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A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripher-
ally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted
wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pres-
sure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation
using the finite element method. A quadratic objective function based on the difference between the measured
and finite element solution is constructed and the unknown impedance function is obtained by minimizing
this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a con-
ventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the
conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound
source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-
dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is
used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra
as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation,
and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and
the soft segment of the peripherally varying liner is obtained.

Nomenclature

A ,K,P complex mode coefficient, axial propagation constant, normal acoustic pressure mode
c0,ρ0,M0 speed of sound in duct, mean static density, uniform flow Mach number in axial direction
d,L,H,W depth of test liner, axial location of duct termination, height of duct, width of duct
f ,λ excitation frequency of sound wave, wavelength of sound wave
i,k unit imaginary number (

√
−1), free space wavenumber (2π f/c0)

L1,L2 axial location of leading edge of test liner, axial location of trailing edge of test liner
nu,nl,nd number of flush mounted wall microphones in upstream hard wall section, liner test section,

and downstream hard wall section, respectively
p,
−→
∇ 3D acoustic pressure field, 3D gradient operator

x,y,z, t vertical coordinate, horizontal coordinate, axial coordinate, time
ζ,β normalized impedance, normalized admittance
|| ||, •, −→n absolute value of complex quantity, vector dot product, outward unit normal to surface
Subscripts:
m,n microphone counter, mode order section, and downstream hard wall section respectively
s,e source plane quantity, exit plane quantity
FEM,Meas quantity computed from finite element analysis, quantity measured using wall microphones
Superscripts:
u, l,d quantity in upstream hard wall section, liner test section, and downstream hard wall section
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I. Introduction

For over 30 years, the NASA Langley Research Center has invested a significant effort in the development of
indirect impedance prediction tools and experimental rigs for the evaluation of acoustic liner impedance.1–13 This
has included the development of prediction tools to account for the effects of both uniform and shear flow profiles in
the duct. These tools have been successfully applied to uniform impedance samples installed in the NASA Langley
Grazing Flow Impedance Tube (GFIT) and its predecessor, the Grazing Incidence Tube (GIT). These impedance
eduction tools may be further divided into non-modal methods that are based on the conventional finite element
method (FEM)1, 2, 4, 5, 13 and the single mode methods (SMM)3, 6–9, 11–13 that are based on single mode analysis. All of
these methods have the restriction that they are only applicable to a rectangular waveguide with rigid sidewalls and a
uniform test sample inserted into the top or bottom wall. They each have the additional restriction that the sound field
in the coordinate direction perpendicular to the rigid sidewalls is independent of that coordinate direction.

In a recent paper,14 the SMM was extended to impedance eduction in a large-scale duct such as the NASA Langley
Curved Duct Test Rig (CDTR) where nonplanar waves exist in the coordinate direction perpendicular to the rigid
sidewalls. The analysis was significantly simplified and the impedance was educed without the complication of an
iterative procedure as with the non-modal methods. However, this simpler method is restricted to uniform test samples
and to a sound field for which a single high-order mode is dominant between the rigid sidewalls. Thus, a fully three-
dimensional (3D) impedance eduction method is still required to educe the impedance spectra when a higher-order
mode is not dominant between the rigid sidewalls. The current paper has two objectives. The first objective is to
extend the two-dimensional (2D) non-modal impedance eduction method to 3D. The 3D impedance eduction method
is needed in large ducts (i.e., the CDTR), when there is a loss of control over the high-order duct modes (such as at the
higher frequencies) and in smaller ducts (i.e., the GFIT) when the impedance of the upper or lower wall sample varies
across the duct (such as a peripherally varying liner impedance). The second objective is to validate the 3D impedance
eduction methodology with 1) synthesized data, and 2) measured GFIT data.

