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Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad-
joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple
implementations of each of these steps are evaluated by comparison to each other and ex-
pected analytic results when available. For example, grids are adapted to analytic metric
fields and grid measures are computed to illustrate the properties of multiple independent
implementations of grid adaptation mechanics. Different implementations of each step in
the adaptation process can be evaluated in a system where the other components of the
adaptive cycle are fixed. Detailed examination of these properties allows comparison of
different methods to identify the current state of the art and where further development
should be targeted.

I. Introduction

Output-based grid adaptation¶ methods have been developed to control the discretization error of nu-
merical simulation. Fidkowski and Darmofal1 provide a review of existing methods that encompass many
different discretization schemes. Surprisingly, there are few examples where these methods have been di-
rectly compared to each other on the same geometry. One example of this comparison is when anisotropic
tetrahedral and Cartesian cut-cell methods were applied to predict near field sonic boom.2

Output-based grid adaptation is an iterative process that involves multiple steps, see Fig. 1. When the grid
adaptation process is separated into these constituent parts, different methods for error estimation, metric
creation, and grid adaptation mechanics can be compared at a finer grain level than simply monitoring the
convergence of the output with grid optimization. This work will focus on adaptation of simplicies (triangles
and tetrahedra) to an anisotropic metric. The specific details of the adaptive process have been examined
in a few situations (e.g., Hessian recovery,3 the formulation of the error estimate.)4

Often, output-based approaches are examined by comparing an adapted discrete solution to an analytic
solution when available. To address more complex problems without a closed-form solution, an adapted
solution can be compared to a solution computed on a much finer uniformly refined grid. While these
evaluation methods are good global indicators of the correctness and efficiency of the entire output-based
process, they are unable to expose weaknesses or inefficiencies in the individual steps of the process.

This paper describes an approach targeted at improving the robustness and efficiency of the grid adap-
tation process by decomposing the process and comparing different implementations of each step (i.e., each
∗Research Scientist, Computational AeroSciences Branch, AIAA Senior Member.
†Researcher, GAMMA3 Team, AIAA Member.
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¶output-based, goal-based, and adjoint-based grid adaptation are common synonyms for each other.
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Figure 1. Output-based grid adaptation process.

box in Fig. 1) to understand the implications of implementation choices. Once the process is decomposed,
each step can be verified by comparison to alternative implementations or an analytic result when available.
Descriptions of each implementation and the results of this comparison are documented to ensure correct
implementation and set the stage for further method development. This verification by comparison approach
is also employed by the Turbulence Modeling Resource Website.5 “What makes the current website unique is
that it focuses on providing ready access to equations, grids, and flow solution details from previously verified
codes as an aid to users who wish to verify their own implementations of models on relatively simple cases.”6

The goal of this work is to define a framework for rigorous examination of the entire output-based adapta-
tion process and each of its constitutive parts that can guide the implementation and further development
of solution adaptive methods.

II. Definitions

A metric tensor M is commonly employed to define the desired multidimensional grid resolution. This
symmetric positive definite matrix can be diagonalized:

M = XΛXT , (1)

where the eigenvectors X define an orthonormal basis with length specifications hi in this basis,

Λ =

 h−2
1 0 0
0 h−2

2 0
0 0 h−2

3

 . (2)

The metric can be interpreted as an ellipsoid with axes of lengths hi in directions of Xi.7

In a continuous setting,M is defined throughout the domain Ω and the edge length ¯̀ of an edge param-
eterized between nodes A and B is given as,

¯̀M(A,B) =
∫ 1

0

√
ABTM((1− t)A+ tB)AB dt, (3)

where the parameter t varies linearly between t = 0 at A and t = 1 at B. In this study, M is sampled
at each node and interpolated to evaluate edge lengths (and shape measures used internally by the grid
adaptation mechanics). The length of an edge in the metric ` is either computed with quadrature or
geometric interpolation as given by Alauzet.8 With a metricM defined at each node in the mesh, the length
of an edge defined between nodes A and B is

`M(A,B) ≡ r − 1
r ln r

√
ABTM(A)AB, (4)

where

r =

√
ABTM(A)AB√
ABTM(B)AB

. (5)

As r → 1, the M(A) and M(B) become equivalent. For |r − 1| < 10−12,

`M(A,B) =

√
ABTM(A)AB +

√
ABTM(B)AB

2
, (6)
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to prevent the r ln r term from producing a divide-by-zero in finite precision arithmetic. The goal of adap-
tation is to produce a grid with all edges of unit length ` = 1.

The statistical moments are computed in log space by

µ̂ =
1
E

E∑
i=1

log2(`i), (7)

where `i is the length of edge i in M. There are E edges in the grid. The mean edge length reported in the
table of statistics is 2µ̂. The higher order moments are given by

µ̂j =
1
E

E∑
i=1

|log2(`i)− µ̂|j . (8)

A series of adapted anisotropic grids do not have the a uniform scaling of element sizes, which are present
in uniformly refined grids. For adapted grids, the complexity C can be used as a continuous counterpart of
the classical parameter h from uniformly refined grid studies.9,10 In the continuous setting, the complexity
of a grid is defined as

C̄ =
∫

Ω

√
det(M) dΩ, (9)

for the domain Ω. In the discrete setting, M is sampled at each node i and

C ≡
N∑
i=1

√
det(Mi)Vi, (10)

where Vi is the volume of the Voronoi dual surrounding each node. The complexity has a linear dependency
with respect to the number of nodes and elements. It is used in error estimates to specify the desired accuracy
via the size of the adapted grid.

