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ABSTRACT 

A simple continuum damage mechanics (CDM) based 3D progressive damage 

analysis (PDA) tool for laminated composites was developed and implemented as a 

user defined material subroutine to link with a commercially available explicit finite 

element code. This PDA tool uses linear lamina properties from standard tests, 

predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, 

and in the damage evolution phase, evaluates the degradation of material properties 

based on the crack band theory and traction-separation cohesive laws. It follows 

Matzenmiller et al.’s formulation to incorporate the degrading material properties 

into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain 

relations are not implemented, correction factors are used for slowing the reduction 

of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the 

laminate strength predictions. This CDM based PDA tool is implemented as a user 

defined material (VUMAT) to link with the Abaqus/Explicit code. Strength 

predictions obtained, using this VUMAT, are correlated with test data for a set of 

notched specimens under tension and compression loads.  

INTRODUCTION 

Composites are lightweight and can be tailored to have superior stiffness and strength 

in loading directions. Thus, they have been widely used in primary aircraft structures. 

Composites are less damage tolerant than metals which can yield to redistribute loads. 

In addition, damage modes of composites are complex and can be difficult to detect. 

The building block approach has been used for development and certification of 

composite structures [1, 2], however, this approach is time consuming and requires a 

large quantity of costly tests. To reduce the time and cost for development and 

certification of new composite aircraft structures, high fidelity progressive damage 

analysis (PDA) tools that can reliably predict the onset of damage and damage 

progression in composite structures are needed.  
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Many PDA tools have been developed and used [3-13]; however, accurately 

predicting the failure load of a composite structure is still a very challenging problem. 

A few traditional failure criteria have been widely used for predicting the damage 

initiation, such as the maximum stress criteria, the Hashin criteria [14], Hashin-

Rotem criteria [15] and the Tsai-Wu [16] criteria. More recently developed failure 

criteria can be found in Refs. 17 to 19. There are various approaches for degrading 

ply properties in the damage evolution process [20].  For example, the stiffness of a 

damaged ply can be exponentially degraded, linearly degraded, or instantaneously 

degraded to zero [5-8]. The instantaneous degradation approach has been found to be 

too conservative and can predict lower structural strength than that determined by 

test data. Recent studies [9, 10] show that lamina property degradations after damage 

initiation can be modeled by using the crack band theory [9, 21]. The damage 

evolution process can thus be modeled as the opening of a cohesive crack. In the 

finite element analysis, the crack opening displacement is smeared into the damaged 

element using the characteristic length of the element resulting in a greater element 

strain, which in turn reduces the material property of the element. The characteristic 

length scale used in the crack band theory can also alleviate mesh dependency issues 

[22] often encountered in PDA. Furthermore, progression of damage in composite 

laminates often involves 3D stresses, including in-plane and transverse stresses. To 

include these stresses in the damage progression analysis, 3D PDA tools are required.  

In this study, a simple continuum damage mechanics (CDM) based 3D PDA tool is 

developed and implemented as a user defined material subroutine to link with a 

commercial finite element analysis software for laminated composite structures. The 

user defined material subroutine can be used as a framework for future development 

of more accurate and advanced PDA capabilities. The CDM approach [23-28] is well 

developed and easier to implement than discrete damage modeling [12, 13, 29, 30] 

approaches. In the CDM approach, damage is homogenized and treated as 

degradation of the material properties, thus no discrete cracks are modeled. This 

CDM based 3D PDA tool uses linear lamina properties from standard tests, predicts 

damage initiation with an easy-to-implement Hashin-Rotem failure criteria and in the 

damage evolution phase, evaluates the degradation of material properties based on 

the crack band theory and traction-separation cohesive laws. It follows Matzenmiller 

et al.’s formulation [28] to incorporate the degraded material properties into the 

damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations [9, 

18] are not implemented, correction factors are used for slowing the reduction of the 

damaged shear stiffnesses to reflect the effect of these nonlinearities on the laminate 

strength predictions. Furthermore, it implements length scales to alleviate the mesh 

dependency issue. A user defined material model is developed which links to a 

commercial explicit finite element analysis code for efficiently solving large linear 

and nonlinear composite structure problems. The solutions generated by this PDA 

tool are correlated with the experimental results.  
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This paper is organized as follows. First, the failure criteria used for determining the 

damage initiation in a lamina are presented. Second, the use of crack band theory and 

the traction-separation cohesive laws for determining the material property 

degradation in the damage evolution process are discussed and the conventional 

damage indices of all failure modes are defined. Third, a 3D CDM based model is 

established, using the damage indices as internal state variables. Fourth, the CDM 

equations for the development of user defined material model (VUMAT) for linking 

to Abaqus/Explicit [31] software are presented. Next, correlations of predictions with 

test data are presented.  Last, concluding remarks are given at the end of the paper. 