II. Description of Physical Problem

A schematic of the GFIT (where 3D data for the current study is measured) is shown in Fig. 1. The axial, vertical,
and horizontal coordinates of the GFIT are z, x, and y, as shown in the figure. Here, the height and width of the duct
are H and W , respectively; and the origin of the coordinate system is in the lower left corner of the duct. The liner
test section (that portion of duct between z = L1 and z = L2) contains a locally reacting test liner on the upper wall
and the remainder of the duct is rigid. The unknown impedance of the test liner is normalized with the characteristic
impedance, ρ0c0, of the air in the duct. Here ρ0 and c0 are the ambient density of the air and speed of sound,
respectively, in the duct. Note that in this context, the unknown impedance function is assumed to be a function of
both the axial and the horizontal coordinates, (z,y). Thus unlike previous impedance eduction methods, the current
method permits liner impedance that varies across the duct. Therefore the acoustic field will not be separable in the
horizontal coordinate and a fully 3D code is required to educe the normalized impedance of the test liner. The mean
flow in the duct is directed from left to right along the z axis of the duct (see Fig. 1) and is assumed to be uniform
with a mean flow Mach number of, M0. As illustrated in the figure, the source and exit planes of the flow duct are
located at z = 0 and z = L, respectively. The acoustic pressure disturbance, ps(x,y), is known at the source plane; and
at the exit plane, either the exit acoustic pressure, pe(x,y), or the normalized exit impedance, ζe(x,y), are known. The
sound field is assumed to be composed of a single tone such that the time dependence of the acoustic field is of the
form ei2π f t , where f is the frequency of the sound wave in Hertz, i =

√
−1, and t is the time in seconds. Several flush

mounted wall microphones are located around the periphery of the duct. There are nu microphones in the hard-wall
section upstream of the liner, nl microphones in the liner test section, and nd microphones in the hard-wall section
downstream of the liner. In previous studies the sound field in the liner test section is 2D so that the microphones are
flush mounted into the bottom wall of the duct in a linear array. However in this study the microphones are installed
around the periphery of the duct so that a 3D acoustic pressure field can be measured. The problem at hand is: given
the 3D acoustic pressure measurements at the microphone locations, determine the unknown, normalized impedance
function, ζ(z,y), of the test liner.

2 of 13

American Institute of Aeronautics and Astronautics



x

z

y
M₀

L₁

L₂

0

L

Upper Wall
Test Liner

Microphones

Termination
Plane

Source
Plane

W

H

Figure 1. Schematic of the LaRC grazing flow impedance tube (GFIT) flow duct and Cartesian coordinate system.

III. Governing Differential Equations and Boundary Conditions

The equation that describes the propagation of linear, steady-state, acoustic pressure disturbances within the 3D
duct depicted in Fig. 1 is the convected Helmholtz’s equation2

(1−M2
0)

∂2 p(z,x,y)
∂z2 +

∂2 p(z,x,y)
∂x2 +

∂2 p(z,x,y)
∂y2 −2ikM0

∂p(z,x,y)
∂z

+ k2 p(z,x,y) = 0 (1)

where p(z,x,y) is the acoustic pressure field, and k =
2π f
c0

is the free space wave number in the duct. Across the
source plane of the duct (z = 0) the sound source pressure is known

p(0,x,y) = ps(x,y) (2)

whereas at the exit plane (z = L) the exit pressure is also known

p(L,x,y) = pe(x,y) (3)

As implied earlier, a normalized exit impedance may also be prescribed. In this case the exit plane boundary condition
(BC) given in Eq. (3) is replaced with the exit impedance BC

−→
∇ p•−→n = ikβ̄p, β̄ =

βe +(M0/ik)∂βe
∂z

1+M0βe
, βe =

1
ζe

(4)

where −→n is the outward pointing normal to the exit plane boundary. Note that in Eqs. (2)–(4) the source pressure,
ps(x,y), and exit pressure, pe(x,y) as well as the exit impedance, ζe(x,y), are functions of position along their respec-
tive boundary. Finally, the lower and sidewalls of the duct are rigid

∂p(z,0,y)
∂x

=
∂p(z,x,0)

∂y
=

∂p(z,x,W )

∂y
= 0 (5)

and the test liner is assumed locally reacting so that the appropriate wall impedance boundary condition16 is

−∂p(H,y,z)
∂x

= ik
p(H,y,z)

ζ(z,y)
+2M0

∂

∂z

[
p(H,y,z)

ζ(z,y)

]
+

M2
0

ik
∂2

∂z2

[
p(H,y,z)

ζ(z,y)

