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Loading Phases:

• 0) to A) – Quasi-static (QS) loading

• A) to B) – Dynamic response

F, d

A)

B)

Force

Displacement

No QS 

solution exists

A)

B)
0)

Snapback behavior:
• More strain energy available than 

necessary for fracture

Quasi-Static Loading and Rupture
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Failure Criteria and Material Degradation

Failure criterion

E

1

Residual=E/100

Strain

Stress

e/e0

Progressive Failure Analysis

1

Elastic

property

Benefits

• Simplicity (no programming needed)

• Convergence of equilibrium iterations

Drawbacks

• Mesh dependence

• Dependence on load increment

• Ad-hoc property degradation

• Large strains can cause reloading

• Errors due to improper load redistributions
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Failure Criteria and Material Degradation
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Increasing lelem

Increasing lelem

Progressive Failure Analysis

Progressive Damage Analysis – Regularized Softening Laws
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Fracture-Dominated Failure
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Crack propagates unstably once driving force G(, a0) reaches GIc

G(, a0)
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Fracture-Dominated Failure
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Crack propagates stably when driving force G(, a0) > GInit

Unstable propagation initiates at cInit GGG 

7



Mechanics of Crack Arrest

G

a0

a

max

R = GIc

unstable arrest

aarrest



Crack arrest due to decreasing G
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Mechanics of Crack Arrest

G

a0

a

max

unstable

arrest?

R rate sensitive



Large strain rates often result in lower fracture toughness 

and delayed arrest
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Griffith growth criterion

Griffith Criterion and Stability

Stability of equilibrium propagation

Wimmer & Pettermann

J of Comp. Mater, 2009
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Stability of Propagation with Multiple Crack Tips

P, v

Wimmer & Pettermann

J of Comp. Mater, 2009
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Curved laminate with through-the-width delamination

2.25 mm
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Scaling: The Effect of Structure Size on Strength

Scaling from test coupon to structure

Structural size, in.

Yield or Strength Criterialog n

log D

(Z. Bažant)

Scaling Laws

Normal testing
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Cohesive Laws

Bilinear Traction-Displacement Law
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Crack Length and Process Zone
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Crack Length and Process Zone
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Strength and Process Zone

As the strength c decreases,

1. the length lp of the process 

zone increases

2. the error of the Linear 

LEFM solution increases
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Size Effect and Material Softening Laws

Two material properties:

• c Strength

• Gc Fracture toughness

Damage Evolution Laws:

Each damage mode has its 

own softening response

Fracture Tests
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Damage Modes:

Tension Compression

Damage Evolution:

Thermodynamically-consistent material 

degradation takes into account energy 

release rate and element size for each mode

LaRC04 Criteria

• In-situ matrix strength prediction

• Advanced fiber kinking criterion

• Prediction of angle of fracture (compression)

• Criteria used as activation functions within 

framework of continuum damage mechanics 

(CDM)
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Progressive Damage Analysis  (Maimí/Camanho 2007)
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Prediction of size effects in notched composites

• Stress-based criteria predict no size effect

• CDM damage model predicts scale effects w/out calibration

(P. Camanho, 2007)

Hexcel IM7/8552 [90/0/45/-45]3s CFRP laminate

Experimental (mean)

Analysis

Predicting Scale Effects with Continuum Damage Models
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Scale effect is due to 

relative size of process zone

Cohesive law Stress distribution

(P. Camanho, 2007)

Process Zone and Scale Effect in Open Hole Tension

20



Length of the Process Zone (Elastic Bulk Material)
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• The use of cohesive laws to predict the 

fracture in complex stress fields is explored

• The bulk material is modeled as either 

elastic or elastic-plastic
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Study of size effect: measuring the R-curve

Double-notched compression specimens
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Characterization of Through-Crack Cohesive Law
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Compact Tension (CT) Specimen Characterization Procedure:

1. Measure R-curve from CT 

test

2. Assuming a trilinear

cohesive law, fit analytical 

R-curve to the measured 

R-curve

3. Obtain the cohesive law 

by differentiating the 

analytical R-curve
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Bergan, 2014
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Size-Dependence of R-Curve

(a) ‘S’

(b) ‘L’

25 mm

Plotting the R-curve as a function of 

the notch displacement removes the 

size-dependency

Bergan, 2014
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R-Curve Effect in Fiber Fracture
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Mode II-Dominated Adhesive Fracture

