, y]. This metric was evaluated for ten ran-
domly drawn crack configurations, where the average result is plotted as a function
of grid refinement in Figure 3. Here, a refinement level of 8 with 1,537 grid points
produced a surrogate model that was deemed sufficiently accurate for the subse-
quent analysis, as it had an average error (4.38%) that was within the noise level
(5%) for the problem.
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Figure 2. Reference configurations for (a) Example 1 and (b) Example 2, where
w = 6 and h = 12. The white dots indicate assumed strain sensor locations.
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For illustration purposes, the posterior probability distribution of the unknown
crack location p(x, y|D) is now visualized. The crack location probability was evalu-
ated on a uniform 50×100 grid across the problem domain and is displayed in Figure
4, comparing distributions for (a) the standard Bayesian formulation (Equation 11),
(b) the weighted likelihood formulation (Equation 21), and (c) the weighted likeli-
hood formulation with the sparse grid interpolation surrogate model (Equation 22).
The complexity of the posterior distribution for a standard Bayesian approach is ev-
ident, where the multimodal nature of the contours seems to indicate the plausibility
of a crack residing in a number of areas in addition to the true location. Figure 4(b)
represents the substantial simplification of the posterior distribution when using the
weighted likelihood formulation, displaying just one primary mode around the true
crack location with negligible probabilities far from that area. Figure 4(c) verifies
the effectiveness of the constructed surrogate model, where there is good agreement
between this approximate posterior distribution using sparse grid interpolation and
the “true” posterior in 4(b) using the finite element model. It is noted that while a
“brute force” evaluation of the posterior distribution on a full grid in two dimensions
is plausible here for demonstration, this is not a viable solution method in general for
problems with higher dimensional unknowns as the number of computations grows
exponentially.

Next, the DRAM algorithm was employed to sample the proposed posterior
distribution described by Equation 22 and displayed in Figure 4(c), starting from
an initial guess of (x0, y0) = (2, 2). The resulting sample-based estimates of the
unknown crack coordinates using 2,000 samples are shown in Figure 5. Figures 5(a)
and 5(b) show the estimated probability density functions of the x and y coordinate
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Figure 3. Average surrogate model error for ten randomly drawn crack configu-
rations (Equation 23) versus refinement level of the sparse grid used in Example
1.
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(a) (b) (c)

Figure 4. Posterior probability distributions for the crack location in Example
1 using three different expressions: a) Standard Bayesian formulation (Equation
11), b) weighted likelihood formulation (Equation 21), and c) surrogate model-
approximated weighted likelihood formulation (Equation 22). Virtual strain sensor
locations are illustrated as block dots.

of the crack, respectively, while Figure 5(c) displays the mean estimate (circle)
and true location (“x”) of the crack along with 50% and 95% credible intervals.
It is observed that the true crack location is accurately predicted by the mean
estimate (3.95, 8.86) while the Bayesian approach also quantifies the effect of the
5% measurement noise uncertainty through the estimated distributions. It is noted
that fast convergence was observed in the sampling process and that the change in
statistics beyond 2,000 samples was negligible.

4.1.1 Computational Efficiency

A comparison of the proposed framework to a standard Bayesian damage detection
approach was also made to demonstrate the improvement in computational efficiency
provided. As the solution time in a MCMC-based Bayesian approach is governed by
the sampling process, the focus was on how replacing a finite element model with
a surrogate model decreases the computation time to draw a single sample from
the posterior distribution and how the weighted likelihood formulation reduces the
total number of samples required for an accurate solution. Given the simple nature
of the two-dimensional geometry assumed here, the computation time for the finite
element method simulation in Abaqus was approximately 30 seconds. However,
evaluating the surrogate model was substantially faster, taking around 0.1 seconds
in this example to compute Equation 17 for all strain sensor locations.
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Figure 5. Sample-based estimates of the unknown crack location in Example 1 using
2,000 MCMC samples. a) The empirical probability distribution of the x coordinate.
b) The empirical probability distribution of the y coordinate. c) The true location
and mean estimate of the crack location, along with the 50% and 95% credible
intervals.
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With regard to the weighted likelihood formulation, a brief study was performed
to quantify how much the approach improves the convergence of the sampling pro-
cess. Typically, a large number of samples must be discarded from the beginning
of the Markov chain during a so-called “burn-in” period to remove the effect of
the initial guess, ultimately having a significant impact on solution time. Hence,
the aim of the convergence study was to measure the size of the burn-in period
necessary for both the standard Bayesian and proposed weighted likelihood poste-
rior distributions in Example 1. The DRAM algorithm collected 5,000 samples and
postprocessing was done to record how many samples it took for the chain to travel
from an initial starting point to within a 0.5 radius of the true crack location. Three
different starting points were considered, and since MCMC sampling is inherently
random, five trials of the sampling process were performed from each point.