]
(6)

where the normalized, locally reacting wall impedance function, ζ(z,y), is a function of both the axial coordinate, z,
and the horizontal coordinate, y. Given the 3D acoustic pressure measurements in the duct, Eqs. (1)–(6) constitute a
well-posed boundary value problem that can be solved to determine the unique,15 unknown, normalized impedance
function, ζ(z,y), of the test liner. This process is referred to as impedance eduction in the duct acoustics literature.
The proposed 3D impedance eduction method presented in this paper is described in the following section.
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IV. The 3D Impedance Eduction Method

The proposed 3D impedance eduction method parallels that used in the 2D impedance eduction method2 and is
summarized as follows:

1. Three-dimensional acoustic pressure measurements are acquired at the (nu+ nl + nd) flush mounted wall mi-
crophones located around the periphery of the duct (see Fig. 1)

2. A guess for the normalized impedance function, ζ(z,y), is provided

3. Equations (1)-(6) are solved with a 3D finite element method (FEM) that employs cubic Hermite polynomial
basis functions that is nominally fourth order accurate. The details of the 3D FEM are rather lengthy and are not
presented in this paper. However, it is a straight forward extension of the 2D method that has been presented in
a number of previous papers1, 2, 4, 5

4. The FEM solution is used to construct the objective function

F(ζ) =
1

nu

nu

∑
m=1
||pu

Meas(zm,xm,ym)− pu
FEM(zm,xm,ym)||+

1
nl

nl

∑
m=1

∣∣∣∣∣∣pl
Meas(zm,xm,ym)− pl

FEM(zm,xm,ym)
∣∣∣∣∣∣

+
1

nd

nd

∑
m=1

∣∣∣∣∣∣pd
Meas(zm,xm,ym)− pd

FEM(zm,xm,ym)
∣∣∣∣∣∣ (7)

In Eq. (7), the subscripts “FEM” and “Meas” denote the acoustic pressure field computed at the microphone
location using the FEM and those measured with the flush mounted wall microphones, respectively, || || denotes
the absolute value of a complex quantity, and the superscripts u, l, and d denote the hard-wall section upstream
of the liner, the liner test section, and the hard-wall section downstream of the liner, respectively

5. The impedance function, ζ, that is the global minimum of F(ζ) is taken as the unknown normalized impedance
function of the test liner. This minimum is obtained using the Stewart’s Adaptation of the Davidon-Fletcher-
Powell (SDFP) optimization algorithm.18

V. Mode Solution for Acquiring Synthesized Data

Exact solutions for the acoustic pressure field in the duct for arbitrary functional forms of the normalized impedance
function, ζ(z,y), have yet to be found. However, a modal solution exists in the liner test section when the impedance
function, ζ, is constant (i.e., infinitely lined duct). This mode solution is used to obtain synthesized data for validating
the 3D impedance eduction methodology. For the duct depicted in Fig. 1, this mode solution is obtained by assuming
that the 3D acoustic pressure field in the liner test section can be expanded into a series of normal acoustic pressure
modes

p(z,x,y) =
∞

∑
n=1

Ane−iKnzPn(x,y) (8)

where, Pn, is the normal acoustic pressure mode, Kn, is the axial propagation constant, and, An, is the complex mode
coefficient for the mode expansion. In Eq. (8) the right and left moving duct modes are associated with a Kn possessing
positive and negative imaginary parts, respectively. If Kn is wholly real (as with a cuton mode in a hard-wall duct) then
the left and right moving duct modes have a positive and a negative Kn, respectively. The normal acoustic pressure
modes, Pn, and axial propagation constants, Kn, are obtained numerically by a matrix method similar to that developed
by Watson and Lansing.17 However, the method used here has been extended to include the effects of uniform mean
flow. Once the normal acoustic pressure modes and axial propagation constants are obtained using the mode method,
the mode expansion given in Eq. (8) is evaluated at each microphone location around the duct periphery to obtain
synthesized data to validate the 3D impedance eduction procedure.

VI. Test Liners

Three locally reacting liners are tested is this paper. Two of the liners are uniform in structure and the other liner
is a three-segment peripherally varying liner (i.e., its liner impedance varies across the top wall of the duct). Each test
liner is described further in the following two subsections.
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A. Uniform liners

(a) Wire-Mesh Liner

(b) Conventional liner

Figure 2. Schematic of uniform-structure test liners.

