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Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain
will be conducted under the flow conditions corresponding to thoseat the nozzle exit of the Boeing/AFOSR
Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with atotal pressure pt of 225kPa and
a total temperature of Tt = 430K. Simulations of acoustic radiation from a turbulent boundary layer over a
flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed
analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along
with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning
the modeling of the effects of an axisymmetric tunnel wall on the noise field.

Nomenclature

Cp heat capacity at constant pressure, J/(K·kg)
Cv heat capacity at constant volume, J/(K·kg)
H shape factor,H = δ∗/θ, dimensionless
M Mach number, dimensionless
Mr relative Mach number,Mr = (U∞ − Ub)/a∞, dimensionless
Pr Prandtl number,Pr = 0.71, dimensionless
R ideal gas constant,R = 287, J/(K·kg)
Reθ Reynolds number based on momentum thickness and freestreamviscosity,Reθ ≡

ρ∞U∞θ
µ∞

,
dimensionless

Reδ2 Reynolds number based on momentum thickness and wall viscosity, Reδ2 ≡
ρ∞U∞θ
µw

, dimensionless

Reτ Reynolds number based on shear velocity and wall viscosity,Reτ ≡
ρwuτδ
µw

, dimensionless
RMS root mean square
T temperature, K
Tr recovery temperature,Tr = T∞(1+ 0.9γ−1

2 M2
∞), K

Ub bulk convection speed, m/s
U mean streamwise velocity in boundary layer, m/s
U∞ freestream velocity, m/s
p pressure, Pa
u streamwise velocity, m/s
uτ friction velocity, m/s

∗Assistant Professor. Member, AIAA
†Aerospace Technologist, Computational AeroSciences Branch, M.S. 128. Associate Fellow, AIAA
‡Graduate Student. Student Member, AIAA
Copyright c© 2015 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise

all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

1 of 13

American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20160005933 2019-08-31T02:59:01+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42696652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


v spanwise velocity, m/s
w wall-normal velocity, m/s
x streamwise direction of the right-hand Cartesian coordinate
y spanwise direction of the right-hand Cartesian coordinate
z wall-normal direction of the right-hand Cartesian coordinate
γ specific heat ratio,γ = Cp/Cv, dimensionless
δ boundary layer thickness, m
δ∗ displacement thickness, m
κ thermal conductivity,κ = µCp/Pr, W/(m·K)
θ momentum thickness, m
µ dynamic viscosity,µ = 1.458× 10−6 T 3/2

T+110.4, kg/(m·s)
Φ power spectral density, Pa2/(rad/s)
ρ density, kg/m3

ω frequency, rad/s
Ω vorticity, s−1

Subscripts
i inflow station for the domain of direct numerical simulations
rms root mean square
w wall variables
∞ freestream variables
t stagnation quantities

Superscripts
+ inner wall units
(·) averaged variables
(·)′ perturbation from averaged variable

I. Introduction

Prediction of laminar-turbulent transition is a critical part of the design of hypersonic vehicles because of the
large increase in skin-friction drag and surface heating associated with the onset of transition. Despite continued
advances in transition research, the physics of boundary layer transition over these vehicles is not fully understood
due to the lack of detailed experimental measurements. Transition testing in conventional (i.e., noisy) wind tunnels
has been an important avenue to understanding the transition behavior of hypersonic vehicles, despite the common
knowledge that conventional wind-tunnel facilities cannot reliably simulate the in-flight transition behavior over a
smooth surface due to the effects of the elevated levels of freestream disturbances.1–3 Recent evidence suggests that
freestream disturbances may also influence the acceleratedonset of transition caused by isolated roughness elements
on a nominally smooth surface.4 Transition measurements in low disturbance (i.e., quiet) wind tunnels better mimic
the in-flight transition characteristics. However, because of the size and Reynolds number limitations of the existing
quiet facilities, conventional tunnels will continue to beemployed for the testing and evaluation of hypersonic vehicles,
especially during ground tests involving large-scale models.

