

Development of Logistics for Building Radiation Storm Shelters and their Operational Evaluation

Jeffrey A. Cerro NASA Langley Research Center, Vehicle Analysis Branch Space 2015, 31st August – 2nd September 2015, Pasadena CA

The Storm Shelter Project

- A part of NASA's Advanced Exploration Systems (AES) Radiation Works (RadWorks) Project
- This paper summarizes year 3 of the 3 year RadWorks Storm Shelter program
 - FY12 Trade Space Screening and Concept Selection
 - FY13 Concept development and Use Definition
 - FY14 Complete Concept Development and Usage Evaluation

From FY12 Storm Shelter Tradespace Analysis

From FY13 Concept Definition and Development

FY14 Concept Development and Testing Reusable Logistics (RL) and Crew Quarters (CQ) waterwall

FY14 Concept Development and Testing Reusable Logistics

Logistics for Protection - Food Storage Pouches

- Storage of food, trash bricks, misc. items
- 3.9 in. x 8.0 in wide x 7.8 in. high
- Z-Fold single and double column configurations
- Double Column fills width of MCTB

Logistics for Protection – Contingency Water Containers

- Approx. 3.9 in. dp x 19.0 in wide x 14.2 in. high
- 4.5 gal containers in single column Z-Fold arrangement
- Air filled mockups used in Human Factors evaluations
- 5 cells fill a double MCTB

ISS ICWC

Storm Shelter ICWC

Logistics for Protection – Cargo Transfer Bags

- Utilization of NASA JSC Logistics to Living Program Modified Cargo Transfer Bags (MCTB's)
- Provides
 - Initial stowage of logistics
 - backing / covering face for logistics placement

Logistics for Protection – Common Protection Containers

Logistics for Protection – Miscellaneous items

ATA	TR
Sev 1111	

Thermostabilized food

Storm Shelter "Bulk Overwrap Bag"

Thermostabilized food and Heat Melt Compacted Bricks in FSP's

Staging of FSP packaged items in an MCTB

FY14 Concept Development and Testing Crew Quarters (CQ) Based

- Waterwall and Pantry features
 - Bladder and Positive Expulsion Device Demonstration
- Automated Water Management and Potable Water Dispenser mockup interface

Waterwall Component Types

Bladder

- 8.0 in. dp. x 14.0 in. high x 30.0 in. wide
- 14.5 gal. capacity

Positive Expulsion Device

- 3.5 in. dp. x 16.3 in. high x 29.8 in. wide
- 6.8 gal. capacity

Water Wall - Tablet Interface

Status

Additional CQ operations – Pantry

 Use of common dimension and miscellaneous fill logistics in a CQ Pantry

Human Factors Evaluation - Process

- NASA LaRC Institutional Review Board approved evaluation process
- 12 teams
 - 6 Two crew teams RL testing
 - 6 Single crew RL testing
 - 8 Single crew CQ testing
- For each experiment
 - 1/2 provided general guidance and written instructions
 - ½ provided general guidance only

Human Factors Evaluation – Test Sessions

- 10 and 20 min time proposed as the SPE warning period (desired time to complete shelter build)
- Instructed to behave as if in 0 g environment.
- Consideration given also to shelter quality to balance the time criterion
 - Minimize gaps and poor distribution/placement of protection items
- 3 sessions per experiment run, to assess learning improvement effect

Human Factors Evaluation - Measures

Data captured

- Video data
- Time on task
- Reference to instruction
- Motion data Actigraphy results

Human Factors Evaluation – subject evaluations

Post test questionnaires to quantify crew assessment of shelter builds

- Temporal demand, acceptability of completion in 10 / 20 mins
- Mental demand
- Physical demand
- Perceived performance
- Effort
- Frustration
- Acceptability
- Exertion/Discomfort
- Dexterity Required
- Envisioned vs evolved assessment
- Degree of protection (completeness)
- Appropriateness of instructions
- CQ software useability

Human Factors Evaluation - Measurements

Example factor measurements – Reconfigurable Logistics

Human Factors Evaluation - Measurements

Example factor measurements – Crew Quarters

Human Factors Evaluation - Observations

- 20 min build time acceptable
- 10 min build time acceptable for 2-Crew Reconfigurable Logistics shelter build, not acceptable for Crew Quarters water wall shelter
- 2-Crew Reconfigurable Logistics shelter build
 - Less physical and mental exertion, more confidence in finished quality
- Certain tasks proceed as well with / without instruction
 - Pantry fill
- Instructions
 - Useful for complex operations
 - can slow operations in intuitive procedures
- Water wall operations
 - Flagged with some degree of ambiguity in the tablet interface
- Repetitive task training definitely shown to improve speed/quality
- Design for Operations proven as a good practice (Crew involvement in design ²² features)

Additional and Future Activities

Demonstration area integration

 Completed Integration into LaRC 3m dia. X 10m lg. Inflatable Habitat

Additional and Future Activities

Hallway Option: Shelter Configuration By Logistic

Upper 95th Percentile REID vs. Effective Dose Long missions (365 and 600 days) - Solar maximum GCR environment with SPE (August '72 King fit) beyond low Earth orbit (LEO)

Discrete Event Simulation of Mission Operations

Application of REID to Concept Development

RadWorks Outreach in FY14

New Astronaut Candidates Tour the Storm Shelter Lab

- Teams at LaRC and JSC participated in filming multiple documentaries for BBC and the Science Channel related to travels to Mars and overcoming challenges of Space Radiation.
- LaRC team presented Shelter Concepts to the new Astronaut Candidates, NASA Chief Scientist, and NASA Advisory Committee throughout the year during center visits.