FAILURE INITIATION CRITERIA 

For a general three-dimensional state of stress in terms of stress acting on the three 

principal material planes, the strain-based Hashin-Rotem failure criteria [15] used for 

this study are expressed as, 
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where ii and ij ( 1,3i   and 1,3j  ) are the normal and engineering shear strains and 

the strain allowables iX ( 1,6i  ) are defined in Voigt notation as  

, 1,6i
i

i

Strength
X i

Modulus
                                                           (4) 

The first failure criterion, Eq. 1, corresponds to the fiber failure,  the second failure 

criterion, Eq. 2, corresponds to in-plane matrix dominated failure, and the third 

failure criterion, Eq. 3,  corresponds to transverse matrix failure.  

DAMAGE EVOLUTION AND DEGRADATIONS OF MATERIAL 

PROPERTIES 

Once any of the Eqs. 1 to 3 is satisfied, the corresponding fiber and matrix damage 

initiates.  The subsequent damage growth, namely, damage evolution, follows as the 

loading increases. The damage modes considered in this study are fiber tension and 

compression failure, matrix tension and compression failure, and the in-plane and 
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transverse shear failure. In this study, interlaminar delaminations are not modeled; 

the effects of delaminations on the strength predictions will be investigated in future 

studies. The evolution of each damage mode is assumed to follow a corresponding 

traction-separation law [9].  After damage initiates, it is assumed that the damage 

localizes and can be modeled as a cohesive crack within the element. As the element 

loading increases, the opening of the cohesive crack increases further. The crack 

opening displacement is smeared into the element, using the characteristic length of 

the element, resulting in increasing the element strain as shown in the Fig. 1. Using 

the crack band theory [21], the smeared strains of a damaged element are related to 

the crack opening displacements by [9] 
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where el  is a length scale for ply in-plane strains and t

el  is the length scale for ply 

transverse strains. Note that 11

C , 22

C , 33

C , 12

C , 13

C , and 23

C  are the element damage 

initiation strains, determined by Eqs. 1 to 3, which remain the same for further load 

increments. Note that the shear strains 12

C , 13

C , and 23

C  are engineering shear strains. 

In Eqs. 6-11, 
1

f , 
2

m , 
3

m , 
12

m , 
13

m  and
23

m  are the crack opening displacements and 

any incremental change in the element strain after failure initiation is entirely from 

the crack opening displacement, where 
1

f , 
2

m , 
3

m  are normal, opening mode 

displacements, and 
12

m , 
13

m  and
23

m   are shearing mode displacements. Note that in 

this study, Abaqus 3D reduced integration element, C3D8R [31], is used, thus there 

is only one integration point for each element. Consequently, el  is the square root of 

the element in-plane area, and  t

el  is the element thickness. The use of length scales 

can mitigate the dependence of the predictions on the mesh size [6, 9, 21, 22].  

Pineda and Waas [9] derived the in-plane damaged moduli using the smeared strains 

and secant cohesive stiffnesses. The detailed derivations of the degraded 2D material 

properties can be found in Ref. 9. The derivations can be extended to predict degraded 

3D lamina properties for a laminate subject to monotonic and proportional loadings. 

The damaged tensile and shear moduli of a lamina can be expressed as 



5 
 

1

11 11
11

110 1 11 11
1

1 -

( - )
1-

2

C

f C
f e C
C

FT

E
E l t

t
G



 
 

  
  

   
    

                                            (12) 

1

22 22
22

220 2 22 22
2

1 -

( - )
1-

2

C

m C
m e C
C

MT

E
E l t

t
G



 
 
 

  
  
    

 

 
                                           (13) 

1

33 33
33

330 3 33 33
3

1 -

( - )
1-

2

C

t m C
m e C
C

MT

E
E l t

t
G



 
 
 

  
  
    

 

 
                                           (14) 

1

12 12
12

120 12 12 12
12

1 -

( - )
2 1-

4

C

m C
m e C

C

IIC

G
G l t

t
G



 
 

  
  

   
    

                                         (15) 

 

  (16) 

 

1

23 23
23

230 23 23 23
23

1 -

( - )
2 1-

4

C

t m C
m e C

C

IIC

G
G l t

t
G



 
 