Facility disturbances in conventional tunnels can impact not only the transition location but, possibly, the transition
mechanism as well. As a result, the existing methodology to extrapolate wind-tunnel transition results to flight is rather
crude and requires substantial improvement. To enable moreeffective use of the transition data from conventional
facilities and permit more accurate extrapolation of the wind-tunnel results to flight, an in-depth knowledge of the
broadband disturbance environment in those facilities must be developed.

In unheated tunnels with adequate flow conditioning, the acoustic disturbances are likely to dominate the overall
disturbance environment at Mach numbers of 2.5 or above,5–7 and their effect on transition cannot be quantified in
terms of a single metric corresponding to the root-mean-square amplitude of the freestream disturbances as indicated
by the measurements at Purdue University.3 With the exception of the early measurements of freestream pressure
fluctuations by Laufer5 and a few others,2,8 there are few measurements that are detailed enough to be suitable for either
comparing with computational predictions or for developing models that can be used towards more reliable transition
models. The measurements are typically susceptible to experimental errors due to the poor spatial resolution and/or
limited frequency response of pressure transducers.9 Theoretical models for acoustic radiation from a supersonic

2 of 13

American Institute of Aeronautics and Astronautics



boundary layer were developed by Phillips10 and Ffowcs-Williams and Maidanik,11 which attributed a major cause
of the acoustic radiation to eddy Mach waves from boundary-layer turbulence convecting supersonically with respect
to the free stream. However, a lack of adequate knowledge concerning the boundary-layer turbulence restricted the
theoretical predictions to the intensity of the freestreamacoustic fluctuations alone.

Direct numerical simulation (DNS) is a valuable tool that can overcome some of the aforementioned difficulties
with both experimental measurements and theory and, hence,provide access to both flow and acoustic quantities that
are difficult to obtain otherwise. In our previous efforts, DNS have been conducted for flat-plate boundary layers
under Mach 2.5 and Mach 6, with nearly adiabatic and cold walls.12–15 These flat-plate simulations have the benefits
of more easily isolating the acoustic radiation from a single surface, thus facilitating a comprehensive understanding
of the freestream disturbance field and its dependence on boundary-layer parameters (e.g., freestream Mach number,
wall temperature, Reynolds number). Most hypersonic wind tunnels are, however, axisymmetric. As a result, the
freestream disturbances in the tunnel environment reflect the combined outcome of acoustic radiation from all regions
of the tunnel wall. The motivation behind the present study is to help enable practical applications of the simulation
data for freestream disturbances in the context of actual wind-tunnel experiments and to guide the measurement of
tunnel disturbances in high-speed facilities. To simulatethe acoustic radiation within an enclosed environment while
simultaneously facilitating a direct comparison with acoustic radiation from a single flat wall in an unconfined setting,
this paper focuses on investigating the effects of a cylindrical test section on the interior noise field. An attempt will
also be made to understand where the previous flat-plate acoustic simulations are applicable, and where, if at all, the
effects of an axisymmetric enclosure on the noise field need to betaken into account.

The paper is structured as follows. The flow conditions and numerical methods are outlined in Section II. Sec-
tion III presents reference results for the characteristics of freestream pressure field induced by flat-plate turbulent
boundary layers. A summary of the overall findings is given inSection IV.

II. Flow Conditions and Numerical Methodology

A. Flow Conditions and Simulation Domain

Figure 1 shows a sketch of the computational domain with relevant flow conditions summarized in Table 1. The flow
conditions are similar to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated
under noisy-flow conditions with a total pressurept of 225 kPa and an initial total temperature ofTt = 430 K .3,16

Under the selected flow condition, measurement of boundary-layer profiles has been conducted on the nozzle wall of
BAM6QT by Skotch16 and will be available for comparison with the current DNS results. To simulate the acoustic
radiation within an enclosed environment while simultaneously facilitating a direct comparison with acoustic radiation
from a single flat wall in an unconfined setting, we consider a cylindrical domain with the radius the same as the nozzle
exit of BAM6QT. The cylindrical domain is used to allow for the study of the effect of tunnel-like geometry on noise
generation and propagation. In addition, by choosing a cylindrical geometry, the effects of surface curvature and
pressure gradient in the streamwise direction can be neglected, thus avoiding extraneous complexity in the simulation.
Under the chosen flow condition, the ratio of the tunnel radius to the tunnel-wall boundary-layer thickness isR/δ ≈ 3.
The modest value ofR/δ also makes it easier to propagate high-frequency acoustic waves over large axial distances.

