

Damage Instability and Transition from Quasi-Static to Dynamic Fracture

Carlos G. Dávila

Structural Mechanics & Concepts Branch NASA Langley Research Center Hampton, VA USA

ICCST/10 Instituto Superior Técnico Lisbon, Portugal, 2-4 September 2015

Loading Phases:

- 0) to A) Quasi-static (QS) loading
- A) to B) Dynamic response

Progressive Failure Analysis

Benefits

- Simplicity (no programming needed)
- Convergence of equilibrium iterations

Drawbacks

- Mesh dependence
- Dependence on load increment
- Ad-hoc property degradation
- · Large strains can cause reloading
- Errors due to improper load redistributions

Progressive Failure Analysis

Progressive Damage Analysis – Regularized Softening Laws

Strength-Dominated Failure

For "long" beams, the response is <u>unstable</u>, dynamic, and independent of Gc

Fracture-Dominated Failure

Crack propagates unstably once driving force $G(\sigma, a_0)$ reaches G_{Ic}

Fracture-Dominated Failure

Crack propagates <u>stably</u> when driving force $G(\sigma, a_0) > G_{Init}$ <u>Unstable</u> propagation initiates at $G_{Init} < G \leq G_c$

Mechanics of Crack Arrest

Crack arrest due to decreasing G

Mechanics of Crack Arrest

Large strain rates often result in lower fracture toughness and delayed arrest

Griffith growth criterion

$$\frac{\partial \Pi_{\text{total}}}{\partial a_i} = \frac{\partial (\Pi_{\text{int}} + \Pi_{\text{ext}})}{\partial a_i} + G_{\text{c},i} = \begin{cases} > 0 & \text{no growth} \\ 0 & \text{equilibrium growth} \\ < 0 & \text{dynamic growth} \end{cases}$$

Stability of equilibrium propagation

$$\frac{\partial^2 \Pi_{\text{total}}}{\partial a_i^2} = \begin{cases} > 0 & \text{stable} \\ < 0 & \text{unstable} \end{cases}$$

Wimmer & Pettermann J of Comp. Mater, 2009

Stability of Propagation with Multiple Crack Tips

Scaling: The Effect of Structure Size on Strength

Cohesive Laws

Crack Length and Process Zone

Crack Length and Process Zone

Strength and Process Zone

Applied displacement, Δ

Damage Evolution Laws:

Each damage mode has its own softening response

Two material properties:

- σ_c Strength
- G_c Fracture toughness

Material length scale

Progressive Damage Analysis (Maimí/Camanho 2007)

Damage Modes:

LaRC04 Criteria

- In-situ matrix strength prediction
- Advanced fiber kinking criterion
- Prediction of angle of fracture (compression)

 Criteria used as activation functions within framework of continuum damage mechanics (CDM)

$$d_i = 1 - \frac{1}{f_i} \exp(A_i(1 - f_i))$$

Damage Evolution:

Thermodynamically-consistent material degradation takes into account energy release rate and element size for each mode

 f_i : LaRC04 failure criteria as activation functions

$$E = F^+; F^-; M^{y+}; M^{y-}; M^{s}$$

Bazant Crack Band Theory:

Critical (maximum) finite element size:

Predicting Scale Effects with Continuum Damage Models

Prediction of size effects in notched composites

- · Stress-based criteria predict no size effect
- CDM damage model predicts scale effects w/out calibration

(P. Camanho, 2007)

Process Zone and Scale Effect in Open Hole Tension

Length of the Process Zone (Elastic Bulk Material)

Cohesive Laws - Prediction of Scale Effects

- The use of cohesive laws to predict the fracture in complex stress fields is explored
- The bulk material is modeled as either elastic or elastic-plastic

Lexan Plexiglass tensile specimens (CT Sun)

Observations:

• LEFM overpredicts tests for h/a<1

h/a=1 (short process zone)

h/a = 0.25 (long process zone)

Study of size effect: measuring the R-curve

Characterization of Through-Crack Cohesive Law

σ

 G_c

 σ_c^+

Compact Tension (CT) Specimen

Experimental setup

Bergan, 2014

Specimen Specimen Antibuckling guide

Characterization Procedure:

- 1. Measure R-curve from CT test
- Assuming a trilinear cohesive law, fit analytical R-curve to the measured R-curve
- Obtain the cohesive law by differentiating the analytical R-curve
- $\sigma(\delta) = \frac{\partial J_{\rm fit}}{\partial \delta}$

 δ_{24}

 $G_R = \frac{P^2}{2t} \frac{\partial C}{\partial a}$

 $\eta = \sum_{i}^{n} \left| J_{\rm fit}^i - G_R^i \right|$

Trilinear cohesive law

Size-Dependence of R-Curve

R-Curve Effect in Fiber Fracture

Mode II-Dominated Adhesive Fracture

ENF J-Integral from DIC

Nominally identical bonded MMB specimens sometimes fail in quasi-static mode and others dynamically. Why?

Double Delamination in MMB Tests

Failure

Surfaces

- Unexpected failure mechanism
- Two delamination fronts run in parallel: one in the adhesive, the other in the composite

 When the fiber bridge breaks, the crack grows unstably in the composite causing the drop in the load-displacement curve

Modeling the Double Delamination

- A model was developed to evaluate the observed double delamination phenomenon
- The model contains two additional cohesive layers within the composite arms

MMB test specimen

Model of MMB specimen with double delamination

This failure mechanism is often observed in bonded joints

Why Micromechanics?

Assumption:

"Micromechanics has more built-in physics because it is closer to the scale at which fracture occurs"

Why NOT Micromechanics? (Representative Volume Element [RVE])

- Problem of localization
- Randomness of unit cell configurations
- Lengthscales missing
- Characterization of material properties, especially the interface
- Computational expense

RVE: 1) Problem of Localization

Fracture is a combination of interacting discrete and diffuse damage mechanisms

Bloodworth, V., PhD Dissertation, Imperial College, UK, 2008.

RVE: 3) Issue of Length Scales

RVE may not account for:

- Ply thickness
- Longitudinal crack length
- Crack spacing

Matrix Cracking – In Situ Effect

Transverse Matrix Cracks w/ One Element Per Ply

Crack Initiation, Densification, and Saturation

F Leone, 2015

Initial crack density in a uniformly stressed laminate is

strictly a function of material inhomogeneity

Material Inhomogeneity

Crack density Deterministic Stress Strength scaled by f, Fracture toughness scaled by f^2 ٠ Constant *f* along each crack path ٠ $f(\mathbf{x})$ +1.41e+00 Inhomogeneity applied to 3 levels of mesh refinement +1.40e+00 +1.32e+00 +1.24e+00 Î 10 elts. +1.16e+00 +1.08e+00 +1.00e+00 +9.20e-01 1 2 elts. +8.40e-01 +7.60e-01 +6.80e-01 +6.00e-01 +5.75e-01 elt.

Stochastic

F Leone, 2015

Commercial finite element vendors and developers are providing more and more tools for progressive damage analysis.

But, if the load incrementation procedures do not converge...

... more analysis tools = more rope!

- Viscoelastic Stabilization
 - Delayed damage evolution
- Implicit dynamics or Explicit solution
- Arc-length techniques
 - Dissipation-based arc-length

Constant energy dissipation in each load increment

Gutiérrez, *Comm Numer Meth Eng (2004)* Verhoosel et al. *Int J Numer Meth Eng (2009)*

QS Solution of Unstable OHT Fracture

Van der Meer, Eng Fract Mech, 2010

- Is the QS solution physical?
- Are the dynamic effects necessary?
- Which solution provides more insight into failure modes?

Concluding Remarks

- A typical structural tests usually consist of three stages:
 - 1. QS elastic response without damage
 - 2. QS response with damage accumulation
 - 3. Dynamic collapse/rupture
- Most structural failures exhibit size effects that depend on load redistribution that occurs during the QS phases
 - Correct softening laws based on strength and toughness considerations are required
- Dynamic collapse/rupture is a result of the interaction between damage propagation and structural response
 - A stable equilibrium state often does not exist after failure under either load or displacement control
 - Onset of instability (failure) occurs when more elastic strain energy can be released by the structure than is necessary for damage propagation
 - Simulation of unstable rupture is often needed to ascertain mode of failure and to compare to test results