  
  

   
    

                                        (17) 

 

where 110E , 220E , 330E , 120E , 130E , and 230E  are the linear elastic moduli of a 

unidirectional lamina and 11E , 22E , 33E , 12G , 13G  and 23G are the degraded material 

moduli. 
FTG  and 

MTG  are the fiber and matrix tension fracture toughnesses, 

respectively, and 
IICG is the Mode II critical energy release rate for shear failures. The
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initiation strains determined by Eqs. 1 to 3. For material degradations under 

compression stresses, equations similar to Eqs. 12 to 17 are used. Note that the 
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unidirectional material properties for IM7/977-3 used in Eqs. 12 to 17 are given in 

Table I.  

Following the conventional definition [26, 28], these damage indices are defined as  

1 11 1101 /nd E E                                                           (18) 

      
2 22 2201 /nd E E                                                           (19) 

3 33 3301 /nd E E                                                           (20) 

12 12 1201 /ds G G                                                           (21) 

13 13 1301 /ds G G                                                            (22) 

23 23 2301 /ds G G                                                           (23) 

Note that at an undamaged state (fully elastic), the index is set to be zero and at a 

fully damaged state, the index is set to be one. These damage indices are used as 

internal variables for establishing the 3D continuum damage mechanics model.  

3D CONTINUUM DAMAGE MECHANICS (CDM) MODEL 

Following the derivations in Ref. 28, the strain and true stress relation can be 

expressed as  

H                                                                (24) 
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(25)                         

Its inverse is the damaged stiffness matrix and the damaged stress-strain relation, i.e. 

the 3D CDM model, can be expressed as 
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( )C d                                                                   (26) 
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Note that id ( 1,6i  ) are the damage variables which are functions of damage indices 

defined by Eqs. 18 to 23. The normal stiffness damaged variables d1, d2, and d3  may 

be expressed as  

                        
1 1nd d                                                                   (28)                     

                        
2 2nd d                                                                   (29)                     

                        3 3nd d                                                                   (30)                     
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Since the fiber damage, matrix damage, and shear damage modes can all affect the 

shear stiffness reduction, the shear damage variables d4, d5, and d6 may be expressed 

as the following phenomenological equations 

4 1 2 3 231 (1 )(1 )(1 )(1 )d d d d ds                                              (31) 

5 1 3 131 (1 )(1 )(1 )d d d ds                                                         (32) 

6 1 2 121 (1 )(1 )(1 ds )d d d                                                         (33) 

Here, the values of   and   are assumed to be between zero and one. When their 

values are zero, they do not affect the shear stiffness degradations. When their values 

are set to one, they have the maximum effect on the shear stiffness degradations. Note 

that the matrix and shear moduli for a unidirectional ply are assumed to be linear in 

this study. The   and   may be regarded as correction factors to account for the 

effect of the nonlinearity of these moduli on the degradation of the damaged shear 

stiffnesses in Eq. 27.  It is expected that nonlinear stress-strain curves for [90]n and 

[45/-45]ns can be used to calibrate the values of  and  . Also, direct implementation 

of nonlinear stress-strain curves based on the Enhanced Schapery Theory (EST) [9] 

or the approach used in Ref. 18 may eliminate the need of using the correction factors 

  and  . 

USER DEFINED MATERIAL MODEL (VUMAT) FOR ABAQUS/EXPLICIT 

An ABAQUS/Explicit user defined material model (VUMAT) subroutine was 

developed to implement the CDM based 3D damaged constitutive equations. This 

VUMAT links to the Abaqus/Explicit code for PDA of laminated composite 

structures and is suitable for the reduced integration 3D element C3D8R [31]. 

Implementations for fully integrated 3D elements are possible, but will be more 

computationally intensive due to more integration points involved. In this VUMAT, 

the Green-Lagrange strain tensor is used, so it is applicable for material and 

geometrically nonlinear analyses.  

In the conventional CDM approach, the constitutive model is normally expressed in 

terms of stress-strain relations. When the material exhibits strain-softening behavior, 

leading to strain localization, this approach results in a strong mesh dependency of 

the finite element results due to the fact that energy dissipated decreases with mesh 

refinement [22]. In the crack band theory, the characteristic length scales are used, 

related to the element size, and the softening part of the constitutive law is expressed 

as a traction-separation relation. The use of characteristic length scales and traction-

separation laws can assure that the energy released during the damage process is per 

unit area, not per unit volume, this can alleviate the mesh dependency issue [6, 9, 22]. 