III. Output-Based Grid Adaption

The output-based grid adaption cycle described in Fig. 1 is composed of various steps detailed in this
section. Given an initial grid, the process starts by computing a flow solution.

III.A. Flow and Adjoint Solution

FUN3D11,12 is used to compute the flow solution. An exact discrete adjoint13 is computed with a solution
scheme described by Nielsen et al.14 that is wrapped with the Generalized Conjugate Residual (CGR)15

iterative scheme to accelerate convergence. Some of the viscous cases required the Hierarchical Adaptive
Nonlinear Iterative Method (HANIM) to reach a converged steady-state residual on the high aspect ratio
adapted grids. (HANIM was formerly referred to as HANIS by Pandya et al.16)

III.B. Error Estimation and Metric Construction

Two error estimation, localization, and metric construction methods are compared in this study. These
include the anisotropic optimal goal-based (Opt-Goal) metric of Loseille, Dervieux, and Alauzet17 and the
output-based anisotropic metric of Venditti.18 Both of these methods require Hessian recovery19 from the
discrete solution.

Hessian recovery is performed with the “double L2-projection” method of Alauzet and Loseille.3 This
method computes the gradient in each simplex based on the solution at the nodes. Then this reconstructed
gradient is volume weighted to form an average reconstructed gradient from surrounding simplicies to each
node. A second pass of this gradient reconstruction operator is used to recover second and mixed partial
derivatives. Off-diagonal Hessian terms are averaged to yield a symmetric Hessian.

Vallet et al.20 provides analysis that shows that the reconstructed gradient is less accurate on the bound-
aries than the interior. To prevent the inaccurate reconstructed boundary Hessian from negatively impacting
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the adaptive process, the boundary values of the reconstructed Hessian are discarded and the boundary Hes-
sian is averaged from interior nodes connected to the boundary nodes by edges. This averaging technique
dramatically improved results and the convergence of the adaptive process.

Details of the 3D implementation of the Venditti18 metric are provided by Park.21–23 Anisotropy of
the metric is set by the Mach number Hessian, which is scaled so that its largest eigenvalue matches a
spacing derived from the current spacing and an adjoint error estimate. This current spacing is estimated
by computing the metric of each simplex24 and averaging the implied metric to the nodes in log-Euclidean
space. At the nodes, the largest eigenvalue is computed to estimate the local spacing of the grid. This
process can produce noise in the current spacing estimate and is negatively impacted by sliver cells. So,
two passes of isotropic gradation control are used to limit the local spacing to not less than 3/2 times its
neighbor’s spacing. This prevents an isolated sliver element from indicating an inappropriately small local
spacing.

The Opt-Goal metric has the benefit of no direct dependency on the current grid, making it less sensitive
to the size and shapes of the current grid elements. This metric depends only on the Hessian of the Euler
fluxes weighted by the gradient of the adjoint state,

MOpt-Goal = (det |Hgoal|)−
1

2p+d |Hgoal| , (11)

with the norm order of p = 1, the dimensionality d, and the goal based Hessian,

Hgoal =
5∑
j=1

([∆x]j(x) + [∆y]j(x) + [∆z]j(x)) . (12)

Where

[∆x]j =
∣∣∣∣∂W ∗j∂x

∣∣∣∣ · ∣∣H(F1(Wj))
∣∣, [∆y]j =

∣∣∣∣∂W ∗j∂y

∣∣∣∣ · ∣∣H(F2(Wj))
∣∣, [∆z]j =

∣∣∣∣∂W ∗j∂z

∣∣∣∣ · ∣∣H(F3(Wj))
∣∣, (13)

with W ∗j denoting the jth component of the adjoint vector W ∗ and H(Fi(Wj)) the Hessian of the jth

component of the vector Fi(W ).
The aspect ratio AR of the metric can be optionally controlled by replacing h2 with ĥ2 and h3 with ĥ3 in

Eq. (2):
ĥ2 = max(h2, ARh1) (14)

ĥ3 = max(h3, ARh1). (15)

Gradation control is implemented in the form of Eq. (9) from Alauzet8 and applied to both solution adaptive
metrics. A gradation8 of β = 1.5 is used for all cases. The metric is rescaled to maintain the desired
complexity after each of ten passes of gradation control. This is important for constructing a metric that is
realizable by the grid adaption mechanics.