B. Numerical Methods

The full three-dimensional compressible Navier-Stokes equations in conservation form are solved in cylindrical co-
ordinates. To handle the singularities arising at the polaraxis of the governing flow equations, a technique based on
power series expansions will be used,17 which has been shown to enable the computation of nonaxisymmetric flows
in cylindrical coordinates by using highly accurate finite-difference schemes on nonstaggered grids.

The working fluid is assumed to be a perfect gas and the usual constitutive relations for a Newtonian fluid are used.
The viscous stress tensor is linearly related to the rate-of-strain tensor, and the heat flux vector is linearly related to the
temperature gradient through the Fourier’s law. A 7th-order weighted essentially non-oscillatory (WENO) scheme18,19

is used to compute the convective flux terms. For the viscous flux terms, a 4th-order central difference scheme is used.
The 3rd-order low storage Runge-Kutta scheme by Williamson20 is used for time integration.

The turbulent inflow is generated using the recycling/rescaling method developed by Xu and Martin.21 Dynamical
translation operations22 are applied to the recycled turbulence plane at randomly-distributed time intervals to improve
the low-frequency characteristics of recycling/rescaling inflow turbulence generation. On the wall, no-slip conditions
are applied for the three velocity components and an isothermal condition is used for the temperature withTw ≈ 0.76Tr.
At the outlet boundaries, unsteady non-reflecting boundaryconditions based on Thompson23 are imposed. Periodic
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boundary conditions are used in the spanwise direction. Domain mapping is used17 so that the points on the polar axis
become regular interior points and the radial derivative atthe origin is calculated with the same order of accuracy as
that in the rest of the domain.

III. DNS of High-Speed Turbulent Boundary Layers over a Flat Plate

Simulations of acoustic radiation from a turbulent boundary layer over a flat plate are used to provide the basis for
comparison with acoustic radiation in a tunnel-like environment. An initial simulation forM∞ = 5.85 was presented
in a previous study.13 Additional simulations have now been carried out using a refined grid and longer computational
domain to validate those findings and, also, to provide additional data that was not available previously.

Relevant flow conditions are summarized in Table 2, which provides the freestream Mach number, density, and
temperature (M∞, ρ∞, andT∞, respectively) as well as the boundary layer thickness and various Reynolds numbers
at a selected location where the turbulence statistics are gathered. The flow conditions for the Mach 6 simulation
are similar to the operating conditions of the Boeing/AFOSR Mach 6 Quiet Tunnel, and Figure 2 shows the general
computational set-up for this simulation. To illustrate the effects of Mach number, conditions for a previous DNS at
Mach 2.512 are also included in Table 2.

The details of the DNS methodology in general curvilinear coordinates have been documented in Duan et al.12–14

The DNS solver has been previously shown to be suitable for computing transitional and fully turbulent flows, includ-
ing hypersonic turbulent boundary layers,24,25 the propagation of linear instability waves in 2D high-speed boundary
layers, and the secondary instability and laminar breakdown of swept-wing boundary layers.26,27