Table 1 displays the results of this convergence study, comparing the minimum,
maximum and average number of samples it required to reach the crack location
vicinity with both approaches for the three initial guesses. A substantial convergence
improvement is observed for the weighted likelihood approach, showing roughly a
100-fold decrease in average number of samples for each initial guess. It is noted
that for each initial guess, at least one of the five trials failed to reach the solution
in the first 5,000 samples for the standard Bayesian approach, while the maximum
reported value for the weighted likelihood approach was just 46 samples to reach the
solution for an initial guess of (2, 2). With such fast convergence using the weighted
likelihood approach, the use of a burn-in period was neglected in this study with
little impact on the sample-based estimates of the crack parameters.

For illustration purposes, Figures 6(a) and 6(b) show the results from one DRAM
trial with the initial guess of (2, 2) for the standard Bayesian and weighted likeli-
hood approaches, respectively. Here, the first 2,000 samples are superimposed over
each respective posterior distribution contour. The difficulty of sampling the stan-
dard posterior distribution is obvious, as the algorithm is temporarily trapped in
three distinct modes before it ultimately reaches the mode corresponding to the
true solution. On the other hand, the DRAM samples for the weighted likelihood
formulation travel relatively directly to the true crack location where they remain
for the duration of the sampling process.

A summary of the computational efficiency for identifying crack location in Ex-
ample 1 is displayed in Table 2, comparing the standard Bayesian approach using
the finite element method and the proposed weighted likelihood formulation using

Table 1: Convergence comparison between sampling a standard Bayesian and
weighted likelihood posterior distribution in Example 1.

Number of Samples to Solution

Initial Guess Standard Bayesian Weighted Likelihood
(x0, y0) min. max. avg. min. max. avg.

(2, 2) 1,447 5,000 3,319 18 46 35.8
(3, 6) 261 5,000 2,502 13 32 20.2
(4, 2) 119 5,000 2,177 14 43 25
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(a) (b)

Figure 6. Results of the first 2,000 samples for one trial of the DRAM sampling
algorithm superimposed over the posterior probability distribution contours for a)
the standard Bayesian formulation and b) the weighted likelihood formulation. Both
sampling trials started from an initial guess of (2,2).
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a sparse grid interpolation surrogate model. It is shown that the proposed Bayesian
framework can provide orders of magnitude speedup over a typical Bayesian ap-
proach, reducing the solution time for this example from 1.74 days to just 3.33
minutes. Note that the computation time needed to generate the training data for
the surrogate model using finite element simulation is not included in this figure,
as it is considered an offline cost. The number of samples for each approach in this
comparison is approximate, though it was shown previously (Figure 5) that 2, 000
samples was sufficient for accurate solutions with the weighted likelihood approach.
The number of samples required for the standard Bayesian solution was selected con-
servatively low (5,000) under the assumption that it takes roughly 2,000 additional
samples to approximate the underlying distribution after the average burn-in pe-
riod (3,319) specified in Table 1. It is further noted that the realized computational
benefit of the proposed framework would increase significantly for more complex
3D models. In this case, the computational cost of the finite element model in-
creases drastically while the surrogate model is relatively unaffected by the added
complexity.

4.2 Example 2: General Crack Identification

The goal of Example 2 is to identify a crack of unknown location, size, and ori-
entation using the proposed Bayesian framework. A schematic of the reference
configuration for the problem is shown in Figure 2(b). The plate geometry, sensor
placement, and boundary conditions remained unchanged from Example 1, but the
crack parameters to be estimated were given by [x, y, a, θ] = [3, 6.5, 0.8, 25◦] in this
case. The probability distributions of these four crack parameters were estimated
for strain data with increasing noise levels (1%, 3%, 5%) to study the impact of mea-
surement noise on the solutions. The surrogate model for the problem was again
constructed beforehand using Abaqus and the spinterp package with a four dimen-
sional sparse grid of 18,945 points. In this case, substantially more grid points were
required to maintain sufficient accuracy due to the increase in dimension from two
to four.