III.C. Grid Adaptation Mechanics

The mesh mechanics from four grid adaption tools are considered: BAMG25 (Bidimensional Anisotropic Mesh
Generator), refine,26,27 Feflo.a,28 and EPIC29 (Edge Primitive Insertion and Collapse). Each of these
codes attempts to produce a simplex (triangles in 2D and tetrahedra in 3D) mesh from a supplied anisotropic
metric field. The focus of this study is to compare grid mechanic implementations at the elemental operator
level. Variations in implementation near curved boundaries is avoided by only examining geometry models
with linear surfaces. The impact of curved boundaries will be investigated in a future study. Results for 2D
and 3D test cases with prescribed and computed sizing metrics are presented.

The BAMG25 (Bidimensional Anisotropic Mesh Generator) is used for 2D examples. The original version of
refine, refine/one,26 has been modified to target edges with a length in metric space outside of [0.3,1.8].
The original intent26 of the tool was to always produce edges that are equal or smaller than the metric
specification. This study is focused on metric conformity or producing a unit mesh in the metric space,
which requires a distribution of edge lengths centered about unity. The metric supplied to the tool is used
as provided with no modifications (e.g., smoothing, limiting). A second version, refine/two,27 is also
evaluated, which only utilizes split and collapse operators.29 The 2D algorithm has been extended to include
the vertex smoothing of Alauzet.30 The metric is used by refine/two as provided with no modifications.
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Feflo.a belongs to the class of metric-based local remeshing software. It uses the classical operators
of insertion, collapse, swap, and smoothing described by Frey and George.28 Surface and volume meshes
are adapted in a couple of ways to ensure a high-level of robustness. It is a based on a unique cavity-
operator, where each of the standard operators (e.g., insertion, collapse, swap, smoothing ) are recast within
an insertion procedure. The operation that results from this insertion depends only on the choice of the
cavity. Cavity optimizations (e.g., reduction, enlargement) are performed to improve the quality of mesh
after the insertion. Feflo.a handles 2D, surface, and 3D meshes.

Grids from the EPIC adaptation code are presented for the 3D examples. The grid mechanics in EPIC have
been extended to include element reconnection (swapping) and node smoothing operators. Element swapping
is performed using the generalized swapping technique of Alauzet.30 Node movement is performed using a
local optimization technique to maximize a metric-based cell quality objective function. Edge lengths in
EPIC are computed with numerical integration of Eq. (3) instead of assuming a linear variation of the metric
M in log-Euclidean space. EPIC grids using three sets of mesh operators are presented: only insertion and
collapse (EPIC-IC); insertion, collapse, and swap (EPIC-ICS); insertion, collapse, swap, and node movement
(EPIC-ICSM).

IV. Prescribed Metric Fields

To examine the grid adaption step of Fig. 1 in isolation, 2D and 3D versions of an analytic metric field
are used to evaluate the grid adaptation mechanics on a unit Cartesian domain in the following subsections.

IV.A. Analytic 2D Metric Field

The BAMG, refine/two, and Feflo.a grid adaptation processes are applied to an analytically defined (on
the domain x = [0, 1] and z = [0, 1]) 2D metric field given by

M =

(
h−2

1 0
0 h−2

2

)
where

h1 = 0.1

h2 = 0.001 + 0.198 |z − 0.5|
. (16)

The metric is provided at the nodes of an initial coarse grid. The grid is adapted to the metric on this
grid and then the analytic metric is evaluated on the new grid. This process, where the analytic metric is
evaluated at the nodes and the grid is adapted, is repeated nine times. By this point, the grid adaptation
cycle has reached steady state. The final grids are shown in Fig. 2. Histograms of edge length ` in M
evaluated on the final grids are provided for these methods in Fig. 3 and statistics on these final grid edge
lengths are shown in Table 1. Distributions in Fig. 3 that appear more narrow and peaked produce lower
values of the moments in Table 1.

The minimum and maximum edge lengths are comparable for all methods, and bounded by the range of
refine/two between 0.601 and 1.472. BAMG has a slightly smaller mesh with a vast majority of the edges near
unit length in the metric. The methods produce grids with node counts of 0.597 to 0.723 of the complexity
for this 2D metric. The theoretical minimum for the ratio of nodes to complexity is

1
2

π√
12

= 0.45345, (17)

where 1/2 is the ratio of nodes to triangles in an infinite 2D grid with an average node degree of six and
π/
√

12 is the density of triangles in an ideal Delaunay grid (also true for a constant metric field and ideal
mapped Delaunay grid).31 BAMG produced a grid with a node count that is closest to this theoretical limit. It
also had the best statistics in terms of mean and higher order moments, which can be observed qualitatively
in the Fig. 3 histograms.
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Table 1. 2D linear metric properties.

Mechanics Nodes Complexity Ratio Min Edge Max Edge Mean Higher-order statistics
N C N/C min(`) max(`) 2µ µ2 µ3 µ4

BAMG 830 1390.2 0.597 0.683 1.436 1.039 0.0277 -0.0007 0.0024
refine/two 1005 1389.9 0.723 0.601 1.472 0.950 0.0797 -0.0023 0.0149
Feflo.a 941 1389.1 0.713 0.617 1.413 0.948 0.0459 0.0026 0.0055

(a) BAMG. (b) refine/two.

(c) Feflo.a.

Figure 2. Final adapted grids for the 2D linear metric.