Figure 2 is a schematic of the two uniform-structure test liners that are used in this investigation. The first uniform-
structure liner [Fig. 2(a)] is referred to as the wire-mesh liner because it is constructed of a wire-mesh facesheet
mounted onto a honeycomb core. This liner is 610.0 mm long (L2−L1), 51.0 mm wide (W ), and 76.0 mm deep (d).
The wire-mesh facesheet has a flow resistance of 270 MKS Rayls and the honeycomb chambers are hexagonal shaped
with a nominal diameter of 9.5 mm. The second uniform-structure liner [Fig. 2(b)] is a 610.0 mm long (L2−L1) single
layer conventional liner consisting of a perforated facesheet bonded to a honeycomb core. The conventional liner has
the same width as the wire-mesh liner. Although the honeycomb chambers in the conventional liner have the same
hexagonal shape and nominal diameters as that of the wire-mesh liner, their depth is only half that of the wire-mesh
liner (d = 38.0 mm). The perforated facesheet of the conventional liner is 0.8 mm thick, its porosity is 5%, and the
hole diameter is 0.3 mm. These two liners are chosen because the resistance spectra of the wire-mesh liner is expected
to be nearly independent of the mean flow Mach number, whereas that of the conventional liner is expected to increase
with increasing mean flow Mach number. Data acquired with these two uniform-structure liners installed in the GFIT
are used to validate the 3D impedance eduction method.

B. Three-Segmented Peripherally Varying Liners

In addition to the tests on the two uniform-structure liners (see Fig. 2) tests are also conducted on the three-segmented
peripherally varying conventional liner shown in Fig. 3.
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Figure 3. Schematic of three-segmented peripherally varying test liner.

The three-segmented liner is constructed by placing axial strips of aluminum tape along the left and right edges of
the conventional liner. This converts the conventional liner into a hard-soft-hard peripherally varying liner whose
impedance variation across the upper wall was symmetric about the duct center span. The soft portion of the liner is
3W/5 units in width and the two taped sections are each W/5 units in width. Note that the educed impedance of the
soft segment of the peripherally varying liner should match that of the uniform-structure conventional liner.

VII. Results and Discussion

Results presented in this section are for the GFIT geometry. The FEM solution is compared to the exact mode
solution for a uniformly lined duct [Eq. (8)] and a design order convergence rate is achieved as the computational
mesh is refined. The residual error in the FEM solution reduces by a factor of 24 for each doubling of the grid. The
FEM grid used for the impedance eductions is evenly spaced in each coordinate direction. There are 81 evenly spaced
points in the axial direction (the z direction), 26 evenly spaced points in the vertical direction (the x direction), and
21 evenly spaced points in the horizontal direction (the y direction). This grid is sufficiently fine to resolve all cuton
waves in the hard wall sections of duct for the frequencies of interest in this study. Although the sound field in the
liner test section is typically 3D, all experimental results are acquired using a plane wave as the sound source. This is
achieved by keeping the sound frequency below the cuton of higher order duct modes in hard wall sections of duct.

A. Uniform-Structure Wire Mesh Liner

The wire-mesh liner [Fig. 2(a)] is inserted into the GFIT and the 2D impedance eduction code1, 2, 4, 5 is used to establish
baseline impedance spectra for this uniform-structure for a plane wave source at an incident sound pressure level (SPL)
of 130 dB. Baseline resistance [i.e., ℜ(ζ)] and reactance [i.e.,ℑ(ζ)] spectra are computed for three targeted centerline
Mach numbers and fourteen frequencies ranging from 0.4 to 3.0 kHz in 0.2 kHz increments. The targeted centerline
Mach numbers for the wire-mesh liner are M0=0.0, M0=0.3, and M0=0.5. The GFIT data used for these 2D eductions
are obtained using a linear array of 53 lower wall microphones.