Starting from an initial guess of C0 = [2, 2, 1.0, 0◦], the DRAM algorithm drew
2, 000 samples from the posterior distribution (Equation 22) using simulated strain
data for each of the three noise levels. These samples were then used to calculate
empirical probability distributions for each of the unknown crack parameters. These
distributions are shown in Figure 7, where the true value of each parameter is
indicated by the vertical dashed line. The mean estimates for each parameter were
also calculated and are displayed in Table 3 along with the relative errors. As was

Table 2: Comparison of the computational efficiency for the proposed method versus
a standard Bayesian approach in Example 1.

Approach # Samples Time per Sample Solution Time

Standard Bayesian + FEM 5000 30 sec 1.74 Days
Weighted Likelihood + Surrogate 2000 0.1 sec 3.33 Mins
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Table 3: Crack parameter mean estimates and errors in Example 2 for different
noise levels.

Noise Level
x y a θ

Mean % Error Mean % Error Mean % Error Mean % Error

1% 3.003 0.13 6.505 0.08 0.403 0.50 27.48 9.93
3% 2.985 0.50 6.457 0.66 0.406 1.50 21.25 14.99
5% 2.989 0.37 6.289 3.25 0.438 9.49 23.96 4.13

the case in Example 1, fast convergence was observed in the sampling process with
DRAM, where the change in the estimated crack parameter statistics was negligible
after 2, 000 samples.

It can be seen that the proposed Bayesian framework effectively captures the
growing uncertainty in the measurement data used, which is reflected in the widening
of the estimated probability distributions in Figure 7 as the noise level increased.
A general trend of decreasing accuracy in the mean estimates with increasing noise
level can also be seen in Table 3, as expected. However, the mean estimates are seen
to be generally accurate, especially for the location coordinate estimates. The crack
orientation θ was the least accurately estimated, with an error as high as 14.99%
for the 3% noise level. This is largely due to the fact that the strain data are
least sensitive to θ in comparison with the other crack parameters, as also reflected
in the support size of the distributions p(θ) in Figure 7(d). It is noted that the
results presented in this problem were calculated in just under 30 minutes. Here,
the increase in computation time was due to the added complexity of the surrogate
model in four dimensions, which took roughly 0.9 seconds to evaluate in this case.
However, a standard Bayesian analysis using the finite element method would still
take well over one day of computation time.

5 Conclusion

In this study, a computationally-efficient Bayesian approach to damage determina-
tion was proposed and demonstrated for the problem of identifying structural cracks
using noisy strain sensor data. Bayesian inference was used to postulate a probabil-
ity distribution over the parameters describing the damage and a MCMC sampling
procedure was then used to approximate this distribution numerically. Since the
resulting damage diagnosis is in the form of a probability distribution rather than
a point estimate, the method naturally quantifies the uncertainty induced by mea-
surement errors and thus enables notions of credibility along with its predictions.

As this work was motivated by structural health management applications, the
primary focus was on improving the computational efficiency of the method with
respect to traditional Bayesian approaches by speeding up the MCMC sampling-
based solution process. To this end, a surrogate modeling technique using sparse
grid interpolation was employed to replace a more costly finite element simulation
that would otherwise be evaluated for each sample drawn by the MCMC algorithm.
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Figure 7. Empirical probability distributions of the crack parameters C = [x, y, a, θ]
from 2,000 MCMC samples for different noise levels in Example 2. Crack location
in a) x and b) y, with length c) a, and orientation d) θ.
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While surrogate modeling significantly reduced the time to draw each sample, a new
weighted likelihood formulation of the posterior solution distribution was shown to
increase the convergence of the sampling process, greatly reducing the total number
of samples required for accurate estimates of the damage parameters. Additionally,
the Delayed Rejection Adaptive Metropolis (DRAM) algorithm was adopted in this
work for robust and effective MCMC sampling of the posterior distribution. It was
shown through numerical examples that the proposed framework can provide orders
of magnitude speedup with respect to a standard Bayesian approach and effectively
captures the effects of measurement uncertainty in damage identification problems.
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