6 of 30

American Institute of Aeronautics and Astronautics



0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.35-0.40

0.40-0.45

0.45-0.50

0.50-0.56

0.56-0.63

0.63-0.71

0.71-0.79

0.79-0.89

0.89-1.00

1.00-1.12

1.12-1.26

1.26-1.41

1.41-1.59

1.59-1.78

1.78-2.00

2.00-2.24

2.24-2.52

edge-ratio

(a) BAMG.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.35-0.40

0.40-0.45

0.45-0.50

0.50-0.56

0.56-0.63

0.63-0.71

0.71-0.79

0.79-0.89

0.89-1.00

1.00-1.12

1.12-1.26

1.26-1.41

1.41-1.59

1.59-1.78

1.78-2.00

2.00-2.24

2.24-2.52

edge-ratio

(b) refine/two.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.35-0.40

0.40-0.45

0.45-0.50

0.50-0.56

0.56-0.63

0.63-0.71

0.71-0.79

0.79-0.89

0.89-1.00

1.00-1.12

1.12-1.26

1.26-1.41

1.41-1.59

1.59-1.78

1.78-2.00

2.00-2.24

2.24-2.52

edge-ratio

(c) Feflo.a.

Figure 3. Histogram of edge length in 2D linear metric.
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IV.B. Analytic 3D Metric Field

The Feflo.a, refine/one, refine/two, and multiple EPIC grid adaptation tools are applied to a 3D ana-
lytically defined (on the domain x = [0, 1], y = [0, 1], and z = [0, 1]) metric field given by

M =

 h−2
x 0 0
0 h−2

y 0
0 0 h−2

z

 where


hx = 0.1

hy = 0.1

hz = 0.001 + 0.198 |z − 0.5|

. (18)

As in the 2D case, the metric is provided at the nodes of an initial coarse grid. The grid is adapted to the
metric on this grid and the process is repeated until the process converges. The final grids are shown in
Fig. 4. Histograms of edge length ` in M are provided for the two methods in Fig. 5. Statistics on these
final grids are shown in Table 2.

The ratio of the number of nodes to the complexity is near 2, which is expected by theory9 and numerical
experiments.10 The Feflo.a grid is the smallest and has a large majority of near unity length edges in
the metric space. Both versions of refine produce grids with more nodes than Feflo.a and a significant
population of edges shorter than unity are shown in the histogram and minimum edge length in metric
space. The ability of Feflo.a to prevent the creation of short edges or to remove existing short edges may
be enhanced by the cavity operator.32 The methods that include node movement (Feflo.a, refine/one,
and EPIC-ICSM) tend to produce the histograms in Fig. 5 with a more peaked distribution. The methods
without node movement (refine/two, EPIC-IC and EPIC-ICS) tend to produce a uniform distribution of
edge lengths between their internal edge length limits.

The addition of element swapping and node smoothing improves the statistics of the EPIC-IC algorithm.
The long edges in the EPIC meshes can be attributed to the edge length computation method that EPIC uses
compared to Feflo.a and refine. Statistics for the EPIC grid using the quadrature based edge lengths are
shown in the last three lines in Table 2. When the edge lengths are evaluated using the quadrature based
method consistent with the EPIC formulation, the maximum edge lengths become consistent with the other
methods.

Statistics for the EPIC edge lengths reported in Table 2 are computed with two methods. The first set
are computed with Eq. (4), which is consistent with refine and Feflo.a. The second set with the footnote
are computed using numerical integration of Eq. (3), which is consistent with EPIC’s internal calculations.
The numerical integration approach is more accurate where the edge and metric principle directions are not
aligned. The maximum and minimum edge lengths produced by EPIC are longer than refine. This reflects
a design choice in the EPIC implementation that accepts a slightly longer edge if splitting that edge creates
a very short edge. The addition of element swapping and node smoothing improves the statistics relative to
EPIC-IC.

Table 2. 3D linear metric properties.

Mechanics Nodes Complexity Ratio Min Edge Max Edge Mean Higher-order statistics
N C N/C min(`) max(`) 2µ µ2 µ3 µ4

Feflo.a 8933 4668.6 1.91 0.449 1.804 1.011 0.0597 -0.0031 0.0086
refine/one 9981 4670.3 2.14 0.078 1.799 0.952 0.1932 -0.0506 0.1341
refine/two 12868 4673.8 2.75 0.065 1.500 0.977 0.1423 -0.0414 0.1217
EPIC-IC 9524 4671.4 2.04 0.149 3.483 1.024 0.1227 -0.0112 0.0435
EPIC-ICS 9612 4670.2 2.06 0.324 3.051 1.005 0.1120 -0.0054 0.0314
EPIC-ICSM 9018 4669.9 1.93 0.391 2.439 1.019 0.0902 -0.0094 0.0215
EPIC-IC # 9524 4671.4 2.04 0.149 2.201 1.022 0.1209 -0.0113 0.0414
EPIC-ICS # 9612 4670.2 2.06 0.324 2.137 1.004 0.1113 -0.0059 0.0306
EPIC-ICSM # 9018 4669.9 1.93 0.391 1.907 1.018 0.0900 -0.0095 0.0214
# These edge length statistics utilize numerical integration of Eq. (3), which is consistent with EPIC formulation. Other lines

use Eq. (4).
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(a) Feflo.a. (b) refine/one.