Table 3 lists the freestream values of several fluctuating flow variables for the Mach 2.5 and Mach 6 DNS, respec-
tively. The normalized velocity fluctuations at Mach 6 are larger than those at Mach 2.5. Yet, the rms fluctuations
in either velocity component are less than approximately 0.2%. Therefore, the dynamics of acoustic fluctuations in
the free stream is still likely to be linear in nature over thepropagation distances of interest in a wind-tunnel facility.
However, further work is necessary to establish the linearity of the acoustic field. The fluctuations in thermodynamic
variables are stronger than the velocity fluctuations and also increases in amplitude from Mach 2.5 to Mach 6. At
Mach 6, the rms pressure fluctuations are approximately 2% ofthe mean pressure value. Moreover, the numerical
results show thats′rms/R << p′rms/p, and by using the values listed in Table 3, the following isentropic relations
T ′rms/T ≈ ((γ − 1)/γ) (p′rms/p) andρ′rms/ρ ≈ (1/γ)(p′rms/p) are satisfied, indicating that the freestream fluctuationsare
nearly isentropic and that the contribution from the entropy mode is minimal. The relative importance of the acoustic
mode and the vorticity mode in the free stream is demonstrated by the ratio of dilatation variance(∂ui/∂xi)′2 and
vorticity varianceΩ′iΩ

′
i , which are representative of the acoustic and vorticity mode, respectively. The large values of

(∂ui/∂xi)′2/Ω′iΩ
′
i from Table 3 imply the dominance of the acoustic mode over thevorticity mode in the free stream.

The dominance of the acoustic mode over the entropy and vorticity modes confirms that a purely acoustic field
in the free stream is successfully isolated by the DNS. In typical high-speed (noisy) wind tunnels, however, multiple
disturbance sources exist and all three modes contribute tothe freestream fluctuations.2,28,29 The DNS thus provide an
opportunity to study the generic spectral features and production mechanisms particular to the acoustic disturbance.

Figure 3 shows that the normalized pressure fluctuation intensity p′rms/τw increases with freestream Mach number,
consistent with the trend predicted by the experimental data reported by Laufer.5

Figures 4a and 4b show the pressure spectrum at the wall and inthe free stream, respectively. The pressure
spectrum is normalized so that the area under each curve is equal to unity. For reference, straight lines with slopes
of 2, −1, −7/3, and−5 are also included to gauge the rate of spectral roll-off across relatively low, mid, high and
very high (i.e., near Kolmogorov scale) frequencies, respectively. The wall-pressure spectrum compares well with the
experimental measurements in a low-speed boundary layer byFarabee and Casarella30 and in a Mach 2 supersonic
boundary layer by Beresh et al.,9 as well as with the DNS results by Bernardini and Pirozzoli.31 The general features of
the freestream spectrum compare well with the measurementsby Laufer.5 Similar to the wall pressure, the freestream
pressure fluctuations for both Mach number cases become weakly constant asω → 0 within the range of the plot
and exhibit an approximatelyω−5 roll-off at high frequencies predicted theoretically by Blake.32 Forωδ/U∞ > 3, the
freestream spectrum for the Mach 6 case has significantly higher energy than that in the lower Mach number case.
The−7/3 scaling has been shown to apply to the pressure fluctuationsgenerated by turbulence-turbulence interaction
within the inertial subrange of velocity fluctuations in a low-speed turbulent flow.33 While the freestream spectrum for
the Mach 2.5 DNS and the experiments by Masutti et al.29 has an observable region of slope close to−7/3, a similar
region is less evident for the Mach 6 DNS. Further information will be provided through the proposed effort to help
identify the generic spectral features, if any, of the acoustic radiation from high-speed boundary layers.

Figure 5 shows a preliminary comparison of DNS results with the wind-tunnel measurement and the calculation
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using Harris Boundary-layer code34 for a Mach 5.8 turbulent boundary layer on the nozzle wall of BAM6QT under
noisy-flow conditions (Re = 9.69× 106/m, Pt,∞ = 965 kPa,Tt,∞ = 429 K). The DNS and experiments agree well
with each other in terms of both boundary-layer profile and wall-pressure spectrum. In comparison, the Mach number
profile based on the boundary layer code exhibits larger differences from the measurement and the DNS in the outer
part of the boundary layer. Moreover, Figure 5c and Figure 5dshow that DNS successfully extends the measured
spectra to higher frequencies. The resolution of the high-frequency region as well as the acoustic radiation due to
these high-frequency fluctuations are especially important for studying the receptivity process associated with second-
mode waves in hypersonic wind tunnels. More refined comparisons are currently ongoing.