The critical energy release rates (fracture toughnesses) are treated as additional 
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material parameters for determining the material property degradations in Eqs. 12 to 

17. In this VUMAT, the damage indices in Eqs. 18 to 23 are the solution-dependent 

state variables (SDVs) which each have a value between 0 and 1. A value of 0 means 

no damage while a value of 1 means total damage. These SDVs can be output for 

visualization to identify the extent of damage of each failure mode  

CORRELATIONS WITH EXPERIMENTAL DATA 

The prediction results for notched specimens were correlated with test data. The 

correlations can be used to verify if the VUMAT is properly coded and to evaluate 

the accuracy of the predictions.  

 

Experimental Data 

 

Experimental data of open hole tension (OHT) and open hole compression (OHC) 

specimens [11-13, 32-34] recently tested by the Air Force Research Laboratory 

(AFRL) were used for the test-analysis correlations. The dimensions of the specimens 

are shown in Fig. 2. For strain measurement, an extensometer was mounted on the 

specimen with its knife edges a half inch above and a half inch below the hole center, 

along the axial direction. These notched specimens were made of IM7/977-3 

laminates, containing various lay-up sequences, and were subjected to either tension 

or compression load [32, 33]. Three different layups were used for both OHT and 

OHC specimens; [0/45/90/-45]2S and [60/0/-60]3S were used as the strong layups 

which have 0o-plies and [30/60/90/-60/-30]2S was used as the weak layup which has 

no 0o-plies, to capture different failure modes. The cured average ply thickness was 

observed to be about 0.127 mm. These specimens were designed, fabricated and 

tested according to the ASTM standards. The unidirectional ply properties were also 

obtained using ASTM test standards. The linear elastic properties of a unidirectional 

IM7/977-3 ply are listed in Table I, which were obtained from Refs. 11-13 and 32-

34. The fiber tension fracture toughness FTG  and the fiber compression fracture 

toughness FCG  shown in Table I were obtained from Refs. 7 and 35, respectively, for 

a similar graphite/epoxy system. The matrix tension fracture toughness MTG  and the 

matrix compression fracture toughness MCG  shown in Table I were obtained from 

Refs. 12, 13, and 34 for the IM7/977-3 material system. 

 

Finite Element Model  

 

The finite element model of the OHT and OHC specimens is shown in Fig. 3. 

Symmetric boundary conditions were used, and thus only the top half of the laminate 

was modeled. The number of nodes and the number of elements of the largest 

[30/60/90/-60/-30]2S model are 31,100, and 27,000, respectively.  All the analyses 

were performed using high performance Linux computer clusters. The 

Abaqus/Explicit analyses were executed in double precision mode and the number of 

processors specified for each run was 12. The longest wall clock run time was about 

20 hours for the [30/60/90/-60/-30]2S OHT model and the shortest run time was about 

three hours for the [60/0/-60] 3S OHC model.  
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Analysis Results 

 

In order to check the proper implementation of the VUMAT for elastic stiffness 

prediction of test specimens and to evaluate the sensitivity of the predicted test-

specimen strength on the   and  values used, the stress and strain curves of the 

[45/0/90/-45]2s OHT specimen with different   and  values are plotted in Fig. 4. A 

comparison with the test data shows that the elastic stiffness is well captured, thus 

verifying the implementation. In Fig. 4, the predictions using    0.3, 0.5 and 0.6 

are shown to illustrate that the changes of   and   values can affect the strength 

predictions. An increase of   and  values causes greater shear stiffness reductions 

in the damage evolution stage which in turn can lower the predicted strengths. Note 

that the change of   and  values from 0.3 to 0.6 reduces the predicted strength by 

only 7%, indicating that the predicted strength is not be not very sensitive to the   

and  values used.  Similar trends were observed for other layups. For the following 

tested and predicted strength correlations performed for the OHT and OHC 

specimens, all the analysis results were obtained with 0.5   . It was observed 

that this set of   and  values served as suitable correction factors to slow the shear 

stiffness reductions for all the cases analyzed and peak loads were reached without 

encountering any large element distortion problem. 