(c) refine/two. (d) EPIC-IC.

(e) EPIC-ICS. (f) EPIC-ICSM.

Figure 4. Final adapted grids for the 3D linear metric.
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Figure 5. Histogram of edge length in 3D linear metric.
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V. Output-Based Adaptation

Now that the adaptive mechanics has been evaluated with an analytic metric, the solution adaptive cases
are examined. In this study, we consider only peace-wise linear geometries in 2D and 3D to avoid the surface
approximation differences of these mesh generators.

V.A. Diamond Airfoil in 2D Supersonic Flow

A 2D diamond airfoil with a thickness of 0.07 is simulated in a supersonic inviscid flow with a Mach number
of 2. The BAMG method is used to construct an initial coarse grid and a sequence of 20 grids with increasing
complexity is computed with BAMG and refine/two. The complexity C2Diam and maximum aspect ratio
AR2Diam are scheduled as

C2Diam = min(1000c, 10000) (19)

and
AR2Diam = 10, (20)

where c is the adaptive cycle index
The final grids for the drag adaptation are shown in Fig. 6. The difference in drag of the final grid

between the four methods is 0.00000174 (0.015 percent), see Table 3. The drag for this series of grids with
increasing complexity are shown in Fig. 7. Drag computed on the INRIA Opt-Goal metric adapted grids
approach the final drag more rapidly than drag computed on the Venditti metric adapted grids, and the
BAMG method is able to produce grids that are closer to the requested complexity.

(a) BAMG with Venditti metric. (b) BAMG with Opt-Goal metric.

(c) refine/two with Venditti metric. (d) refine/two with Opt-Goal metric.

Figure 6. Final adapted grids for the 2D diamond airfoil.
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Table 3. 2D diamond airfoil.

Mechanics Error Estimation Drag Nodes Complexity Ratio
CD N C N/C

BAMG Venditti 0.01133900 10964 10000 1.10
BAMG Opt-Goal 0.01134039 10518 10000 1.05
refine/two Venditti 0.01133865 14136 10000 1.41
refine/two Opt-Goal 0.01134025 14499 10000 1.45
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(a) Drag as function of degrees of freedom (N).
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(b) Drag as function of h = N−1/2.

Figure 7. Drag convergence for the 2D diamond airfoil.
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V.B. Diamond Airfoil Extruded to 3D in Supersonic Flow

A diamond airfoil with a span of one and a thickness of 0.07 is extruded to unit span in 3D supersonic
inviscid flow with a Mach number of 2. The initial BAMG grid from the 2D case is extruded unit span to
form two prisms from each triangle. This results in two symmetry planes and a center plane in the domain
interior. This center plane enhances Hessian reconstruction accuracy, which degrades on boundaries. The
extruded prisms are subdivided into the tetrahedra required by the simplex adaptation mechanics. The final
grid sizes and drag values are shown in Table 4. The final symmetry plane grids for the drag adaptation
are shown in Fig. 8. The drag for this series of grids with increasing complexity are shown in Fig. 9. The
initial complexity is specified as 10,000 for the first ten adaptive cycles. This complexity is raised to 20,000,
40,000, and 80,000 after every 10 subsequent adaptive cycles. Aspect ratio is not limited. The Venditti
metric and the Opt-Goal metric are used for these cases. Feflo.a and refine/two are run sequentially, but
refine/one is run on 8 cores with a domain decomposition scheme26 and EPIC is run with 127 cores.

As seen in Fig. 9, refine/one converged more slowly than the other methods to a specified grid size and
drag. The Feflo.a method produces smaller grids for a given complexity and has a drag values closer to
the 2D results. The EPIC-ICS method produces results similar to refine/two. There is a larger variation in
drag (0.044 percent) between the adapted 3D grids than the 2D adaptive grids (0.015 percent). Finer grids
could be attempted to verify that these methods are converging to the same drag value, because convergence
to a common drag value is not obvious at this error level. Figure 9(b) indicates that the drag is increasing
more rapidly for the Venditti error estimate adapted grids. As in the 3D analytic metric case, the ratio of
the number of nodes to the complexity is near 2, which is expected by theory9 and numerical experiments.10

Table 4. 3D extruded diamond airfoil.

Mechanics Error Estimation Drag Nodes Complexity Ratio
CD N C N/C

Feflo.a Venditti 0.01133797 142026 80000 1.78
refine/one Venditti 0.01133649 198679 80000 2.48
refine/two Venditti 0.01133657 177023 80000 2.21
EPIC-ICS Venditti 0.01133698 156656 80000 1.96
EPIC-ICSM Venditti 0.01133738 154286 80000 1.93
Feflo.a Opt-Goal 0.01134097 159740 80000 2.00
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(a) Feflo.a with Venditti metric. (b) refine/one with Venditti metric.