To illustrate the distribution of energy among various frequencies, Figure 6 shows the scaled pre-multiplied pres-
sure spectra at selected heights above the surface for the Mach 6 case. The pressure spectra in the inner layer (including
the wall, buffer layer, and log layer) have a dominant hump centered onωδ/U∞ ≈ 8 (or f δ/U∞ ≈ 1), which is the
characteristic frequency of the energetic vortical structures within the boundary layer. Away from the wall into the
outer layer, the peak gradually shifts to lower frequenciesas spatial intermittency becomes more important. In the
free stream, where the pressure signal is predominantly acoustic, the peak of the spectrum is centered at a frequency
of ωδ/U∞ ≈ 3 (i.e., f ≈ 108 KHz), indicating that the characteristic frequency of the acoustic mode is significantly
lower than that of the vorticity mode. Similar variation in pre-multiplied pressure spectrum with wall-normal distance
is observed for the Mach 2.5 case. The dominance of lower frequencies in the freestreamspectrum is consistent with
the measurements by Laufer5 and needs to be accounted for by any mechanisms that correctly describe the boundary
layer radiation.

The space-time correlation contours of the freestream pressure fluctuations are shown in Figure 7a. The skewed
shape of the contours at both locations indicates the convective nature of the pressure field. The overall larger incli-
nation of the space-time correlation contours for the Mach 6case indicates that the convection velocity for the Mach
6 case is larger than the Mach 2.5 case, at least at low to intermediate frequencies. The freestream bulk convection
velocity computed using the space-time correlation coefficients isUb ≈ 0.4U∞ for Mach 2.5 andUb ≈ 0.63U∞ for
Mach 6, which are close to the experimentally measured values reported by Laufer.5 Both the current DNS and the ex-
perimental measurements by Laufer5 show that the bulk convection speed in the free stream increases with freestream
Mach number (Figure 7b). All the freestream bulk convectionspeeds fall within the region whereMr > 1, with
Mr ≡ (U∞ −Ub)/a∞, which is expected from the ‘Mach wave radiation’ concept. The convection velocity is related to
the directionality of the acoustic radiation and is an important characteristic of the stochastic acoustic field in the free
stream from the standpoint of transition analysis, becausethe receptivity characteristics are known to be sensitive to
the orientation of the plane wave disturbance.35

Figures 8a and 8b plot the contours of density gradient magnitude, which mimic the schlieren flow visualization
during an experiment. The wave fronts of the radiated disturbances are shown to be inclined within a narrow range of
angles with respect to the flow direction. Such a preferred directionality of the freestream waves is consistent with the
‘Mach wave radiation’ concept. The fact that the radiation wave front for the Mach 6 case is shallower than the Mach
2.5 case is also consistent with the experimentally measured trend.5

The above results form the basis for comparison with the acoustic field within an enclosed environment. Results
for the latter will be included in the final paper.

IV. Summary

This abstract presented the feasibility of DNS for capturing the freestream acoustic pressure fluctuations and suc-
cessfully isolating a purely acoustic freestream disturbance field in the canonical setting of a turbulent boundary layer
above a single tunnel wall, and showed good agreement with past experimental results. The modified methodology for
extending the existing flat-plate acoustic simulations to atunnel-like (axisymmetric) environment is also introduced.

The full paper will provide a detailed analysis of acoustic freestream disturbances in a cylindrical domain to mimic
the radiation field in the actual wind-tunnel experiment, and discuss where the existing flat-plate acoustic simulations
are applicable, and where, if at all, the effects of axisymmetry on the noise field need to be taken into account. These
findings will pave the way for more practical application of the simulation data in the context of actual wind-tunnel
experiments.
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Table 1. Freestream conditions for Mach 6 DNS of turbulent boundary layers.

M∞ U∞(m/s) ρ∞(kg/m3) T∞(K)

5.86 870.4 0.0105 55.0

Table 2. Boundary layer properties at the station selected for theanalysis of the acoustic field for the current Mach6
DNS and Mach2.5 DNS.