The wire-mesh liner is then used to validate the 3D impedance eduction code. This is achieved by using the baseline
impedance spectra educed in the GFIT (from the 2D code) to obtain synthesized data for the 3D code. Synthesized data
for the 3D code is acquired at the 87 microphones located around the peripherally of the duct via the mode solution
given in Eq. (8). Note that the mode solution [Eq. (8)] is valid only over the length of the liner (i.e., from z = L1 to
z = L2). Therefore to acquire the synthesized data, the 3D code was run with the leading edge of the liner at the source
plane (z = 0) and the trailing edge of the liner at the duct termination (z = L). Here we use synthesized data for two
different nonplanar sources. The first source is the least attenuated mode with the mode coefficient, A1, set to a SPL
of 130 dB. The second source is a multimodal sound source consisting of the first and second least attenuated mode.
In the multimodal sound source calculations, the mode coefficients for each of the two modes (A1 and A2) are set to a
level of 130 dB.
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(a) Normalized Resistance (b) Normalized Reactance

Figure 4. Comparison of educed normalized resistance and reactance spectra from 2D and 3D codes at Mach 0.5 (wire-mesh liner).

(a) Normalized Resistance (b) Normalized Reactance

Figure 5. Effects of measurement error on the comparison of 2D and 3D impedance eduction codes at Mach 0.5 (wire-mesh liner).

Figures 4(a) and 4(b) compare the educed normalized resistance and reactance spectra educed from the 2D and
3D codes at a Mach number of 0.5 (M0=0.5). Recall that the 2D code requires both the measured GFIT data (at
53 lower wall microphones) and the GFIT geometry (i.e., 203.0 mm long hard-wall sections were located upstream
and downstream of the liner) to educe the impedance. The 3D code uses synthesized data (acquired using the same
impedance as the 2D code over the entire length of the duct). In the 3D code the data at the 87 microphones located
around the duct periphery are synthesized from the exact mode solution given in Eq. (8). Impedances educed for the
3D code used the least attenuated mode as the sound source and results are shown using both exit boundary conditions
(i.e., the exit impedance BC and the exit pressure BC). As expected, the 3D code produces impedance spectra identical
to that of the 2D code regardless of whether the exit pressure or exit impedance BC is used. Results similar to those in
Figs. 4(a) and 4(b) are obtained for the multimodal sound source and for the other Mach numbers (i.e., Mach 0.0 and
Mach 0.3). Such excellent comparison between the 2D and 3D code validates the 3D impedance eduction method for
a uniform liner (at least in the presence of synthesized data).
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The results obtained from the 3D impedance eduction code with measured data as input may not be as accurate as
that obtained using synthesized data. Recall that measured data contain measurement error that is not present in the
synthesized data that is obtained from the exact mode solution. Therefore the measured 2D data acquired in the GFIT
(for the wire-mesh liner) was processed through the 3D impedance eduction code to assess the effects of measurement
error. This assessment was made using only the exit pressure BC and the measured data from the 53 lower wall
microphones is used to educe the impedance in each code. Normalized resistance and reactance spectra computed
from the codes are compared in Figs. 5(a) and 5(b), respectively. Observe that the educed normalized resistance and
reactance predicted from the 2D and 3D codes (Figs. 4) are in very good agreement except at the low frequency end
of the spectra (i.e., f ≈ 0.4 kHz) and near the anti-resonant frequency (i.e., f = 2.2 kHz). This is expected because
at these frequencies the liner attenuation is the lowest. The measured liner attenuation is 1.5 dB at the anti-resonant
frequency (i.e., f = 2.2 kHz) and only 3.0 dB at the lowest frequency ( f =0.4 kHz). This can be contrasted to the liner
attenuation at the resonant frequency (i.e., f = 1.0 kHz), which is 52 dB. Thus the accuracy of the educed impedance is
reduced in that portion of the frequency spectrum where the liner attenuation is low. It should also be noted that at the

lower frequency (i.e., f = 0.4 kHz) the wavelength, λ, of the sound wave (i.e., λ =
(1+M0)c0

f ≈ 1285 mm) exceeds
the duct length (L = 1016 mm). When the wavelength of sound is greater than the length of the liner and the length of
the duct, the effects of the liner impedance discontinuities may not be adequately captured by the impedance eduction
theory. The convective effects of the flow will further reduce the liner attenuation and will also tend to increase the
wavelength of the sound waves relative to the liner length. Thus, the discrepancies near the low frequency end of the
spectrum ( f =0.4 kHz) and near the anti-resonant frequency ( f = 2.2 kHz) increase with the flow Mach number.