(c) refine/two with Venditti metric. (d) EPIC-ICS with Venditti metric.

(e) EPIC-ICSM with Venditti metric. (f) Feflo.a with Opt-Goal metric.

Figure 8. Final adapted symmetry plane grids for the 3D extruded diamond airfoil.
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Figure 9. Drag convergence for the 3D extruded diamond airfoil.
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V.C. Laminar Delta Wing (3D)

The 3D Laminar Delta Wing case is described by Wang et al.33 as part of its inclusion in all three of the
International Workshops on High-Order CFD Methods to date. Adaptive results where originally presented
by Leicht and Hartmann.34 Drag and drag error are shown in Fig. 10. The reference drag used to compute
drag error, Creference

D = 0.1656025, is the drag computed on a twice embedded final Feflo.a grid with
10,853,343 nodes. The spacing h in the drag error plot is estimated using the suggestion of workshop
problem description, h = N−1/3.

The same complexity schedule of the 3D extruded diamond airfoil is used in this example, which is 10,000,
20,000, 40,000, and 80,000 for ten cycles each. The HANIM solution scheme is required to reach a converted
steady-state residual on the two finest complexities. Feflo.a and refine/two are run sequentially, but
refine/one is run on 8 cores with a domain decomposition scheme26 and EPIC-ICS is run with 191 cores.
Drag (Fig. 10) converges less rapidly in this case than the 3D Extruded Diamond Airfoil, which may be
caused by the strong nonlinearities of this problem. The drag error is lower for a given number of degrees
of freedom (DOF) than the errors of the higher-order methods summarized by Wang et al.33 One possible
explanation is the nominally second-order FUN3D method on adaptive grids may be resolving singularities
that are not resolved by the workshop provided grids.

Views of the final surface grid are provided for refine/one (Fig. 11), refine/two (Fig. 12), Feflo.a
(Fig. 13), and EPIC-ICS (Fig. 14). These grids look very similar and clearly resolve the footprint of the
leading-edge vortex on the upper surface of the delta wing. There is some slight clumping of the grid in the
vicinity of the wing and symmetry plane intersection, which is suspected to be caused by noise from Hessian
reconstruction.

Overall, the final anisotropic adapted surface grids have a very similar appearance for all four methods.
The drag error for this case is converging and is lower (for a given number of degrees of freedom) than the
uniform grids of the High-Order CFD workshop.

16 of 30

American Institute of Aeronautics and Astronautics



DOF

C
D

104 105 106
0.162

0.164

0.166

0.168

Venditti-refine/one
Venditti-refine/two
Venditti-Feflo.a
Venditti-EPIC-ICS

(a) Drag as function of degrees of freedom.

h

C
D
-C

Dre
fe

re
nc

e

10-2 10-1 100
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Venditti-refine/one
Venditti-refine/two
Venditti-Feflo.a
Venditti-EPIC-ICS

(b) Drag as function of h.

Figure 10. Drag and drag error convergence for the Laminar Delta Wing.
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(a) Upper wing surface intersection with symmetry plane.

(b) Upper wing surface.

Figure 11. Final refine/one adapted grids for the Laminar Delta Wing.
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(a) Upper wing surface intersection with symmetry plane.

(b) Upper wing surface.

Figure 12. Final refine/two adapted grids for the Laminar Delta Wing.
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(a) Upper wing surface intersection with symmetry plane.

(b) Upper wing surface.

Figure 13. Final Feflo.a adapted grids for the Laminar Delta Wing.
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(a) Upper wing surface intersection with symmetry plane.

(b) Upper wing surface.

Figure 14. Final EPIC-ICS adapted grids for the Laminar Delta Wing.
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V.D. Turbulent Flat Plate (2D)

This case is described on the Turbulence Modeling Resource5 in the turbulence model numerical analysis
section as the 2D Finite Flat Plate Validation Case. The geometry and boundary conditions are reproduced
in Fig. 15. The Spalart-Allmaras (SA)35 turbulence model is used for this case. This case has a length of
symmetry boundary conditions before and after the no-slip plate to create more distance between these sim-
ilarities and the inflow and outflow boundaries. This case has been examined with uniform grid refinement36

and adaptive grids.37

The complexity Cplate and maximum aspect ratio ARplate are scheduled as

Cplate = min(4000c, 80000) (21)

and
ARplate = 20.5c, (22)

where c is the adaptive cycle index.
Drag convergence is shown in Fig. 16 for the first 23 grids. The series of adaptive grids appear to

have a similar trajectory to CFL3D. This is suspected to be a coincidence, because other simulations (not
shown) took a slightly different path. The Hessian recovery failed the on the 24th grid, computing not a
number (NaN). The standard and 128-bit versions of BAMG is also applied (not shown), but failed on 8th
grid adaptation when it was unable to find an enclosing triangle for inserting a new point. Skin friction is
shown in Fig. 17 and profiles of velocity and eddy viscosity are shown in Fig. 18. The coarse isotropic initial
grid and 23rd adapted grid are shown in Fig. 19. Zoom of grid near the end of the plate is shown in Fig. 20.
The z-axis as been scaled and AR is limited with Eq. (22), which makes the grid appear nearly isotropic in
Fig. 20. This vertical scaling identifies triangles with lower aspect ratio (i.e., vertical stretching on the lower
boundary).