M∞ U∞(m/s) ρ∞(kg/m3) T∞(K) Tw(K) Reθ Reτ Reδ2 θ(mm) H δ(mm) δi(mm)

2.5 823.6 0.1 270.0 568.0 2,834.8 509.9 1,656.9 0.583 4.14 7.69 4.0

5.85 870.2 0.039 55.0 300.1 9,659.2 464.2 1,783.3 0.968 13.624.4 13.8

Table 3. The disturbance field in the free stream for the Mach2.5 and Mach 6 DNS.

M∞ u′rms/u v′rms/u w′rms/u p′rms/p ρ′rms/ρ T ′rms/T
(∂ui/∂xi)′2

Ω′iΩ
′
i

s′rms/R

2.5 7.56× 10−4 4.90× 10−4 8.09× 10−4 3.96× 10−3 2.83× 10−3 1.13× 10−3 1797.8 2.19× 10−4

5.85 12.6× 10−4 9.90× 10−4 20.0× 10−4 20.6× 10−3 14.7× 10−3 5.86× 10−3 1131.2 1.75× 10−4

8 of 13

American Institute of Aeronautics and Astronautics



Figure 1. Sketch of computational domain for the current DNS of aturbulent boundary layer inside an axisymmetric
cylinder.

Figure 2. Computational domain and simulation setup of DNS of a Mach6 turbulent boundary layer on a flat plate.
The reference lengthδi is the thickness of the boundary layer (based on99%of the freestream velocity) at the inflow
plane. An instantaneous flow field is shown in the domain, visualized by an iso-surface of the magnitude of density
gradient, |∇ρ|δi/ρ∞ = 0.98, colored by the streamwise velocity component (with levels from0 to U∞, blue to red).
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Figure 3. Intensity of freestream pressure fluctuation for DNS compared with the experiments by Laufer.5
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Figure 4. Normalized frequency spectrum of computed pressure signal at selected heights.−−−−: DNS,12,14 M∞ = 2.5,
Reτ = 510; −··−: DNS, M∞ = 5.85, Reτ = 464; ¤: Farabee& Casarella,30 M∞ ≈ 0, Reτ = 1169; •: Bernardini and
Pirozzoli,31 M∞ = 2, Reτ = 508;△: Beresh et al.,9 M∞ = 2, Reτ = 3650;⋄: Laufer, 5 M∞ = 4.5, Reθ = 30, 000.▽: Laufer, 5

M∞ = 2.0, Reθ = 30000.
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Figure 5. Comparison of DNS results with those of a Mach-5.8 turbulent boundary layer on the nozzle wall of the
Boeing/AFOSR Mach-6 Quiet Tunnel under noisy-flow conditions (Re = 9.69× 106/m, Pt,∞ = 965kPa, Tt,∞ = 429K).
The boundary-layer profiles (including experimental Pitot profile and the calculation using Harris boundary-layer
Code34) were conducted by Steen36 and the wall pressure spectrum was measured by Casper.37 (a) Mean velocity
profile; (b) Mach number profile; (c) frequency spectrum in outer scale; (d) frequency spectrum in inner scale.
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Figure 6. Pre-multiplied power spectrum of pressure signals at at selected heights for the Mach6 DNS. The pressure
spectrum is normalized so that the area under each curve is equal to unity. z is the wall-normal coordinate.
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Figure 7. Mach-number dependence of freestream pressure signal: (a) Space-time correlation coefficient for the Mach
2.5 DNS (Dashed line) and Mach6 DNS (Solid line). Contour levels vary from0.1 to 0.9 with increments of 0.1. (b)
Bulk convection speeds of the freestream pressure fluctuation as a function of freestream Mach number. Symbols:¤:
Laufer; 5 ⋄:, Kendall; 8 •: the present DNS; Lines:Mr = 1.
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(a)

(b)

Figure 8. Numerical schlieren image based on instantaneous flow field: (a) M∞ = 2.5,12,14 (b) M∞ = 5.85. Contour levels
are selected to emphasize disturbances in the free stream. The dashed line indicates the orientation of the radiation
wave front; vector U denotes the flow direction;θ is the angle between the wave front andU.
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