The Science Channel Filming the Water Wall Shielding System

Conclusions

- Logistics materials and operating equipment fabricated and tested
 - RL (logistics) and CQ (waterwall / logistics)
- Finished components integrated into a demonstration habitat facility available for future taskwork.
- Component shape/size requirements of common dimension are useful, likely a function of chosen habitat design/layout
- Design shelter building for intuitive operations
- Design with increased user involvement as habitat concepts become clearer
- Provide adequate training
- Greater development of validated DES models by operations testing would be a useful habitat design resource
- Influence of Zero gravity desired
 - ISS, neutral buoyancy, parabolic flight

Acknowledgement - The Storm Shelter Team

- Project Manager Bobbie Gail Swan NASA / JSC
- Principal Investigator Eddie Semones, NASA / JSC

Last	First	Responsibility	Supporting Organization	
Abston	Lee	HDU CAD model	NASA LaRC – Engineering Directorate	
		developer		
Albertson	Cindy	Analyst - CQ Lead	NASA LaRC - Systems Analysis and Concepts Directorate	
Andrews	Rob	Fabrication	NASA LaRC – Engineering Directorate	
Araiza	Sherry	Resource Analyst	NASA LaRC – Office of the Chief Financial Officer	
Castle	David	Design	NASA LaRC – Engineering Directorate	
Cerro	Jeff	Technical Lead	NASA LaRC - Systems Analysis and Concepts Directorate	
Clark	Terry	Design - Crew	NASA LaRC – Engineering Directorate	
		Quarters		
Clowdsley	Martha	Radiation Analysis	NASA LaRC – Research Directorate	
Connolly	Heidi	Configuration	NASA LaRC Safety and Mission Assurance Office	
		Management		
Gallegos	Adam	CAD modeling	Lockheed Martin Corp.	
Hintermeist	Nicole	Scheduling	NASA LaRC Space Technology and Exploration Directorate	
er				
James	Sam	Fabrication	NASA LaRC – Engineering Directorate	
Jordan	Tommy	Technical Lead	NASA LaRC – Engineering Directorate	
Kevin	Krohto	Fabrication	NASA LaRC – Engineering Directorate	
Langford	Mike	Design	NASA LaRC – Engineering Directorate	
Latorella	Kara	Human Factors	NASA LaRC - Research Directorate	
Le Boffe	Vincent	Design/Fabrication	NASA LaRC – Engineering Directorate	
McLain	Kevin	Fabrication	NASA LaRC – Engineering Directorate	

28

Acknowledgement - The Storm Shelter Team

Last	First	Responsibility	Supporting Organization
Moore	David	Deputy Project Manager -	NASA LaRC – Engineering Directorate
		RadWorks	
Moses	Bob	SE&I	NASA LaRC – Engineering Directorate
Neubauer	Ken	Risk Management	NASA LaRC Safety and Mission Assurance Office
Noble	Lee	Systems Engineering and Int	NASA LaRC – Engineering Directorate
Oneil	Teresa	Lab Activities	NASA LaRC – Research Directorate
Piske	Andrew	Configuration Management	NASA LaRC Safety and Mission Assurance Office
Scharf	Shawn	Risk Management NASA LaRC Safety and Mission Assurance Office	
Schneider	Nigel	Design NASA LaRC Engineering Directorate	
Shea	Ed	Risk Management NASA LaRC Safety and Mission Assurance Office	
Simon	Matt	Systems Engineering, Habitat Design	NASA LaRC - Systems Analysis and Concepts Directorate
Singleterry	Robert	Radiation Analysis	NASA LaRC – Research Directorate
Smith	Don	Fabrication	NASA LaRC – Engineering Directorate
Thibeault	Sheila	Radiation/Design Consulting	NASA LaRC – Research Directorate
Tomek	Debi	LaRC Project Manager	NASA LaRC – Space Technology and Exploration Directorate
Vitullo	Nick	Design/Radiation Analysis	NASA LaRC Engineering Directorate
Walker	Steve	Radiation Analysis	NASA LaRC – Research Directorate
Watson	Judith	Reconfigurable Logistics NASA LaRC – Research Directorate Concept Design	
Werner	Jeff	Mechanical/Plumbing	NASA LaRC – Engineering Directorate
Whitlow	Dustin	Design/Radiation Analysis	TEAMS2 - NASA LaRC – Engineering Directorate
Wittkopp	Charles	Design/Radiation Analysis	NASA LaRC – Engineering Directorate
Mclain	Kriss	Fabrication	NASA LaRC – Engineering Directorate
Hester	Jack	Fabrication	NASA LaRC – Engineering Directorate
Guild	Kathryn	Media Services	NASA LaRC - Office of the Chief Information Officer
Lorkiewicz	Rob	Media Services	NASA LaRC - Office of the Chief Information Officer
Tury	Jacob	Fabrication	NASA LaRC – Engineering Directorate
Mayhew	Frank	Fabrication	NASA LaRC – Engineering Directorate

The World's Forum for Aerospace Leadership