The skin friction computed on the adapted grid is similar to the skin friction calculated on structured
grids. The adapted grid skin friction is linear closer to the leading edge of the plate than the structured
grid results, see Fig. 17(a) and (b). There is a small amount of noise in the adapted grid skin friction.
The locations of the noise appear to correspond to the locations of the lower aspect ratio clumps on the
lower boundary seen in Fig. 20. These may be a result of Hessian recovery issues. The u-velocity profile is
indistinguishable from the structured grid results in Fig. 18(a). The largest deviation in the turbulent eddy
viscosity profile is very close to the plate, see Fig. 18(b). The adaptive result shows no undershoot at the
edge of the boundary layer. The adaptive scheme uses first-order convection for the turbulence model and
the uniformly refined schemes use second-order convection.

The small areas of grid clumping are suspected Hessian recovery issues on the lower boundary of Fig. 20.
Without replacing Hessian recovery with averaging from the interior, inconsistent aspect ratios are requested,
which produced grids with high amounts of noise in skin friction that stall the convergence of drag (not
shown). This may be a contributing issue for the lower aspect ratio grid on the boundary exhibited by
the equivalent FFMA method, which was reported by Yano and Darmofal.38 Previous simulations did
not converge the mean flow equations as well as the current simulation presented here. The remaining
iterative error in these simulations is amplified by the Hessian recovery method and produces elements with
inappropriate stretching and orientation in the interior (not shown). The “double L2-projection” Hessian
recovery method produced less noise than applying an unweighted least squares gradient reconstruction
method11 twice (not shown).
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Figure 15. Turbulent flat plate geometry description.5

h=sqrt(1/N)

C
D

0 0.002 0.004
0.002860

0.002865

0.002870

0.002875

0.002880

CFL3D
FUN3D
TAU
Venditti-refine/two

Figure 16. Turbulent flat plate drag convergence.
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Figure 17. Turbulent flat plate skin friction.
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(b) Turbulent eddy viscosity profile at X = 1.

Figure 18. Turbulent flat plate profiles.
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(a) Upper wing surface intersection with symmetry plane.

(b) Upper wing surface.

Figure 19. Turbulent flat plate initial and final grids.
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Figure 20. Turbulent flat plate final grid (zoomed and scaled vertically).

VI. Observations

Having a metric field that is realizable (can be reasonably approximated by a discrete grid) is critical
to robustness of grid adaptation mechanics. Having a metric field that describes a new mesh that better
approximates the continuous solution is critical to robustness of the entire adaptive process. The adaptive
process can be made more robust to poorly sized or shaped elements by eliminating the direct dependency
on the current grid spacing or the metric of the current grid simplicies (i.e., Opt-Goal metric).

Gradation control reduces discontinuous features and noise in the metric to improve the realizablity
of the metric field. Hessian reconstruction, particularly on the boundary of the domain, is important for
constructing a high quality metric field. To alleviate the known reduction in Hessian reconstruction accuracy
on the boundary, the boundary Hessian reconstruction is replaced with averaging from the interior. This
boundary reconstruction created a need for a center node in the extruded airfoil 3D case for averaging the
Hessian to the symmetry planes.

A strong iterative solver for the flow and adjoint solution is critical for the robustness of the complete
adaptation cycle. The flow solution must be converged well or iterative error can be amplified by Hessian
recovery. When this Hessian is used to construct a metric, elements with low aspect ratio and inappropriate
orientation can be created for the turbulent flat plate case.

The adaptive methods evaluated have ranges defined for acceptable long and short edges in the metric.
These methods modify the grid in the neighborhood of these edges that are outside this acceptable range to
produce a grid that conforms to the metric specification. The neighborhood of acceptable length edges are
not modified. The choice of the acceptable length range in each scheme affects the statistics of edge length
in the resultant adapted grid.
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The implementation of the Opt-Goal metric and gradation limiting in FUN3D required detailed discus-
sions with the authors of these methods. The availability of the test cases and results from this paper could
make the implementation task easier and confirm correctness for these implementations. A database of grid
adaptation examples would encourage the application of the Scientific Method39 to speed the development
of solution adaptive methods. Development of both turbulence modeling6 and flight vehicle simulations40

has been significantly impacted by this approach, which justifies the expenditure of effort to build these
databases.

VII. Recommendations

Further development of a verified, validated, fast, and robust flow and adjoint solvers is required for
the use of high aspect ratio anisotropic grids to compute turbulent simulations. Further examination and
development of Hessian recovery is needed (especially near boundaries and in the presence of iterative error).
This issue could be circumvented with a metric that does not require Hessian recovery.4

Gradation control implementations should be investigated by specifying a discontinuous metric and ex-
amining the resulting grids after the application of gradation control. To extend the use of statistics to
solution adaptive grids, the metric can be interpolated to the adapted grid and the edge length statistics can
be computed. Statistics of the conformity24 of the adapted grid to the metric field can also be computed
with this interpolated metric.