B. Conventional Liner Study

In addition to the tests on the wire-mesh liner, the following tests are conducted on the conventional liner:

1. The uniform-structure conventional liner [Fig. 2(b)] is inserted into the GFIT and the baseline impedance spectra
is determined using the 2D impedance eduction code. The source is an incident 120 dB plane wave source and
the mean flow Mach numbers are Mach 0.0, Mach 0.2, and Mach 0.3. The Mach numbers of the conventional
liner were different from those of the wire-mesh liner because this conventional liner is also being tested in
another aerospace laboratory for which the highest Mach number achievable is Mach 0.3. The frequencies
tested for the conventional liner were identical to those of the wire-mesh liner.

2. The three-segmented hard-soft-hard peripherally varying liner (Fig. 3) for which the soft portion was the con-
ventional liner is also tested in the GFIT. The test conditions (i.e., sound source, mean flow Mach number, and
sound frequencies) match those used for the uniform-structure conventional liner. The 3D acoustic pressure
field due to the three-segmented peripherally varying liner is measured using the 87 microphones that are flush
mounted around the periphery of the GFIT as illustrated in Fig. 1. The impedance of the soft portion of the
three-segmented peripherally varying liner is then educed using the 3D code (with the impedance of the alu-
minum tape set to that of a rigid wall). The impedance spectra educed for the soft segment of the peripherally
varying liner is compared to that educed when using the uniform-structure conventional liner. The impedance
of the soft section of the three-segmented peripherally varying liner should match that of the uniform-structure
conventional liner.

Figure 6 compares the educed normalized resistance from the 2D and 3D code for the uniform-structure conven-
tional liner. The 2D code used the 53 lower wall microphones closest to the duct center span while the 3D codes used
the full array of microphones (i.e., 87 microphones) that were inserted around the periphery of the duct. At Mach 0.0
and 0.2 there is favorable agreement between the normalized resistance spectra educed from both codes. There is also
a small amount of scatter in the educed resistance comparison at the high frequency end of the spectra at the highest
Mach number (i.e., Mach 0.3). As expected, the resistance increases with the mean flow Mach number. The educed
normalized reactance for the 2D and 3D codes are compared in Fig. 7 and they are in very good agreement. Note that
the educed normalized reactance is independent of the mean flow Mach number and follows a cot(kd) behavior (as
expected). There is a small amount of scatter in the reactance comparisons at the highest frequency ( f = 2.6 kHz) and
Mach number (Mach 0.3).

The presence of the hard-wall strips along the left and right edges of the segmented liner results in a scattering
of energy into higher order horizontal modes and the generation of a 3D sound field. Consequently, the absorption
characteristics of the segmented liner differs from that of the uniform-structure liner (the uniform-structure liner alone
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Figure 6. Comparison of educed normalized resistance spectra from 2D and 3D codes for the uniform-structure conventional liner.
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Figure 7. Comparison of educed normalized reactance spectra from 2D and 3D codes for the uniform-structure conventional liner.

cannot produce this type of scattering). Figure 8 compares the measured sound pressure level profile of the uniform-
structure liner and the three-segmented peripherally varying liner at a frequency of 0.8 kHz. The leading and trailing
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edges of the liner are located at z = 0.2 and z = 0.61 meters, respectively. The acoustic pressure measurements are
taken along the lower wall at the duct centerline (i.e., y=W/2). When there is no flow (Mach 0.0), the three-segmented
liner attenuates much more sound than the uniform-structure liner (Fig. 7) and there is a significant impact of the hard-
wall strips. As the flow Mach number increases, the uniform-structure liner becomes a much better attenuator of the
sound when compared to the segmented liner (see Fig. 8). Figure 9 shows similar results at the frequency closest to the
resonant frequency (i.e., f =1.4 kHz) where there is a large amount of liner attenuation. Note that near the resonant
frequency there is a significant impact of the hard wall strips because the SPL patterns are significantly different for
the uniform-structure and the peripherally segmented liner. Observe that the uniform liner is a much better attenuator
of the sound waves near the resonance frequency for all flow Mach numbers (Fig. 9).
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Figure 8. Comparison of measured SPL over the lower wall for the uniform and three-segmented liner at 800 Hz.
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Figure 9. Comparison of measured SPL over the lower wall for the uniform and three-segmented liner at 1,400 Hz.