 

The predicted strengths of the OHT and OHC specimens with three different lay-ups 

are compared with the experimental data as shown in Table II.  The prediction errors 

with the averaged test data are also presented in the table. These strengths were 

obtained by dividing the peak load with the total cross-section area. The total cross-

section area is the specimen width multiplied by the laminate thickness. For example, 

the peak load for the quasi-isotropic OHT specimen can be clearly identified from 

load displacement curve shown in Fig. 5. The predicted strengths and test data are 

also plotted in Fig. 6 for visual comparisons. The analysis results presented in Table 

II and Fig. 6 correlate reasonably well with test results, considering the simplicity of 

this VUMAT implementation. However, some errors are still more than 10%, 

indicating further development or adoption of advanced PDA tools are needed for 

more accurate predictions. Since the interlaminar delamination was not modeled in 

this study, the effect of delamination on the strength prediction needs be investigated 

in future studies.  

 

To illustrate that all specimens analyzed using 0.5    do reach their peak loads, 

indicated by the accumulation of significant damage across the width of the 

specimens, the fiber tensile failure for the outermost major load bearing ply (see red 

arrow) for each OHT specimen is shown in Fig. 7 and the fiber compression failure 

for the outermost major load bearing ply for each OTC specimen is shown in Fig. 8. 

These figures indicate that the major load bearing plies are nearly failed after the peak 

load has been reached. Note that a complete fiber tensile failure is indicated by SDV1 

reaching a value of 1.0 in Fig. 7 while a complete fiber compression failure is 

indicated by SDV2 reaching a value of 1.0 in Fig. 8. 
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CONCLUDING REMARKS 

 

A simple CDM based 3D PDA tool has been developed and implemented as a user 

defined material (VUMAT) subroutine to link with a commercial finite element code, 

ABAQUS/Explicit. This PDA tool uses linear lamina properties from ASTM 

standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem 

failure criteria, and in the damage evolution phase, evaluates the degradation of 

material properties based on the crack band theory and traction-separation cohesive 

laws. It follows Matzenmiller et al.’s formulation to incorporate the degrading 

material properties into the damaged stiffness matrix. The user defined material 

subroutine can serve as a framework for future development of more accurate and 

advanced PDA capabilities.  

 

The characteristic length scales related to the crack band theory were used to alleviate 

the mesh dependency issue often associated with PDA predictions. This VUMAT 

uses phenomenological parameters to control the shear stiffness degradations.  Note 

that the matrix and shear moduli for a unidirectional ply are assumed to be linear in 

this study. The   and   may be regarded as correction factors to account for the 

effect of the nonlinearity of these moduli on the degradation of the damaged shear 

stiffnesses. In future studies, the   and  values may be judiciously calibrated by 

using the nonlinear matrix and shear stress-strain curves obtained from simple 

coupon tests. Preliminary predictions of the strengths were in reasonably good 

agreement with test data of OHT and OHC specimens with various layups when 

0.5    was used. However, some errors are still more than 10%, indicating the 

need for modeling interlaminar delaminations and further development or adoption 

of advanced PDA tools for more accurate predictions. 
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Table I – MATERIAL PROPERTIES  

Material Property  

110( )E GPa  
164.0 (Tension) 

137.4 (Compression) 

220 330, ( )E E GPa  8.98 

120 130, ( )G G GPa  5.02 

230( )G GPa  3.00 

12 13,   0.320 

23  0.496 

, ( / )IC IICG G N mm  0.256, 1.156 

, ( )T CY Y MPa  100.0, 247.0 

( )S MPa  80.0 

, ( )T CX X GPa  2.90, 1.68 

, ( / )FT FCG G N mm  81.534, 24.533 

, ( / )MT MCG G N mm  0.256, 1.156 

 

Table II – TEST AND ANALYSIS RESULTS 

Lay-Ups 

OHT  OHC  

Analysis 
(MPa) 

Test 
(MPa) % Error  

Analysis 
(MPa) 

Test 
(MPa) % Error  

[0/45/90/-45]2s 508 554 -9.06 318 341 -6.74 

[60/0/-60]3s 533 543 -1.88 290 358 -18.99 

[30/60/90/-60/-30]2s 461 409 11.28 327 295 10.85 
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Figure 1. Damaged element with cohesive opening. 

 

 

 

 

 

 

 

 

 

Figure 2. Dimensions of IM7/977-3 open hole specimen. 
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Figure 3. 3D finite element mesh of open hole specimen. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Stress-strain plot for OHT [0/45/90/-45]2S specimen using various 

values of   and  . 
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Figure 5. Predicted load-displacement curve for [0/45/90/-45]2S OHT specimen. 
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Figure 7. Final fiber tensile failure (SDV1) in outermost major load bearing ply. 

 

 

Figure 8. Final fiber compression failure (SDV2) in outermost major load bearing 

ply. 
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