This paper has focused on simplex grid adaptation for planar geometries. There is an acute need for
turbulent simulations of geometries with high curvature and complex topologies. New test cases should be
constructed to address these needs (i.e., a more challenging analytic metric with high anisotropy intersecting
a curved boundary). This paper utilized sequential execution with the exception of refine/one and EPIC.
Evaluation of the scaling and correctness of parallel execution schemes for the grid mechanics are also required
for large scale simulation.

VIII. Conclusions

An adaptive process is described and adaptive mechanics are evaluated by statistics of edge lengths in
2D and 3D analytic metric fields. Euler, laminar, and turbulent solution adaptive cases are investigated
with the adaptive mechanics. Important components of each step in the process are highlighted: flow solver
robustness, Hessian recovery (particularly near boundaries), and gradation control. These concrete test cases,
evaluated by each author, fostered detailed discussions about low-level implementation details between the
authors. Hopefully, this paper will encourage follow-on papers, future organized paper sessions at conferences,
a workshop, a website, or other dissemination of tests cases and results to spur future development of solution
adaptive methods.
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7Peraire, J., Peirò, J., and Morgan, K., “Adaptive Remeshing for Three-Dimensional Compressible Flow Computations,”

Journal of Computational Physics, Vol. 103, No. 2, 1992, pp. 269–285.
8Alauzet, F., “Size Gradation Control of Anisotropic Meshes,” Finite Elements in Analysis and Design, Vol. 46, No. 1–2,

2010, pp. 181–202.
9Loseille, A. and Alauzet, F., “Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error,” SIAM

Journal on Numerical Analysis, Vol. 49, No. 1, 2011, pp. 38–60.
10Loseille, A. and Alauzet, F., “Continuous Mesh Framework Part II: Validations and Applications,” SIAM Journal on

Numerical Analysis, Vol. 49, No. 1, 2011, pp. 61–86.
11Anderson, W. K. and Bonhaus, D. L., “An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured

Grids,” Computers and Fluids, Vol. 23, No. 1, 1994, pp. 1–22.
12Biedron, R. T., Derlaga, J. M., Gnoffo, P. A., Hammond, D. P., Jones, W. T., Kleb, B., Lee-Rausch, E. M., Nielsen,

E. J., Park, M. A., Rumsey, C. L., Thomas, J. L., and Wood, W. A., “FUN3D Manual: 12.6,” NASA TM-2015-218690, Langley
Research Center, March 2015.

13Nielsen, E. J., Aerodynamic Design Sensitivities on an Unstructured Mesh Using the Navier-Stokes Equations and a
Discrete Adjoint Formulation, Ph.D. thesis, Virginia Polytechnic Institute and State University, 1998.

14Nielsen, E. J., Lu, J. C.-C., Park, M. A., and Darmofal, D. L., “An Implicit, Exact Dual Adjoint Solution Method for
Turbulent Flows on Unstructured Grids,” Computers and Fluids, Vol. 33, No. 9, 2004, pp. 1131–1155.

15Eisenstat, S. C., Elman, H. C., and Schultz, M. H., “Variational Iterative Methods for Nonsymmetric Systems of Linear
Equations,” SIAM Journal on Numerical Analysis, Vol. 2, April 1983, pp. 345–357.

16Pandya, M. J., Diskin, B., Thomas, J. L., and Frink, N. T., “Improved Convergence and Robustness of USM3D Solutions
on Mixed Element Grids,” AIAA Paper 2015–1747, 2013.

17Loseille, A., Dervieux, A., and Alauzet, F., “Fully Anisotropic Goal-Oriented Mesh Adaptation for 3D Steady Euler
Equations,” Journal of Computational Physics, Vol. 229, No. 8, 2010, pp. 2866–2897.

18Venditti, D. A., Grid Adaptation for Functional Outputs of Compressible Flow Simulations, Ph.D. thesis, Massachusetts
Institute of Technology, 2002.

19Picasso, M., Alauzet, F., Borouchaki, H., and George, P.-L., “A Numerical Study of Some Hessian Recovery Techniques
on Isotropic and Anisotropic Meshes,” SIAM Journal on Scientific Computing, Vol. 33, No. 3, 2011, pp. 1058–1076.

20Vallet, M.-G., Manole, C.-M., Dompierre, J., Dufour, S., and Guibault, F., “Numerical comparison of some Hessian
recovery techniques,” International Journal for Numerical Methods in Engineering, Vol. 72, No. 8, 2007, pp. 987–1007.

21Park, M. A., “Adjoint–Based, Three–Dimensional Error Prediction and Grid Adaptation,” AIAA Journal , Vol. 42, No. 9,
Sept. 2004, pp. 1854–1862.

22Park, M. A., “Three–Dimensional Turbulent RANS Adjoint–Based Error Correction,” AIAA Paper 2003–3849, 2003.
23Park, M. A., Anisotropic Output-Based Adaptation with Tetrahedral Cut Cells for Compressible Flows, Ph.D. thesis,

Massachusetts Institute of Technology, Sept. 2008.
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