In this final example, all of the 87 microphones inserted around the periphery of the GFIT (Fig. 1) are used
to measure the acoustic field produced by 1) the uniform-structure conventional liner, and 2) the three-segmented
peripherally varying liner. These measured acoustic fields are then used to a) educe the impedance of the uniform-
structure conventional liner, and to b) educe the impedance of the soft segment of the three-segmented peripherally
varying liner. Note that the impedance of the soft segment of the peripherally varying liner should match that of the
uniform-structure conventional liner.
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Figure 10. Comparison of the educed normalized resistance spectra for the uniform and three-segmented liner.
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Figure 11. Comparison of the educed normalized reactance spectra for the uniform and three-segmented liner.

Educed normalized resistance spectra are shown in Fig. 10. Note that the zero flow results (the Mach 0.0 results)
match extremely well with the exception of the two frequencies closes to the resonant frequency (i.e., 1.2 kHz and
1.4 kHz). This is due to the large attenuation (approximately 70 dB was measured) near the resonant frequency.
Resolving such a large attenuation is a difficult task for any numerical scheme including the FEM. As the Mach
number is increased to 0.2 the comparison between the educed normalized resistance for the uniform-structure sample
and the soft segment of the peripherally varying liner is still quite good (except for the two frequencies closest to the
resonant frequency where the attenuation is large). The discrepancy at 0.4 and 0.8 kHz is due to the small attenuation at
those frequencies. The frequencies with the lowest attenuation were 0.4 and 0.8 kHz. For example, the attenuation of
the liner is measured to be no more than 0.2 dB at 0.8 kHz. As the mean flow Mach number is increased further to 0.3
(see Fig. 10) there is a discrepancy in the educed normalized resistance at the high frequency end of the spectra where
a higher order vertical mode is cuton. Recall that the sound source in the upstream hard wall section is assumed to be
a plane wave and this assumption breaks down when a higher order mode cuts on in either the vertical or horizontal
direction.

The educed normalized reactance spectra for the uniform-structure and the soft segment of the peripherally varying
liner is presented in Fig. 11. In the absence of flow (i.e., Mach 0.0) there is very good agreement except at the low
frequency end of the spectra where the attenuation is low. The low attenuation also leads to a discrepancy in educed
reactance at the low frequency end of the spectra for Mach 0.2 and 0.3. There is also a discrepancy in educed reactance
at the highest Mach number (Mach 0.3) at the high frequency end of the spectra where the next higher order vertical
duct mode is almost cuton.

One important observation that has not been discussed is that as the flow Mach number is increased for the uniform-
structure liner there is some energy scattered into horizontal duct modes. The vertical boundary layer cannot produce
this type of mode scattering and the SPL and Mach number are too low for nonlinear effects to be the cause. In addition,
this horizontal scattering of acoustic energy did not occur for the uniform-structure liner when the flow was turned
off, illustrating that it was not due to horizontal impedance inhomogeneities. Therefore this horizontal scattering of
acoustic energy appears to be due to the horizontal boundary layer effects. Thus, the effects of the horizontal boundary
layer should be included in future impedance eductions.

VIII. Conclusions

This paper extends the two-dimensional impedance eduction technique presented in earlier papers1, 2, 4, 5 to three-
dimensional sound fields and peripherally varying duct liners. Based upon the results of this study, the following
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conclusions are drawn:

1. When synthesized data (that is based on exact mode theory and known impedance spectra) is used, the current
three-dimensional method educes the known impedance spectra to design order.

2. When measured GFIT data is used with the uniform-structure test samples, the three-dimensional theory repro-
duces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very
low or very high liner attenuation.

3. When the educed impedance of the uniform-structure liner is compared to that of the soft portion of the three-
segmented peripherally varying liner, good agreement is generally obtained except for those frequencies corre-
sponding to extremely large attenuation (this was expected).
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