Tip of adhesive

Teflon

Adhesive thickness: 0.13 mm

27



ENF J-Integral from DIC



MMB Test - Analysis Results

Nominally identical bonded MMB specimens sometimes fail in 

quasi-static mode and others dynamically. Why?
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Mixed mode bending (MMB) test fixture
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Double Delamination in MMB Tests

Composite  

delamination

Adhesive 

failure

Failure 

Surfaces

• Unexpected failure mechanism

• Two delamination fronts run in 

parallel: one in the adhesive, 

the other in the composite

• When the fiber bridge breaks, the crack grows unstably in the 

composite causing the drop in the load-displacement curve
30
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Modeling the Double Delamination

Fiber bridge

Cohesive layer

Adhesive 
Layer

• A model was developed to evaluate the observed double 

delamination phenomenon

• The model contains two additional cohesive layers within the 

composite arms

• This failure mechanism is often observed in bonded joints

Displacement, mm

A
p
p
lie

d
 l
o
a
d
, 

N

MMB test specimen

Model of MMB specimen with double 
delamination

Model with double delamination

Model with single delamination

Experimental result
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Representative Volume Element and Micromechanics

32

Why Micromechanics?

Assumption:

“Micromechanics has more built-in physics because it is closer to 

the scale at which fracture occurs”

Why NOT Micromechanics? (Representative Volume Element [RVE])

• Problem of localization

• Randomness of unit cell configurations

• Lengthscales missing

• Characterization of material properties, especially the interface

• Computational expense



RVE: 1) Problem of Localization
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Scale of RVE 

cannot be 
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Linear

RVE, Schapery Theory, 

homogenization

Localization; 

regularized CDM, 
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RVE: 2) Randomness of Unit Cell Configurations
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Melro et al. IJSS, 2013.

Bloodworth, V., PhD Dissertation, 

Imperial College, UK, 2008.

Fracture is a combination of interacting discrete and diffuse damage mechanisms



RVE: 3) Issue of Length Scales
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RVE may not account for:
• Ply thickness

• Longitudinal crack length

• Crack spacing

Crack spacing = RVE
Shielding



Matrix Cracking  ̶  In Situ Effect
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Transverse Matrix Cracks w/ One Element Per Ply

Multi-element model:

correct crack evolution

Conventional single-element: 

no opening w/out delam.
Modified single-element: 

correct Energy Release Rate
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Crack Initiation, Densification, and Saturation

Van der Meer, F.P. & Dávila, C., JCM, 2013

 = 182 MPa  = 273 MPa

 = 372 MPa  = 679 MPa

Cohesive zone

Traction-free cohesive zone

Delamination 38



𝑓(x)

Material Inhomogeneity

39F Leone, 2015

Initial crack density in a uniformly stressed laminate is 

strictly a function of material inhomogeneity

x

• Strength scaled by 𝑓, Fracture toughness scaled by 𝑓2

• Constant 𝑓 along each crack path
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Inhomogeneity applied to 3 levels of mesh refinement
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Effect of Transverse Mesh Density on Crack Spacing
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F Leone, 2015



Commercial finite element vendors and 

developers are providing more and more 

tools for progressive damage analysis.

… more analysis tools
=

more rope!

But, if the load incrementation 

procedures do not converge…

What Happened to Quadratic Convergence!!??
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• Viscoelastic Stabilization

• Delayed damage evolution

• Implicit dynamics or Explicit solution

• Arc-length techniques

• Dissipation-based arc-length

Constant energy 

dissipation in each 

load increment

Gutiérrez, Comm Numer Meth Eng (2004)

Verhoosel et al. Int J Numer Meth Eng (2009)

g

Techniques for Achieving Solution Convergence
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Van der Meer, Eng Fract Mech, 2010

QS Solution of Unstable OHT Fracture
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Open Questions

• Is the QS solution physical?

• Are the dynamic effects necessary?

• Which solution provides more 

insight into failure modes?
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Concluding Remarks

• A typical structural tests usually consist of three stages:

1. QS elastic response without damage

2. QS response with damage accumulation

3. Dynamic collapse/rupture

• Most structural failures exhibit size effects that depend on load 

redistribution that occurs during the QS phases

• Correct softening laws based on strength and toughness considerations 

are required

• Dynamic collapse/rupture is a result of the interaction between 

damage propagation and structural response

• A stable equilibrium state often does not exist after failure under either 

load or displacement control

• Onset of instability (failure) occurs when more elastic strain energy can 

be released by the structure than is necessary for damage propagation

• Simulation of unstable rupture is often needed to ascertain mode of 

failure and to compare to test results
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